請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93363
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳士元 | zh_TW |
dc.contributor.advisor | Shih-Yuan Chen | en |
dc.contributor.author | 陳士允 | zh_TW |
dc.contributor.author | Shih-Yun Chen | en |
dc.date.accessioned | 2024-07-30T16:08:32Z | - |
dc.date.available | 2024-10-10 | - |
dc.date.copyright | 2024-07-30 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-26 | - |
dc.identifier.citation | [1] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, "A quantum engineer's guide to superconducting qubits," Applied Physics Reviews, vol. 6, no. 2, p. 021318, 2019, doi: 10.1063/1.5089550.
[2] F. Arute et al., "Quantum supremacy using a programmable superconducting processor," Nature, vol. 574, no. 7779, pp. 505-510, 2019, doi: 10.1038/s41586-019-1666-5. [3] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol, and J. R. Petta, "Semiconductor spin qubits," Reviews of Modern Physics, vol. 95, no. 2, 2023, doi: 10.1103/revmodphys.95.025003. [4] J. C. Bardin et al., "Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K," IEEE Journal of Solid-State Circuits, vol. 54, no. 11, pp. 3043-3060, 2019, doi: 10.1109/jssc.2019.2937234. [5] J. Park et al., "A fully integrated cryo-CMOS SoC for state manipulation, readout, and high-speed gate pulsing of spin qubits," IEEE Journal of Solid-State Circuits, vol. 56, no. 11, pp. 3289-3306, 2021, doi: 10.1109/jssc.2021.3115988. [6] B. Prabowo et al., "13.3 A 6-to-8GHz 0.17mW/qubit cryo-CMOS receiver for multiple spin qubit readout in 40nm CMOS technology," 2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2021, pp. 212-214, doi: 10.1109/isscc42613.2021.9365848. [7] A. Ruffino, Y. Peng, T.-Y. Yang, J. Michniewicz, M. F. Gonzalez-Zalba, and E. Charbon, "13.2 A fully-integrated 40-nm 5-6.5 GHz cryo-CMOS system-on-chip with I/Q receiver and frequency synthesizer for scalable multiplexed readout of quantum dots," 2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2021: IEEE, pp. 210-212, doi: 10.1109/isscc42613.2021.9365758. [8] S. Shahrabadi, "Ultrawideband LNA 1960–2019: Review," IET Circuits, Devices & Systems, vol. 15, no. 8, pp. 697-727, 2021, doi: 10.1049/cds2.12071. [9] A. Bevilacqua and A. M. Niknejad, "An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers," IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, 2004, doi: 10.1109/jssc.2004.836338. [10] M. T. Reiha and J. R. Long, "A 1.2 V reactive-feedback 3.1–10.6 GHz low-noise amplifier in 0.13 μm CMOS," IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1023-1033, 2007, doi: 10.1109/jssc.2007.894329. [11] J. Kim, S. Hoyos, and J. Silva-Martinez, "Wideband common-gate CMOS LNA employing dual negative feedback with simultaneous noise, gain, and bandwidth optimization," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 9, pp. 2340-2351, 2010, doi: 10.1109/tmtt.2010.2057790. [12] M. Parvizi, K. Allidina, and M. N. El-Gamal, "An ultra-low-power wideband inductorless CMOS LNA with tunable active shunt-feedback," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 6, pp. 1843-1853, 2016, doi: 10.1109/tmtt.2016.2562003. [13] E. A. Sobhy, A. A. Helmy, S. Hoyos, K. Entesari, and E. Sanchez-Sinencio, "A 2.8-mW sub-2-dB noise-figure inductorless wideband CMOS LNA employing multiple feedback," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 3154-3161, 2011, doi: 10.1109/tmtt.2011.2169081. [14] Z. Pan, C. Qin, Z. Ye, Y. Wang, and Z. Yu, "Wideband inductorless low-power LNAs with gm enhancement and noise-cancellation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 1, pp. 26-38, 2018, doi: 10.1109/tcsi.2017.2710057. [15] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, "Wide-band CMOS low-noise amplifier exploiting thermal noise canceling," IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 275-282, 2004, doi: 10.1109/jssc.2003.821786. [16] S. Kim and K. Kwon, "A 50-MHz–1-GHz 2.3-dB NF