請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9331
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曹建和(Jenho Tsao) | |
dc.contributor.author | Che-Wei Hsu | en |
dc.contributor.author | 許哲瑋 | zh_TW |
dc.date.accessioned | 2021-05-20T20:17:53Z | - |
dc.date.available | 2009-07-14 | |
dc.date.available | 2021-05-20T20:17:53Z | - |
dc.date.copyright | 2009-07-14 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-06-30 | |
dc.identifier.citation | [1] M. Chitre ,S. S. Shahabudeen ,M. Stojanovic,” Underwater Acoustic Communications and Networking: Recent Advances and Future Challenges ”, MTSJ 2008
[2] D. B. Kilfoyle, A. B. Baggeroer, ”The state of the art in Underwater Acoustic Telemetry”, IEEE J. OCEANIC ENG., VOL. 25, NO. 1, JANUARY 2000 [3] G. M. Wenz, Acoustic ambient noise in the ocean: spectra and sources, J. Acoust. Soc. Am. 34, 1936-1956 (1962). [4] S. Haykin, Adaptive Filter Theory, Third ed. Englewood Cliffs, NJ:Prentice-Hall, 1996. [5] B. Toplis and S. Pasupathy, “Tracking improvements in fast RLS algorithms using a variable forgetting factor,” IEEE Trans. Acoust., Speech, Signal Process., vol. 36, no. 2, pp. 206–227, Feb. 1988. [6] T. R. Fortescue, L. S. Kershenbaum, and B. E. Ydstie, “Implementation of self-tuning regulators with variable forgetting factors,” Automatica, vol. 17, pp. 831–835, 1981 [7] D. J. Park et al., “Fast tracking RLS algorithm using novel variable forgetting factor with unity zone,” Electron. Lett., vol. 27, pp. 2150–2151, Nov. 1991. [8] S. Song et al., “Gauss Newton variable forgetting factor recursive least squares for time varying parameter tracking,” Electron. Lett., vol. 36, pp. 988–990, May 2000. [9] S.H. Leung and C. F. So, “Gradient-Based Variable Forgetting Factor RLS Algorithm in Time-Varying Environments”, IEEE Trans.Signal processing, vol. 53, no. 8, August 2005 [10] D. R. Dowling, “Acoustic pulse compression using passive phase conjugate processing,” J. Acoust. Soc. Amer., vol. 95, no. 3, pp. 1450-1458, 1994. [11] J. G. Proakis, Digital Communications, 3rd ed. _McGraw-Hill, New York, 1995_, Chaps. 13 and 14, pp. 724–729. [12] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part III _Wiley Inter-Science, New York, 2001_, Chap. 13. [13] J. C. Preisig, Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment. J. Acoust. Soc. Am., 118(1):263–278, July 2005. [14] M. Stojanovic, J.G.Proakis and J.A.Catipovic, “Performance of High-Rate Adaptive Equalization on a Shallow Water Acoustic Channel”, 127th Meeting of the Acoust. Soc. Am., Cambridge, MA, 95, 2809-2810 (1994). [15] O. Macchi, Adaptive processing: The LMS Approach with applications in Transmission, Wiley, New York,1995 [16] E. Eweda, 'Comparison of RLS, LMS, and sign algorithms for tracking randomly time-varying channels,' IEEE Trans. Signal Process., vol.42, pp.2937–2944, Nov. 1994. [17] S. R. Ramp, J. F. Lynch, P. H. Dahl, C.-S. Chiu, and J. A. Simmen, “ASIAEX fosters advances in shallow-water acosutics,” EOS, Trans. AGU, vol. 84, no. 37, pp. 361– 367, 2003. [18] A. Zielinski, Y. Yoon, and L. Wu, “Performance analysis of digital acoustic communication in a shallow water channel,” IEEE J. Oceanic Eng., vol. 20, pp. 293–299, Oct. 1995. [19] W. Li, J. Preisig ``Estimation of Rapidly Time-Varying Sparse Channels” in IEEE Journal of Oceanic Engineering, 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9331 | - |
dc.description.abstract | 水聲通訊和無線電通訊主要有二個最大的差異點,一是水聲通道有非常長的多重路徑延遲,範圍可涵蓋十到一百多個符號(symbols),另一個是通道時變的速度。對於基於通道估測的等化器來說,通道估測是決定其效能的表現的最重要因素。在本篇論文中以遞迴性最小平方法做於通道追蹤的演算法,在這種演算法中若使用固定的遺忘因子去追蹤時變通道是不適合的,因為若當遺忘因子接近1時收斂會變慢,但當遺忘因子過小時又有錯誤調整過大的問題。所以水聲環境的通道追蹤必需可適性的調整遺傳因子以得到較好的追蹤效能,論文中我們提出一種較為直接的方法,以一種實現理論最佳值的方法來設定遺傳因子,取代以往以殘差均方誤差做於依據來調整遺傳因子的方法。最後實驗的效能表現是以「ASIAEX」的資料做為測試來源,在實驗中會以「信號多徑比」(SMR)做為衡量通道狀況的好壞。在實驗結果中,可以觀察到我們提出的遺傳因子估測法非常的有效,即時在較為嚴重的衰落通道也能預測準確,且可以發現的是最佳因子的值和通道的時變速度、「信號多徑比」有很大的關聯。 | zh_TW |
