請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93379完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛宇甯 | zh_TW |
| dc.contributor.advisor | Louis Ge | en |
| dc.contributor.author | 劉品秀 | zh_TW |
| dc.contributor.author | Pin-Hsiu Liu | en |
| dc.date.accessioned | 2024-07-30T16:13:25Z | - |
| dc.date.available | 2024-07-31 | - |
| dc.date.copyright | 2024-07-30 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-24 | - |
| dc.identifier.citation | [1] ASTM C191 - 08. (2008). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International Ed. West Conshohocken, PA, USA.
[2] ASTM C940 - 98a. (1998). Standard Test Method for Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory. ASTM International Ed. West Conshohocken, PA, USA. [3] ASTM D0854 - 02. (2002). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International Ed. West Conshohocken, PA, USA. [4] ASTM D2166 - 00. (2000). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International Ed. West Conshohocken, PA, USA. [5] ASTM D2487 - 11. (2011). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System. ASTM International Ed. West Conshohocken, PA, USA. [6] ASTMD3999 - 11. (2011). Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus. ASTM International Ed. West Conshohocken, PA, USA. [7] ASTM D5084 - 16a. (2016). Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM International Ed. West Conshohocken, PA, USA. [8] ASTM D5311 - 11. (2011). Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil. ASTM International Ed. West Conshohocken, PA, USA. [9] ASTM D5856 - 95. (2007). Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter. ASTM International Ed. West Conshohocken, PA, USA. Akbulut, S., & Saglamer, A. (2002). Estimating the groutability of granular soils: a new approach. Tunnelling Underground Space Technol., 17(4), 371-380. [10] Avci, E., Deveci, E., & Gokce, A. (2021). Effect of sodium silicate on the strength and permeability properties of ultrafine cement grouted sands. J. Mater. Civ. Eng., 33(8), 04021203. [11] Avci, E., & Mollamahmutoglu, M. (2016). UCS Properties of Superfine Cement–Grouted Sand. J. Mater. Civ. Eng., 28(12). [12] Axelsson, M. (2006). Mechanical tests on a new non-cementitious grout, silica sol: A laboratory study of the material characteristics. Tunnelling Underground Space Technol., 21(5), 554-560. [13] Björnström, J., Martinelli, A., Matic, A., Börjesson, L., & Panas, I. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chem. Phys. Lett., 392(1-3), 242-248. [14] Celik, F. (2019). The observation of permeation grouting method as soil improvement technique with different grout flow models. Geomech. Eng., 17(4), 367-374. [15] Cheng, H., Liu, X., Lin, J., Zhang, L., Li, M., & Rong, C. (2020). Study on fracturing and diffusion mechanism of nonslab fracturing grouting. Geofluids, 2020. [16] Chindaprasirt, P., Jamsawang, P., Sukontasukkul, P., Jongpradist, P., & Likitlersuang, S. (2021). Comparative mechanical performances of cement-treated sand reinforced with fiber for road and pavement applications. Transp. Geotech., 30, 100626. [17] Choi, R. F. Y. (2005). Review of the jet Grouting Method. Bachelor dissertation, Faculty of Engineering and Surveying, University of Southern Queensland, Australia. [18] Christodoulou, D., Droudakis, A., Pantazopoulos, I., Markou, I., & Atmatzidis, D. (2009). Groutability and effectiveness of microfine cement grouts. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering (Volumes 1, 2, 3 and 4), [19] Das, B. M., & Sobhan, K. (2014). Principles of geotechnical engineering. [20] EN 196 - 03. (2005). Methods of testing cement. Determination of setting times and soundness. British Standards Institution. [21] Gallagher, P. M., & Mitchell, J. K. (2002). Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil Dyn. Earthquake Eng., 22(9-12), 1017-1026. [22] Gallagher, P. M., Pamuk, A., & Abdoun, T. (2007). Stabilization of liquefiable soils using colloidal silica grout. J. Mater. Civ. Eng., 19(1), 33-40. [23] Guo, Y., Zhang, Q., Zhang, L., Liu, R., Chen, X., & Liu, Y. (2021). Experimental study on groutability of sand layer concerning permeation grouting. Adv. Mater. Sci. Eng., 2021, 1-10. [24] Halstead, P. (1961). The early history of Portland cement. Transactions of the Newcomen Society, 34(1), 37-54. [25] JSF T26-81T. (1979). Determination of maximum relative density and minimum relative density for sand. Japanese Geotechnical Society [26] Khajeh, A., Jamshidi Chenari, R., & Payan, M. (2020). A simple review of cemented non-conventional materials: soil composites. In Geotechnical and Geological Engineering (Vol. 38, pp. 1019-1040). [27] Liao, H., Huang, C., & Chao, B. (2003). Liquefaction resistance of a colloid silica grouted sand. In Grouting and ground treatment (pp. 1305-1313). [28] Liu, G., Zhao, M., Wang, T., Connolly, D. P., Cai, Y., Jiang, J., & Bai, W. (2023). Permeation grouting of low-permeability silty sands with colloidal silica. Case Stud. Constr. Mater., 19, e02327. [29] Mollamahmutoglu, M., & Avci, E. (2015). Effectiveness of microfine Portland cement grouting on the strength and permeability of medium to fine sands. Period Polytech-Civ. 59 (3), 319. In. [30] Ryozo, Y. (1996). The Developing Process and the New Concepts of Chemical Grout in Japan. Preprint of Special Lectures IS-TOKYO'96, 84-97. [31] Sogaard, C., Funehag, J., & Abbas, Z. (2018). Silica sol as grouting material: a physio-chemical analysis. Nano Convergence, 5, 1-15. [32] Takahashi, H., Omori, S., Asada, H., Fukawa, H., Gotoh, Y., & Morikawa, Y. (2021). Mechanical properties of cement-treated soil mixed with cellulose nanofibre. Applied Sciences, 11(14), 6425. [33] Thomas, J. J., Jennings, H. M., & Chen, J. J. (2009). Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. The Journal of Physical Chemistry C, 113(11), 4327-4334. [34] Xu, S., Cao, H., Zhu, Y., Sun, H., Lu, J., & Shi, J. (2022). Mechanism of filtration behaviors of cement-based grout in saturated sand under different grouting conditions. Geofluids, 2022. [35] Xue, B. (2018). A Study on Chemical Grouting of Quartz Sand. [36] Zhang, C., Yang, J., Fu, J., Ou, X., Xie, Y., & Liang, X. (2019). Performance evaluation of modified cement-sodium silicate grouting material for prereinforcing loose deposit tunnels. J. Mater. Civ. Eng., 31(7), 06019003. [37] Zhu, G., Zhang, Q., Liu, R., Bai, J., Li, W., & Feng, X. (2021). Experimental and numerical study on the permeation grouting diffusion mechanism considering filtration effects. Geofluids, 2021, 1-11. [38] 林任峰. (2005). 超細水泥漿液滲透灌漿模式之研究. [39] 連琮勛. (2010). 應用禁忌演算法於超微粒水泥漿體滲透灌漿之可灌性研究. [40] 廖洪鈞, 林英堂, 陳逸駿, 何泰源, & 余明山. (2004). 建築物基礎構造設計規範修訂之研究-地層改良. 326 頁. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93379 | - |
| dc.description.abstract | 本研究旨在探討灌漿材料地盤改良領域中的應用,尤其是材料的選擇對工程性能的影響。其動機係基於傳統水泥和矽酸鈉的局限性,由於傳統水泥的濾層效應、阻塞現象以及矽酸鈉的不穩定性限制了其在改良材料上的應用。本研究提出以水泥-矽酸鈉為發展的力學材料,其係以超微細水泥-奈米二氧化矽溶膠作為新型改良材料,以提升地盤改良的效果及穩定性。
首先進行超微細水泥-奈米二氧化矽溶膠之配比試驗,包括凝固試驗、泌水試驗與黏滯度試驗,當水灰比為2時,固定加入1 %減水劑的條件下,添加5、10、15和20 % 的奈米二氧化矽溶膠;100 % 之奈米二氧化矽溶膠於配比試驗之結果顯示,提升奈米二氧化矽溶膠的含量可以有效降低凝固時間與泌水率。而製作超微細水泥時,建議採用高速攪拌器,且其攪拌轉速應超過1000 rpm,而本研究使用1500 rpm攪拌5分鐘。 在無圍壓縮強度、動態三軸與變水頭滲透之試驗中,選擇相對密度為50 % 之渥太華20-30級配標準砂作為基材,選擇三種不同的配比製成改良漿液,分別為水灰比為2,添加1 % 減水劑;同樣水灰比和減水劑含量,添加為20 %奈米二氧化矽溶膠;100 % 奈米二氧化矽溶膠加入12 % 之氯化鈉溶液使之促凝劑的漿液。於無圍壓縮強度試驗之結果顯示,超微細水泥漿液添加20 % 奈米二氧化矽溶膠在灌漿後經過28天養護,提升抗壓強度至將近3 MPa;動態三軸試驗中,含有超微細水泥之改良試體,超額孔隙水壓激發過程較為緩慢;變水頭試驗中,砂土之滲透係數為7.121×10-2 cm/sec,經改良後其滲透係數範圍降低10-6至10-7 cm/sec。總結本研究改良材料之結果,證實能改善其土壤力學性質與穩定性,顯示其在地盤改良的潛力。 | zh_TW |
| dc.description.abstract | This research investigates the application of a grouting improvement which focuses on the impact of grout material selection. The study addresses the limitations of traditional cement and sodium silicate grouts, such as the filtration and clogging phenomena associated with cement and the instability of sodium silicate. To overcome these challenges, the research introduces microfine cement and colloidal silica as the grouting materials.