noise-cancelling balun-LNA employing a modified current-bleeding technique and balanced loads," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 546-554, 2019, doi: 10.1109/tcsi.2018.2866184. [17] S. Kim and K. Kwon, "Broadband balun-LNA employing local feedback gm-boosting technique and balanced loads for low-power low-voltage applications," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4631-4640, 2020, doi: 10.1109/tcsi.2020.3014194. [18] A. Bozorg and R. B. Staszewski, "A 0.02–4.5-GHz LN(T)A in 28-nm CMOS for 5G exploiting noise reduction and current reuse," IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 404-415, 2021, doi: 10.1109/jssc.2020.3018680. [19] A. Bozorg and R. B. Staszewski, "A 20 MHz–2 GHz inductorless two-fold noise-canceling low-noise amplifier in 28-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp. 42-50, 2022, doi: 10.1109/tcsi.2021.3092960. [20] R. Zhou, S. Liu, J. Liu, Y. Liang, and Z. Zhu, "A 0.1–3.5-GHz inductorless noise-canceling CMOS LNA with IIP3 optimization technique," IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 6, pp. 3234-3243, 2022, doi: 10.1109/tmtt.2022.3161279. [21] B. Guo, J. Chen, L. Li, H. Jin, and G. Yang, "A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations," IEEE Journal of Solid-State Circuits, vol. 52, no. 5, pp. 1331-1344, 2017, doi: 10.1109/jssc.2017.2657598. [22] K.-H. Chen and S.-I. Liu, "Inductorless wideband CMOS low-noise amplifiers using noise-canceling technique," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 2, pp. 305-314, 2012, doi: 10.1109/tcsi.2011.2162461. [23] S. S. Regulagadda, B. D. Sahoo, A. Dutta, K. Y. Varma, and V. S. Rao, "A packaged noise-canceling high-gain wideband low noise amplifier," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 1, pp. 11-15, 2019, doi: 10.1109/tcsii.2018.2828781. [24] Y.-C. Cheng and H.-C. Chen, "CMOS LNA for DTV-Band cognitive radio applications," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021, pp. 1-5, doi: 10.1109/iscas51556.2021.9401225. [25] J.-Y. Bae, S. Kim, H.-S. Cho, I.-Y. Lee, D. S. Ha, and S.-G. Lee, "A CMOS wideband highly linear low-noise amplifier for digital TV applications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 10, pp. 3700-3711, 2013, doi: 10.1109/tmtt.2013.2278156. [26] T. Chung, H. Lee, D. Jeong, J. Yoon, and B. Kim, "A wideband CMOS noise-canceling low-noise amplifier with high linearity," IEEE Microwave and Wireless Components Letters, vol. 25, no. 8, pp. 547-549, 2015, doi: 10.1109/lmwc.2015.2440762. [27] H. Yu, Y. Chen, C. C. Boon, C. Li, P.-I. Mak, and R. P. Martins, "A 0.044-mm2 0.5-to-7-GHz resistor-plus-source-follower-feedback noise-cancelling LNA achieving a flat NF of 3.3±0.45 dB," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 1, pp. 71-75, 2019, doi: 10.1109/tcsii.2018.2833553. [28] P. B. T. Huynh, J.-H. Kim, and T.-Y. Yun, "Dual-resistive feedback wideband LNA for noise cancellation and robust linearization," IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 4, pp. 2224-2235, 2022, doi: 10.1109/tmtt.2021.3139331. [29] Y. Guo et al., "Cryogenic CMOS RF circuits: A promising approach for large-scale quantum computing," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 3, pp. 1619-1625, 2024, doi: 10.1109/tcsii.2023.3333540. [30] A. Beckers, F. Jazaeri, A. Ruffino, C. Bruschini, A. Baschirotto, and C. Enz, "Cryogenic characterization of 28 nm bulk CMOS technology for quantum computing," 2017 47th European Solid-State Device Research Conference (ESSDERC), Leuven, Belgium, 2017, pp. 62-65, doi: 10.1109/essderc.2017.8066592. [31] R. M. Incandela, L. Song, H. Homulle, E. Charbon, A. Vladimirescu, and F. Sebastiano, "Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures," IEEE Journal of the Electron Devices Society, vol. 6, pp. 996-1006, 2018, doi: 10.1109/jeds.2018.2821763. [32] S.-H. Hong, G.-B. Choi, R.-H. Baek, H.-S. Kang, S.-W. Jung, and Y.