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Abstract

Underwater acoustic communications differ from RF communications in two major aspects.
One is the long multipath delay time covering tens to hundreds of symbols and the other is temporal
variation of the acoustic channel at a time scale on the order of communication packet length. And
the precision of channel estimation is the critical factor for the performance of channel estimation
based equalizer. Here we using recursive least square algorithm as channel tracking algorithm. The
RLS algorithm with a constant forgetting factor (FF) is not suitable for tracking time-varying
channel because its convergence is slow when the FF is close to one, whereas the misadjustment is
large when the FF is small. Therefore, the forgetting factor of RLS algorithm needs to be set
adaptively in order to yield satisfactory performance in UWA environments. In this thesis, we
provide a more directly method, say, from impl-émerft.a_t_iop- of theoretical optimal value to set the FF,
instead of controlling the forgetting factor baseq_lon _,tl_;_‘e residual mean square error. The experiment

Py

result was presented based on ASTAEX data, éﬂd‘?ﬁR',was used as a measure for charactering the

I IR £
general quality of the channel. In the experiment result, jwe can observe that the proposed Forgetting

Factor estimation is effective, even for severe fading-channel. And it’s obvious that the value of

optimal Forgetting Factor is highly correlated to the channel fading rate and SMR.

Key word: forgetting factor ~ channel tracking ~ channel estimation ~ underwater acoustic channel -

Recursive Least Square algorithm
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Chapter 1 Introduction

The past three decades have seen a growing interest in underwater acoustic
communications because of its applications in marine research, oceanography, marine
commercial operations, the offshore oil industry and defense. Continued research over
the years has resulted in improved performance and robustness as compared to the

initial communication systems.

1.1 A brief background of underwater acoustic communications

Underwater acoustic communication is a technique of sending and receiving

- -

message below water. There are several|ways-of doing such communication but the
| 7% ,

most common is using hydrophones. In underwatér.“communication there are low data
rates compared to terrestrial communication, since underwater communication uses
acoustic waves instead of electromagnetic waves.

High-speed communication in the underwater acoustic channel has been
challenging because of limited bandwidth, extended multipath, refractive properties of
the medium, severe fading, rapid time variation and large Doppler shifts. In the initial
years, rapid progress was made in deep water communication, but the shallow water
channel was considered difficult. In the past decade, significant advances have been

made in shallow water communication [1].



The shallow water acoustic communication channel exhibits a long delay spread
because of numerous multipath arrivals resulting from surface and bottom interactions.
Movement of transducers, ocean surface, and internal waves lead to rapid time variation
and, consequently, a high Doppler spread in the channel. Coherent modulation schemes
such as phase shift keying (PSK) along with adaptive decision feedback equalizers
(DFE) and spatial diversity combining have been shown to be an effective way of
communication in such channels. However, the long delay spread (often hundreds of
symbols) and rapid time variation of the c_hann_gl often makes this approach

computationally too complex for realéfime implemientations.

A F
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Although the underwater channel haéﬁb’i‘fg:impulse response, the multipath
M ' ;

¥l =B
arrivals are often discrete. This opénsup the possibility‘of using a sparse equalizer with

tap placement based on the actual channel resp.onse. This can potentially dramatically
reduce the number of required taps and hence lead to a lower complexity, faster channel
tracking and an enhanced performance.

Due to the symmetry of the linear wave equation, if the sound transmitted from one
location is received at other locations, reversed and retransmitted, it focuses back at the
original source location. This is the principle behind time reversal mirrors (TRM) or its
frequency domain equivalent—active phase conjugation. The temporal compression

effect of TRM reduces the delay spread of the channel while the spatial focusing effect