dc.description.abstract | Underwater acoustic communications differ from RF communications in two major aspects. One is the long multipath delay time covering tens to hundreds of symbols and the other is temporal variation of the acoustic channel at a time scale on the order of communication packet length. And the precision of channel estimation is the critical factor for the performance of channel estimation based equalizer. Here we using recursive least square algorithm as channel tracking algorithm. The RLS algorithm with a constant forgetting factor (FF) is not suitable for tracking time-varying channel because its convergence is slow when the FF is close to one, whereas the misadjustment is large when the FF is small. Therefore, the forgetting factor of RLS algorithm needs to be set adaptively in order to yield satisfactory performance in UWA environments. In this thesis, we provide a more directly method, say, from implementation of theoretical optimal value to set the FF, instead of controlling the forgetting factor based on the residual mean square error. The experiment result was presented based on ASIAEX data, and SMR was used as a measure for charactering the general quality of the channel. In the experiment result, we can observe that the proposed Forgetting Factor estimation is effective, even for severe fading channel. And it’s obvious that the value of optimal Forgetting Factor is highly correlated to the channel fading rate and SMR. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:17:53Z (GMT). No. of bitstreams: 1 ntu-98-R96942123-1.pdf: 867248 bytes, checksum: 3401a74e62a84ed0211bbc4dc8d50b11 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………i
誌謝…………………………………………………………………………………..ii 中文摘要…………………………………………………………………………….iii 英文摘要……………………………………………………………………………..iv Chapter 1 Introduction ………………………………………...…………………..1 1.1 A brief background of underwater acoustic communications………………1 1.2 The Ocean Acoustic Environment……………………………………….….5 1.2.1 Ambient noise………………………………………………………...8 1.2.2 Internal waves……………………………………………….………..9 1.3 An introduction to Channel Estimation………………………………..…..10 1.3.1 Why Channel Estimation? …………………………………………10 1.3.2 Training Sequences and Blind Method…………………………...…12 1.4 Forgetting factor estimation overview………………………………..……14 1.5 Research motivation…………………………………………………….…15 1.6 Thesis overview………………………………………………………..…16 Chapter 2 Underwater acoustic channel estimation and channel tracking ……….17 2.1 Channel estimation by pulse compression…………………………………17 2.2 Channel tracking by Recursive Least Squares (RLS) algorithm……….….19 2.3 The impact of channel estimation error on the equalizer…………………..25 2.4 AR channel model………………………………………………………….28 2.5 The optimal forgetting factor of RLS for channel estimation……………..31 Chapter 3 Optimal forgetting factor estimation…………………………………..33 3.1 Implementation of forgetting factor estimation………………………...…33 3.2 Doppler-Spread estimation………………………………………….…….38 3.3 Compute the approximate optimal forgetting factor…………………..…..45 Chapter 4 Experiment Result………………………………………………..……48 4.1 The Asian Seas International Acoustics Experiment (ASIAEX)……...…..48 4.2 Signal-To-Multipath Ratio (SMR)………………………….……….….…53 4.3 Performance & Results………………………………………..…………..59 Chapter 5 Conclusion……………………………………………………………..73 Reference……………………………………………………………………...….…74 | |
dc.language.iso | zh-TW | |
dc.title | 可適性水聲通道追蹤之最佳遺忘因子估測 | zh_TW |
dc.title | Forgetting Factor Estimation for Adaptive UWA Channel Tracking | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳琪芳(Chi-Fang Chen),鄭勝文(Sheng-Wen Cheng),邱永盛(Yung-Shen Chiu) | |
dc.subject.keyword | 遺忘因子,通道追蹤,通道估測,水聲通道,遞迴性最小平方法, | zh_TW |
dc.subject.keyword | forgetting factor,channel tracking,channel estimation,underwater acoustic channel,Recursive Least Square algorithm, | en |
dc.relation.page | 75 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-06-30 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 846.92 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。