-H. Jeong, "Low-temperature performance of nanoscale MOSFET for deep-space RF applications," IEEE Electron Device Letters, vol. 29, no. 7, pp. 775-777, 2008, doi: 10.1109/led.2008.2000614. [33] Z. Tang et al., "Cryogenic CMOS RF device modeling for scalable quantum computer design," IEEE Journal of the Electron Devices Society, vol. 10, pp. 532-539, 2022, doi: 10.1109/jeds.2022.3186979. [34] X. Chen, H. Elgabra, C.-H. Chen, J. Baugh, and L. Wei, "Estimation of MOSFET channel noise and noise performance of CMOS LNAs at cryogenic temperatures," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021, pp. 1-5, doi: 10.1109/iscas51556.2021.9401136. [35] B. Patra et al., "Cryo-CMOS circuits and systems for quantum computing applications," IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309-321, 2018, doi: 10.1109/jssc.2017.2737549. [36] B. Patra, M. Mehrpoo, A. Ruffino, F. Sebastiano, E. Charbon, and M. Babaie, "Characterization and analysis of on-chip microwave passive components at cryogenic temperatures," IEEE Journal of the Electron Devices Society, vol. 8, pp. 448-456, 2020, doi: 10.1109/jeds.2020.2986722. [37] A. Beckers, F. Jazaeri, and C. Enz, "Cryogenic MOS transistor model," IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3617-3625, 2018, doi: 10.1109/ted.2018.2854701. [38] A. Beckers, F. Jazaeri, and C. Enz, "Characterization and modeling of 28-nm bulk CMOS technology down to 4.2 K," IEEE Journal of the Electron Devices Society, vol. 6, pp. 1007-1018, 2018, doi: 10.1109/jeds.2018.2817458. [39] M. W. Pospieszalski, "Extremely low-noise cryogenic amplifiers for radio astronomy: past, present and future," 2018 22nd International Microwave and Radar Conference (MIKON), Poznan, Poland, 2018, pp. 1-6, doi: 10.23919/mikon.2018.8514558. [40] C.-C. Chiong, Y. Wang, K.-C. Chang, and H. Wang, "Low-noise amplifier for next-generation radio astronomy telescopes: Review of the state-of-the-art cryogenic LNAs in the most challenging applications," IEEE Microwave Magazine, vol. 23, no. 1, pp. 31-47, 2022, doi: 10.1109/mmm.2021.3117318. [41] Y. Peng, Y. Zhong, Z. Guo, S. Liu, and D. Yu, "A 3.5~7.5 GHz GaAs HEMT cryogenic low-noise amplifier achieving 5 Kelvin noise temperature for qubits measurement," 2023 IEEE/MTT-S International Microwave Symposium (IMS), San Diego, CA, USA, 2023, pp. 672-675, doi: 10.1109/ims37964.2023.10188012. [42] E. Cha et al., "0.3-14 and 16-28 GHz wide-bandwidth cryogenic MMIC low-noise amplifiers," IEEE Transactions on Microwave Theory and Techniques, pp. 1-10, 2018, doi: 10.1109/tmtt.2018.2872566. [43] E. Cha, N. Wadefalk, G. Moschetti, A. Pourkabirian, J. Stenarson, and J. Grahn, "A 300-µW cryogenic HEMT LNA for quantum computing," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020: IEEE, pp. 1299-1302, doi: 10.1109/ims30576.2020.9223865. [44] W.-T. Wong, M. Hosseini, H. Rucker, and J. C. Bardin, "A 1 mW cryogenic LNA exploiting optimized SiGe HBTs to achieve an average noise temperature of 3.2 K from 4–8 GHz," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 181-184, doi: 10.1109/ims30576.2020.9224049. [45] M. Hosseini and J. C. Bardin, "A 1 mW 0.1-3 GHz cryogenic SiGe LNA with an average noise temperature of 4.6 K," 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 2021, pp. 896-899, doi: 10.1109/ims19712.2021.9574993. [46] J.-O. Plouchart et al., "A 2.57mW 5.9-8.4GHz cryogenic FinFET LNA for qubit readout," 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Denver, CO, USA, 2022, pp. 27-30, doi: 10.1109/rfic54546.2022.9863158. [47] S. Das, S. Raman, and J. C. Bardin, "Design and implementation of a 3.9-to-5.3 GHz 65 nm cryo-CMOS LNA with an average noise temperature of 10.2K," 2022 IEEE/MTT-S International Microwave Symposium (IMS), Denver, CO, USA, 2022, pp. 719-722, doi: 10.1109/ims37962.2022.9865392. [48] Y. Peng, A. Ruffino, and E. Charbon, "A cryogenic broadband sub-1-dB NF CMOS low noise amplifier for quantum