2



improves signal-to-noise ratio (SNR) and reduces fading. In fact, the spatial focusing
precludes the use of multiple receivers for spatial diversity, but opens up the possibility
of spatial multiplexing and low probability of intercept (LPI) communications.
Although TRM helps reduce delay spread of the channel, it does not eliminate ISI
completely. By implementing a DFE at a TRM receiver, the communication
performance can be further improved. In a TRM-based communication system, a probe
signal has to be first transmitted from the receiver to the transmitter. The transmitter
then uses a time-reversed version of this s_ignal__ to;convey information. As the channel

changes over time, the probe signal has to be retransmitted to sample the channel but

A F
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decoherence times up to several tens of mintites were observed at frequencies of 3.5
By ,

il &
kHz during experiments. A closely'related idea—.passive phase conjugation

(PPC)—uses the cross-correlation of two'consecutive signals transmitted from the
transmitter to the receiver to convey information.

Progress in underwater acoustic telemetry since 1982 is reviewed within a
framework of six current research areas: 1) underwater channel physics, channel
simulations, and measurements; 2) receiver structures; 3) diversity exploitation; 4) error
control coding; 5) networked systems; and 6) alternative modulation strategies[2].

1) The purpose of channel simulations is commonly to aid in evaluation of signal

processing algorithms in an attempt to increase the success of field experiments. Less

3



common are attempts to use these models to explicitly relate time-varying ocean
processes to telemetry performance and gain true insight. While there are numerous
modeling techniques for underwater acoustic wave propagation including modal
decompositions, parabolic equation methods, wave-number integration algorithms, and
finite difference solutions, the telemetry community has focused almost exclusively,
and appropriately, on ray theory.

2)While the substantial attenuation of underwater communication signals as well
as pervasive noise sources (anthropogenic_, bio_l_pgic.al, and wave phenomena) often

conspire to reduce available SNR, the phenomenbn"of reverberation, in both time and

A F
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frequency, has tended to dominateithe evelution of receiver strategies for underwater
|7 4 ,

¥l =B
acoustic telemetry. Incoherent receivers have generally sought to avoid reverberation

issues using classical methods while coherent r.eceivers have struggled to accommodate
reverberation with new powerful adaptive algorithms.

3)Classical diversity in a communication system refers to the availability of
multiple, uncorrelated measurements of the transmitted signal. These measurements
may be taken over different frequency bands, temporal spans, or spatial apertures. Such
diversity is a powerful tool in combating the effects of fading channels characterized by
a complex amplitude scaling that is a random variable leading to periods of low SNR.

4)Coding of communication signals classically falls into one of two categories:

4



source coding in which redundancy is removed from the information to be transmitted
and channel coding in which structured redundancy is added to the signal to provide
protection against errors. Both have found widespread application in underwater
acoustic telemetry.

5) The last five years have witnessed a surge of interest in underwater acoustic
networks. Although sporadic interest in multiple point communication is found in
earlier literature, the relatively recent emphasis on synoptic, spatially sampled
oceanographic surveillance has provided an im__petus to the transfer of networked

communication technology to the undérwater envitonment.

f r
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6)FSK and QAM, in their vatious fofﬁ"f:sjlilé\:/e dominated digital underwater
o7 it .

11
acoustic communication applications: Someresearchérs, however, have begun to

explore alternative modulation schemes motivated largely by the need to mitigate

temporal reverberation of the channel.

1.2 The Ocean Acoustic Environment

Underwater acoustic propagation depends on many factors. The direction of sound
propagation is determined by the sound speed gradients in the water. In the sea the
vertical gradients are generally much larger than the horizontal ones. These facts,

combined with a tendency for increasing sound speed with increasing depth due to the



increasing pressure in the deep sea reverses the sound speed gradient in the thermocline
creating an efficient waveguide at the depth corresponding to the minimum sound speed.
The sound speed profile may cause regions of low sound intensity called "Shadow
Zones" and regions of high intensity called "Caustics". These may be found by ray
tracing methods.