Experimental grouting materials tests, which included setting, bleeding, and viscosity tests, used a water-cement ratio equal to 2 with incremental additions of 5%, 10 %, 15 %, and 20 % colloidal silica, as well as a pure colloidal silica solution. These tests demonstrated that increasing the colloidal silica content effectively reduced setting time and bleeding rates. For optimal performance, high-speed mixing at speeds exceeding 1000 rpm is recommended; in this study, a speed of 1500 rpm was employed for a duration of five minutes. Advanced tests were also conducted using Ottawa 20-30 graded standard sand with a relative density of 50%. These tests included cyclic triaxial tests, unconfined compressive stress tests, and falling head permeability tests. The paste formulations tested were pure microfine cement, microfine cement with 20 % colloidal silica and pure colloidal silica paste. The results showed that grouts containing 20 % colloidal silica in microfine cement paste significantly increased compressive strength after 28 days of curing and decreased permeability, without inducing an increase in the pore pressure ratio, demonstrating the potential of this new grout formulation for enhancing ground improvement. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:13:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-30T16:13:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 iv 表次 vii 圖次 viii 第 1 章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 1 1.3 研究架構 2 第 2 章 文獻回顧 3 2.1 現有地盤改良灌漿技術 3 2.2 超微細水泥介紹與應用 4 2.3 奈米二氧化矽溶膠介紹與應用 11 2.4 綜合討論 15 第 3 章 灌漿材料與試驗方法 16 3.1 試驗材料 16 3.1.1 砂土 16 3.1.2 超微細水泥 17 3.1.3 奈米二氧化矽溶膠 18 3.2 試驗儀器與步驟 20 3.2.1 砂土基本物理性試驗儀器與步驟 20 3.2.2 改良材料基本試驗與步驟 22 3.3 改良試體製作與設備開發 33 3.3.1 紙筒製作改良試體 33 3.3.2 滲透灌漿設備與步驟 36 3.4 力學試驗與步驟 39 3.4.1 無圍壓縮強度試驗與步驟 39 3.4.2 動態三軸試驗與步驟 44 3.4.3 變水頭試驗與步驟 55 3.5 試驗規劃 57 第 4 章 試驗結果與討論 61 4.1 改良漿液配比試驗 61 4.1.1 凝固時間試驗 62 4.1.2 泌水率試驗 63 4.1.3 黏滯度試驗 64 4.2 無圍壓縮強度試驗 66 4.2.1 試體軸向加載速率之準則 66 4.2.2 無圍壓縮強度試驗結果 67 4.2.3 改良試體力學性質 67 4.3 動態三軸試驗 73 4.3.1 動態三軸試驗之參數定義 73 4.3.2 試體液化判定準則 74 4.3.3 砂土動態三軸試驗結果 74 4.3.4 改良試體動態三軸結果 78 4.4 變水頭試驗 82 第 5 章 結論與建議 85 5.1 結論 85 5.2 建議 87 參考文獻 88 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 奈米二氧化矽溶膠 | zh_TW |
| dc.subject | 超微細水泥 | zh_TW |
| dc.subject | 變水頭滲透試驗 | zh_TW |
| dc.subject | 無圍壓縮強度試驗 | zh_TW |
| dc.subject | 動態三軸試驗 | zh_TW |
| dc.subject | Cyclic triaxial test | en |
| dc.subject | Unconfined compressive stress test | en |
| dc.subject | Falling head permeability test | en |
| dc.subject | Colloidal silica | en |
| dc.subject | Microfine cement | en |
| dc.title | 以超微細水泥 - 奈米二氧化矽溶膠灌漿材料改良砂土之強度 | zh_TW |
| dc.title | Strength Improvement of Sand Through Microfine Cement‐colloidal Silica Grouting | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊國鑫;鄭世豪;卓雨璇;朱民虔 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Hsin Yang ;Shih-Hao Cheng;Yu-Syuan Jhuo;Min-Chien Chu | en |
| dc.subject.keyword | 超微細水泥,奈米二氧化矽溶膠,動態三軸試驗,無圍壓縮強度試驗,變水頭滲透試驗, | zh_TW |
| dc.subject.keyword | Microfine cement,Colloidal silica,Cyclic triaxial test,Unconfined compressive stress test,Falling head permeability test, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202402208 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-26 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 7.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