applications," IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 2040-2053, 2021, doi: 10.1109/jssc.2021.3073068. [49] A. Caglar, S. Van Winckel, S. Brebels, P. Wambacq, and J. Craninckx, "Design and analysis of a 4.2 mW 4 K 6–8 GHz CMOS LNA for superconducting qubit readout," IEEE Journal of Solid-State Circuits, vol. 58, no. 6, pp. 1586-1596, 2023, doi: 10.1109/jssc.2022.3219060. [50] A. Sheldon and L. Belostotski, "A cryo-CMOS low-noise amplifier with 2.3-to-8.5-K noise temperature at 20 K for highly integrated radio-astronomy receivers," IEEE Microwave and Wireless Components Letters, vol. 32, no. 11, pp. 1319-1322, 2022, doi: 10.1109/lmwc.2022.3178579. [51] M. K. Chaubey, Y. Liu, P.-C. Wu, H.-H. Tsai, and S. S. H. Hsu, "A miniature 10MHz-3GHz sub 1-dB NF cryogenic inductorless noise-canceling Low-noise amplifier for qubit readout," 2023 IEEE/MTT-S International Microwave Symposium (IMS), San Diego, CA, USA, 2023, pp. 668-671, doi: 10.1109/ims37964.2023.10187946. [52] M. K. Chaubey, Y. Liu, Y.-C. Chang, P.-C. Wu, H.-H. Tsai, and S. S. H. Hsu, "Ultracompact inductorless noise-canceling LNAs in 40-nm CMOS achieving 2.2-K noise temperature for qubit readout," IEEE Transactions on Microwave Theory and Techniques, vol. 72, no. 4, pp. 2168-2178, 2024, doi: 10.1109/tmtt.2024.3356653. [53] M. K. Chaubey, C.-C. Lin, Y.-C. Chang, P.-C. Wu, H.-H. Tsai, and S. S. H. Hsu, "A 0.01-to-2.6-GHz two-fold current reuse dual noise-canceling LNA achieving 6.8-K noise temperature for quantum applications," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 5, pp. 2504-2508, 2024, doi: 10.1109/tcsii.2024.3378382. [54] X. Li and Y. Zhang, "Flipping the CMOS switch," IEEE Microwave Magazine, vol. 11, no. 1, pp. 86-96, Feb. 2010, doi: 10.1109/mmm.2009.935203. [55] Q. Li and Y. P. Zhang, "CMOS T/R switch design: towards ultra-wideband and higher frequency," IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 563-570, Mar. 2007, doi: 10.1109/jssc.2006.891442. [56] Q. Li, Y. P. Zhang, K. S. Yeo, and W. M. Lim, "16.6- and 28-GHz fully integrated CMOS RF switches with improved body floating," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 2, pp. 339-345, Feb. 2008, doi: 10.1109/tmtt.2007.914364. [57] B.-W. Min and G. M. Rebeiz, "Ka-band low-loss and high-isolation 0.13-μm CMOS SPST/SPDT switches using high substrate resistance," 2007 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, USA, 2007, pp. 569-572, doi: 10.1109/rfic.2007.380948. [58] N. A. Talwalkar, C. P. Yue, G. Haitao, and S. S. Wong, "Integrated CMOS transmit-receive switch using LC-tuned substrate bias for 2.4-GHz and 5.2-GHz applications," IEEE Journal of Solid-State Circuits, vol. 39, no. 6, pp. 863-870, Jun. 2004, doi: 10.1109/jssc.2004.827809. [59] Y. Jin and C. Nguyen, "Ultra-compact high-linearity high-power fully integrated dc-20-GHz 0.18-μm CMOS T/R switch," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 1, pp. 30-36, Jan. 2007, doi: 10.1109/tmtt.2006.888944. [60] B. Cetinoneri, Y. A. Atesal, and G. M. Rebeiz, "A miniature dc-70 GHz SP4T switch in 0.13-μm CMOS," 2009 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2009, pp. 1093-1096, doi: 10.1109/mwsym.2009.5165891. [61] H.-Y. Chang and C.-Y. Chan, "A low loss high isolation dc-60 GHz SPDT traveling-wave switch with a body bias technique in 90 nm CMOS process," IEEE Microwave and Wireless Components Letters, vol. 20, no. 2, pp. 82-84, Feb. 2010, doi: 10.1109/lmwc.2009.2038518. [62] Y. Mei-Chao, T. Zuo-Min, and H. Wang, "A miniature dc-to-50 GHz CMOS SPDT distributed switch," 2005 European Gallium Arsenide and Other Semiconductor Application Symposium (GAAS), Paris, France, 2005, pp. 665-668, doi: 10.1109/eumc.2005.1610263. [63] C. Chen, X. Xu, and T. Yoshimasu, "A dc-50 GHz, low insertion loss and high P1dB SPDT switch IC in 40-nm SOI CMOS," 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 2017, pp. 5-8, doi: 