At equatorial and temperate latitudes in the ocean the surface temperature is high
enough to reverse the pressure effect, such that a sound speed minimum occurs at depth
of a few hundred meters. The presence of this {r_linimum creates a special channel

known as Deep Sound Channel, preyiously knowhas the:SOFAR (sound fixing and

|
= | K
f —

ranging) channel, permitting guided propdlé"a:'rié?)'ri_ of underwater sound for thousands of
,-::- |

il &
kilometres without interaction with the sea surface or the seabed. Another phenomenon

in the deep sea is the formation of sound focusing areas known as Convergence Zones.
In this case sound is refracted downward from a near-surface source and then back up
again. The horizontal distance from the source at which this occurs depends on the
positive and negative sound speed gradients. A surface duct can also occur in both deep
and moderately shallow water when there is upward refraction, for example due to cold
surface temperatures. Propagation is by repeated sound bounces off the surface.

The speed of sound depends on the medium through which sound waves propagate.

The speed of sound differs in air and water, with sound waves traveling faster in water.

6



For example, in air at a temperature of 18°C (64°F), the speed of sound is
approximately 341 meters (1,120 feet) per second. In contrast, in salt water at
approximately the same temperature, the speed of sound is approximately 1,524 meters
(5,000 feet) per second.

The state properties of water (temperature and pressure) and the degree of salinity
also affect the speed of sound. The propagation of sound waves in sea water can be
directly affected by suspensions of particulate matter that can scatter, absorb, or reflect
the waves. Laboratory experiments demor_lstrat__e_ that distilled water—water from which

salts and other suspended particles have been rerr'io{/ed.—provides a medium in which

A F
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the speed of sound exceeds the speed of s&fﬁdjii_l:ocean water. The difference in the
% ,

il &
speed of transmission is significant-—speed in distilled water may be 20 to 30 times that

of speeds found in ocean water.

Because frequency and wavelength are inversely proportional characteristics of
sound waves, low-frequency signals produce long sound wavelengths. These
long-wavelength signals encounter fewer suspended particles as they pass through the
medium and thus are not as subject to scattering, absorption, or reflection. As a result,
low-frequency signals are able to travel farther without significant loss of signal

strength.



1.2.1 Ambient noise

Measurement of acoustic signals are possible if their amplitude exceeds a
minimum threshold, determined partly by the signal processing used and partly by the
level of background noise. Ambient noise is that part of the received noise that is
independent of the source, receiver and platform characteristics. This it excludes
reverberation and towing noise for example.

The background noise present in the ocean, or ambient noise, has many different
sources and varies with location and freql_lency_._[B] At the lowest frequencies, from

about 0.1 Hz to 10 Hz, ocean turbulenice and microseisms are the primary contributors

b

'l ¥

to the noise background. Typical noise spe’é"ﬁ'um levels decrease with increasing
[ ,

frequency from about 140 dB re.lfflélpg}?/in -a;.l H'-z..t.o.ab.out 30 dB re 1 pPa?*/Hz at 100
kHz. Distant ship traffic is one ofl the dominant. noise sources in most areas for
frequencies of around 100 Hz, while wind-induced surface noise is the main source
between 1 kHz and 30 kHz. At very high frequencies, above 100 kHz, thermal noise of
water molecules begins to dominate. The thermal noise spectral level at 100 kHz is 25
dB re 1 pPa?/Hz. The spectral density of thermal noise increases by 20 dB per decade
(approximately 6 dB per octave).

Transient sound sources also contribute to ambient noise. These can include

intermittent geological activity, such as earthquakes and underwater volcanoes, rainfall

8



on the surface, and biological activity. Biological sources include cetaceans (especially

blue, fin and sperm whales), certain types of fish, and snapping shrimp.