10.1109/apmc.2017.8251363. [64] A. S. Cardoso, P. Saha, P. S. Chakraborty, D. M. Fleischhauer, and J. D. Cressler, "Low-loss, wideband SPDT switches and switched-line phase shifter in 180-nm RF CMOS on SOI technology," 2014 IEEE Radio and Wireless Symposium (RWS), Newport Beach, CA, USA, 2014, pp. 199-201, doi: 10.1109/rws.2014.6830161. [65] M. Parlak and J. F. Buckwalter, "A 2.5-dB insertion loss, dc-60 GHz CMOS SPDT switch in 45-nm SOI," 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Waikoloa, HI, USA, 2011, pp. 1-4, doi: 10.1109/csics.2011.6062463. [66] B. Yu et al., "Ultra-wideband low-loss switch design in high-resistivity trap-tich SOI with enhanced channel mobility," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 10, pp. 3937-3949, Oct. 2017, doi: 10.1109/tmtt.2017.2696944. [67] K. Y. Lin, T. Wen-Hua, C. Ping-Yu, C. Hong-Yeh, H. Wang, and W. Ruey-Beei, "Millimeter-wave MMIC passive HEMT switches using traveling-wave concept," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1798-1808, Aug. 2004, doi: 10.1109/tmtt.2004.831574. [68] L. Wu, H. Y. Hsu, and S. P. Voinigescu, "A dc to 220-GHz high-isolation SPST switch in 22-nm FDSOI CMOS," IEEE Microwave and Wireless Components Letters, vol. 31, no. 6, pp. 775-778, Jun. 2021, doi: 10.1109/lmwc.2021.3067003. [69] L. M. T. Quémerais, J.-M. Fournier, P. Benech, "A SPDT switch in a standard 45 nm CMOS process for 94 GHz applications," 2010 40th European Microwave Conference (EuMC), Paris, France, 2010, pp. 425-428, doi: 10.23919/eumc.2010.5614766. [70] H.-R. Zhu, X.-Y. Ning, Z.-X. Huang, Y.-X. Guo, and X.-L. Wu, "Miniaturized, ultra-wideband and high isolation single pole double throw switch by using π-type topology in GaAs pHEMT technology," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 191-195, Jan. 2021, doi: 10.1109/tcsii.2020.3001171. [71] C. D. Cheon, M.-K. Cho, S. G. Rao, A. S. Cardoso, J. D. Connor, and J. D. Cressler, "A new wideband, low insertion soss, high linearity SiGe RF switch," IEEE Microwave and Wireless Components Letters, vol. 30, no. 10, pp. 985-988, Oct. 2020, doi: 10.1109/lmwc.2020.3020317. [72] G. Shen, H. Zhu, Q. Cai, D. Zeng, Q. Xue, and W. Che, "Compact nultipole GaN-on-Si SPDT switch using inductive parasitic effects of hybrid HEMT devices," IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 11, pp. 4778-4786, Nov. 2023, doi: 10.1109/tmtt.2023.3267543. [73] F. Amin et al., "Wideband SPDT and SP4T RF switches using phase-change material in a SiGe BiCMOS process," 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 2021, pp. 431-434, doi: 10.1109/ims19712.2021.9574962. [74] B. Y. Ma, J. Bergman, J. B. Hacker, G. Sullivan, A. Sailer, and B. Brar, "Low loss cryogenic InAs/AlSb HEMT non-reflective SP4T switch," 2011 IEEE MTT-S International Microwave (IMS), Baltimore, MD, USA, 2011, pp. 1-4, doi: 10.1109/mwsym.2011.5972601. [75] A. S. Cardoso, P. S. Chakraborty, A. P. Omprakash, N. Karaulac, P. Saha, and J. D. Cressler, "On the cryogenic performance of ultra-low-loss, wideband SPDT RF switches designed in a 180 nm SOI-CMOS technology," 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Millbrae, CA, USA, 2014, pp. 1-2, doi: 10.1109/s3s.2014.7028204. [76] T. D. Nhut et al., "Cryogenic compact mm-wave broadband SPST switch in 22nm FDSOI CMOS for monolithic quantum processors," 2022 IEEE/MTT-S International Microwave Symposium (IMS), Denver, CO, USA, 2022, pp. 168-171, doi: 10.1109/ims37962.2022.9865577. [77] A. Potočnik et al., "Millikelvin temperature cryo-CMOS multiplexer for scalable quantum device characterisation," Quantum Science and Technology, vol. 7, no. 1, p. 015004, Oct. 2021, doi: 10.1088/2058-9565/ac29a1. [78] R. Acharya et al., "Scalable 1.4 μW cryo-CMOS SP4T multiplexer operating at 10 mK for high-fidelity superconducting qubit measurements," 2022 IEEE Symposium on VLSI Technology and Circuits, Honolulu, HI, USA, 2022, pp. 230-231, doi: 10.1109/vlsitechnologyandcir46769.2022.9830396. [79] R. Acharya et al., "Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer," Nature Electronics, vol. 6, no. 11, pp. 900-909, Sep. 2023, doi: 10.1038/s41928-023-01033-8. [80] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures. Artech House, 1980. [81] J. I. Colless and D. J. Reilly, "Cryogenic high-frequency readout and control platform for spin qubits," Review of Scientific Instruments, vol. 83, no. 2, p. 023902, 2012, doi: 10.1063/1.3681195. [82] J. I. Colless and D. J. Reilly, "Modular cryogenic interconnects for multi-qubit devices," Review of Scientific Instruments, vol. 85, no. 11, p. 114706, 2014, doi: 10.1063/1.4900948. [83] M. L. V. Tagliaferri et al., "Modular printed circuit boards for broadband characterization of nanoelectronic quantum devices," IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 8, pp. 1827-1835, 2016, doi: 10.1109/tim.2016.2555178. [84] M. Madsen, "Investigating timescales for quasi-particle poisoning in superconducting quantum dots in InAs nanowires," M.S. thesis, Niels Bohr Institute, Copenhagen University, 2016. [85] K. Chang and L.-H. Hsieh, Microwave ring circuits and related structures. John Wiley & Sons, 2004. [86] C.-C. Huang, H.-C. Wang, W.-Z. Fu, P.-X. Liu, and Y.-C. Liu, "Determination of dielectric constant and dissipation factor of printed circuit board by microstrip with ring and straight-line resonator measurements," 2022 17th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 2022, pp. 1-4, doi: 10.1109/impact56280.2022.9966721. [87] Z. Lei and K. Wu, "Line-to-ring coupling circuit model and its parametric effects for optimized design of microstrip ring circuits and antennas," 1997 IEEE MTT-S International Microwave Symposium (IMS), Denver, CO, USA, 1997, vol. 1, pp. 289-292, doi: 10.1109/mwsym.1997.604576. [88] P. Ji-Yong and L. Jong-Chul, "A new enhanced coupling structure of microstrip ring resonator with two coupled lines and a slit," 1998 IEEE MTT-S International Microwave Symposium (IMS), Baltimore, MD, USA, 1998, vol. 2, pp. 805-808, doi: 10.1109/mwsym.1998.705112. [89] D. M. Pozar, Microwave Engineering. Wiley, 2011. [90] G. F. Engen and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 12, pp. 987-993, 1979, doi: 10.1109/tmtt.1979.1129778. [91] M. Zannoni, M. Gervasi, A. Bau, and A. Passerini, "A cryogenic set-up for accurate characterization of microwave components for astrophysics," 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), Turin, Italy, 2013, pp. 113-116, doi: 10.1109/iceaa.2013.6632200. [92] P. Diener, F. Couëdo, C. Marrache-Kikuchi, M. Aprili, and J. Gabelli, "Cryogenic calibration setup for broadband complex impedance measurements," in AIP Conference Proceedings, 2014, vol. 1610, pp. 113-118, doi: 10.1063/1.4893520. [93] H. Wang et al., "Cryogenic single-port calibration for superconducting microwave resonator measurements," Quantum Science and Technology, vol. 6, no. 3, p. 035015, 2021, doi: 10.1088/2058-9565/ac070e. [94] T. Arakawa and S. Kon, "Calibrated two-port microwave measurement up to 26.5 GHz for wide temperature range from 4 to 300 K," IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-8, 2023, doi: 10.1109/tim.2023.3315393. [95] S. Simbierowicz, V. Y. Monarkha, S. Singh, N. Messaoudi, P. Krantz, and R. E. Lake, "Microwave calibration of qubit drive line components at millikelvin temperatures," Applied Physics Letters, vol. 120, no. 5, p. 054004, 2022, doi: 10.1063/5.0081861. [96] S. Simbierowicz, V. Y. Monarkha, M. Von Soosten, S. Andresen, and R. E. Lake, "Calibrated transmission and reflection from a multi-qubit microwave package," Review of Scientific Instruments, vol. 94, no. 5, 2023, doi: 10.1063/5.0144840. [97] L. Ranzani, L. Spietz, Z. Popovic, and J. Aumentado, "Two-port microwave calibration at millikelvin temperatures," Review of Scientific Instruments, vol. 84, no. 3, p. 034704, 2013, doi: 10.1063/1.4794910. [98] M. Stanley, S. E. De Graaf, T. Lindstrom, M. J. Salter, J. Skinner, and N. M. Ridler, "Design of microwave calibration standards for characterising S-parameters of quantum integrated circuits at millikelvin temperatures," 2021 51st European Microwave Conference (EuMC), London, United Kingdom, 2022, pp. 639-642, doi: 10.23919/eumc50147.2022.9784174. [99] M. Stanley, S. De Graaf, T. Honigl-Decrinis, T. Lindstrom, and N. M. Ridler, "Characterizing parameters of superconducting quantum integrated circuits at milli-Kelvin temperatures," IEEE Access, vol. 10, pp. 43376-43386, 2022, doi: 10.1109/access.2022.3169787. [100] M. Stanley, R. Parker‐Jervis, S. De Graaf, T. Lindström, J. E. Cunningham, and N. M. Ridler, "Validating S‐parameter measurements of RF integrated circuits at milli‐kelvin temperatures," Electronics Letters, 2022, doi: 10.1049/ell2.12545. [101] D. E. Oates, R. L. Slattery, and D. J. Hover, "Cryogenic test fixture for two-port calibration at 4.2 K and above," 2017 89th ARFTG Microwave Measurement Conference (ARFTG), Honololu, HI, USA, 2017, pp. 1-4, doi: 10.1109/arftg.2017.8000842. [102] Y. Chen et al., "Fast microwave calibration system for cryogenic device characterization," Journal of Instrumentation, vol. 17, no. 11, p. P11021, 2022. [103] J.-H. Yeh and S. M. Anlage, "In situ broadband cryogenic calibration for two-port superconducting microwave resonators," Review of Scientific Instruments, vol. 84, no. 3, 2013. [104] M. Stanley, S.-H. Shin, J. Skinner, J. Urbonas, and N. Ridler, "Characterising scattering parameters of coaxial microwave devices at milli-kelvin temperatures for quantum computing technologies," 2023 53rd European Microwave Conference (EuMC), Berlin, Germany, 2023, pp. 150-153, doi: 10.23919/eumc58039.2023.10290560. [105] J. Skinner, M. Stanley, J. Urbonas, S. De Graaf, T. Lindström, and N. Ridler, "Characterizing precision coaxial air lines as reference standards for cryogenic S-parameter measurements at milli-kelvin temperatures," 2023 IEEE/MTT-S International Microwave Symposium (IMS), San Diego, CA, USA, 2023, pp. 561-564, doi: 10.1109/ims37964.2023.10188171. [106] S.-H. Shin, M. Stanley, J. Skinner, S. E. De Graaf, and N. M. Ridler, "Broadband coaxial S-parameter measurements for cryogenic quantum technologies," IEEE Transactions on Microwave Theory and Techniques, vol. 72, no. 4, pp. 2193-2201, 2024, doi: 10.1109/tmtt.2023.3322909. [107] E. M. Wei, R. A. Chamberlin, N. Kilmer, J. Kast, J. A. Connors, and D. Williams, "On-wafer vector-network-analyzer measurements at mK temperatures," IEEE Journal of Microwaves, vol. 3, no. 2, pp. 587-598, 2023, doi: 10.1109/jmw.2022.3232076. [108] P. Bryndza, "VNA measurement calibration in cryogenic environment," 2022 24th International Microwave and Radar Conference (MIKON), Gdansk, Poland, 2022, pp. 1-6, doi: 10.23919/mikon54314.2022.9924695. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93363 | - |
dc.description.abstract | 量子計算被視為是顛覆人類生活與科技的重要技術之一。除了核心的量子元件,其用於控制和讀取量子位元之傳統半導體積體電路也是量子計算系統發展中不可或缺的基石。本論文中,我們將探究射頻/微波技術在數個與量子計算相關的應用。
本論文的第一部分聚焦於設計並實現一應用於固態自旋量子位元讀取系統中之低溫互補式金屬氧化物半導體低雜訊放大器。此次設計提出之創新電路架構,有效緩解在傳統雜訊消除技術中各參數間之拮抗,實現了在增益、雜訊指數、頻寬和功耗方面的綜合性高性能指標。 論文的第二部分則著墨於低溫樣品測量系統之建立,開發、設計與測試樣品量測載板套件,並討論了多種低溫微波量測相關之應用與其所需之考量。為了在低溫環境中進行微波量測與校正,我們規劃並開發了與樣品載板套件相容之校正系統。作為校正系統中的重要元件之一,我們透過提出的系統化設計程序,並應用LC梯形低通濾波器理論,實現了一顆低溫寬頻單極四擲(SP4T)切換器。在將此固態切換器與校正量測載板整合後,我們驗證了此校正與量測系統之效能,並顯示其可有效提升在極低溫量測設備中之校正準確度,能為未來相關之量子元件提供更可靠的微波測量環境,加速量子計算領域之發展。 | zh_TW |
dc.description.abstract | Quantum computing has recently become one of the most captivating keywords in the field of science and technology. In addition to the core quantum devices, control and readout circuitries developed based on conventional solid-state and electronic technologies are also indispensable cornerstones in system integration and scaling up. In this thesis, we explored and investigated the application of RF/microwave technologies in several quantum computing-related areas.
The first part of this thesis focuses on a cryo-CMOS low-noise amplifier designed specifically for use in readout circuitries for solid-state spin qubit systems. A novel topology is proposed to alleviate the trade-offs in the noise-canceling technique, achieving a superior figure of merit in terms of gain, noise figure, bandwidth, and power consumption. In the establishment of a cryogenic measurement system based on a dilution fridge, a prototype of sample holder kits is presented. Various considerations regarding several different applications are discussed. For performing calibration in a cryogenic environment, we designed a calibration system integrated with the sample holder kits. A cryogenic broadband single-pole-four-throw (SP4T) switch is developed with a proposed systematic design procedure utilizing LC-ladder low-pass filter theory. The implemented calibration system, incorporating the solid-state switch, achieves enhanced calibration accuracy within cryogenic microwave measurements, paving the way for advanced research in quantum-computing-relevant microwave devices. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:08:32Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-30T16:08:32Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 ii
致謝 iii 中文摘要 v ABSTRACT vi CONTENTS vii LIST OF FIGURES x LIST OF TABLES xvii Chapter 1 Introduction 1 Chapter 2 A Cryo-CMOS LNA for Spin Qubit Reflectometry Readout Applications 6 2.1 Introduction 6 2.1.1 Literature Review of CMOS Noise Canceling LNAs in VHF and UHF Bands 6 2.1.2 Design Considerations for Cryogenic Operation 10 2.1.3 Literature Review of Cryogenic LNAs 14 2.2 Circuit Design 17 2.2.1 Single Inverter Design 21 2.2.2 Inverter Pair and Mutual Noise-Canceling 28 2.2.3 Input Stage Design 35 2.2.4 Combining Stage 37 2.2.5 Output Driver 38 2.2.6 On-Chip Bypass Networks and Circuit Stability 41 2.3 Experimental Results 43 2.4 Summary 49 Chapter 3 Design of a Broadband SP4T Switch for Cryogenic Measurement and Calibration 51 3.1 Introduction 51 3.1.1 Literature Review of Broadband RF Switches 51 3.1.2 Literature Review of Cryogenic RF Switches 54 3.2 Circuit Design 55 3.2.1 Transistor Configuration 55 3.2.2 Circuit Schematics 57 3.2.3 Design Procedure 57 3.2.3.1 RHS Output Series-First LC LPF 58 3.2.3.2 Series Transistors 62 3.2.3.3 LHS Input Shunt-First LC LPF 64 3.3 Experimental Results 65 3.3.1 Room Temperature Measurement Results 66 3.3.2 4 K Temperature Measurement Results 68 3.4 Summary 70 Chapter 4 Sample Holder Design and RF Characterization within Dilution Fridge 73 4.1 Introduction 73 4.2 Design of First-Phase Testing Boards 75 4.2.1 Material Selection 75 4.2.2 Considerations of Testing Scenarios 78 4.2.3 RF Routing Design 84 4.2.4 Wire Bonding Issues 90 4.3 RF Characterization within Sample Puck 94 4.3.1 Raw Data Measurement 94 4.3.2 TRL Calibration at Room Temperature 101 4.4 RF Characterization within Dilution Fridge 108 4.5 Summary 120 Chapter 5 S-parameter Calibration in mK System 122 5.1 Introduction 122 5.2 Design of Second-Phase Testing Boards 125 5.2.1 Multiple Board Structure 125 5.2.2 Sample Holder Design for Superconducting Devices 128 5.2.3 Calibration Scheme Proposal 136 5.3 Room Temperature Validation Results 141 5.4 Summary 151 Chapter 6 Conclusion 153 6.1 Summary 153 6.2 Future Work 154 References 156 | - |
dc.language.iso | en | - |
dc.title | 應用於量子計算之低溫微波電路及量測系統 | zh_TW |
dc.title | Cryogenic Microwave Electronics and Measurement Systems for Quantum Computing Applications | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林坤佑;李峻霣;梁啟德 | zh_TW |
dc.contributor.oralexamcommittee | Kun-You Lin;Jiun-Yun Li;Chi-Te Liang | en |
dc.subject.keyword | 低溫互補式金屬氧化物半導體低雜訊放大器,低溫射頻切換器,低溫微波量測系統,低溫S參數校正技術, | zh_TW |
dc.subject.keyword | cryo-CMOS low noise amplifiers (LNAs),cryogenic RF switches,cryogenic microwave measurement,cryogenic S-parameter calibration, | en |
dc.relation.page | 171 | - |
dc.identifier.doi | 10.6342/NTU202402277 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-07-29 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 20.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。