1.2.2 Internal waves

Internal waves are gravity waves that oscillate within, rather than on the surface of,
a fluid medium. They arise from perturbations to hydrostatic equilibrium, where balance
is maintained between the force of gravity and the buoyant restoring force. A simple
example is a wave propagating on the interface between two fluids of different densities,
such as oil and water. Internal waves typiéally-.l.lq.ve..r.nuch lower frequencies and higher

amplitudes than surface gravity waves B'g-x__:'aus_q the derisﬁy differences (and therefore the

-
A

restoring forces) within a fluid are usual:ly nfiuch. s;.mal-ler- than the density of the fluid
itself. Internal wave motions are ﬁbiq{litOus in both the ocean and atmosphere.
Nonlinear solitary internal waves are called solitons.

The atmosphere and ocean are continuously stratified: potential density generally
increases steadily downward. Internal waves in a continuously stratified medium may
propagate vertically as well as horizontally. The dispersion relation for such waves is
curious: For a freely-propagating internal wave packet, the direction of propagation of
energy (group velocity) is perpendicular to the direction of propagation of wave crests

and troughs (phase velocity). An internal wave may also become confined to a finite



region of altitude or depth, as a result of varying stratification or wind. Here, the wave is
said to be ducted or trapped, and a vertically standing wave may form, where the
vertical component of group velocity approaches zero. A ducted internal wave mode
may propagate horizontally, with parallel group and phase velocity vectors, analogous
to propagation within a waveguide.

At large scales, internal waves are influenced both by the rotation of the Earth as
well as by the stratification of the medium. The frequencies of these geophysical wave
motions vary from a lower limit of the Co_rioligfrequency (inertial motions) up to the
Brunt-Viisila, or buoyancy frequ_;pcy (_l.)_uoyanc?'f' ols;:i_l.la.i_tions). Above the

&1

Brunt-Viisili frequency may exist evaneseentinternal wave motions, for example those
%% ,

resulting from partial reflection: Internal wayes at tidal frequencies are produced by
tidal flow over topography/bathymetry, and are’known as internal tides. Similarly,
Atmospheric tides arise from, for example, non-uniform solar heating associated with

diurnal motion.

1.3 An introduction to Channel Estimation

1.3.1 Why Channel Estimation?

Before we approach the problem of predicting and analyzing the observable

properties of transmission, we must first define what we mean by a channel. In its most

10



general sense, a channel can describe everything from the source to the sink of a radio
(or acoustic) signal. This includes the physical medium (free space, fiber, waveguides
etc.) between the transmitter and the receiver through which the signal propagates. The
word channel refers to this physical medium throughout this work. An essential feature
of any physical medium is, that the transmitted signal is received at the receiver,
corrupted in a variety of ways by frequency and phase-distortion, inter symbol
interference and thermal noise.

A channel model on the other hand can bc_?_thought of as a mathematical

representation of the transfer charactetistics of this physical medium. This model could

A F
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be based on some known underlying physﬁ"ﬂ':éﬁénomenon or it could be formed by
,-::- |

¥l =B
fitting the best mathematical statistical model on|thé observed channel behavior. Most

channel models are formulated by observing tﬁe characteristics of the received signals
for each specific environment. Different mathematical models that explain the received
signal are then fit over the accumulated data. Usually the one that best explains the
behavior of the received signal is used to model the given physical channel.

Channel estimation is simply defined as the process of characterizing the effect of
the physical channel on the input sequence. If the channel is assumed to be linear, the
channel estimate is simply the estimate of the impulse response of the system. It must

be stressed once more that channel estimation is only a mathematical representation of

11



what is truly happening. A “good” channel estimate is one where some sort of error

minimization criteria is satisfied (e.g. MMSE).

Channel estimation algorithms allow the receiver to approximate the impulse

response of the channel and explain the behavior of the channel. This knowledge of the

channel's behavior is well-utilized in modern radio communications.

1.

Adaptive channel equalizers utilize channel estimates to overcome the effects of
inter symbol interference.

Diversity techniques utilize the channfal est__i_mate. to implement a matched filter such
that the receiver is optimally {natcheic_l to the fécé.iv_?(.l_ signal instead of the

N

transmitted one.

= :"-';.,,ii-.&

Maximum likelihood detecto_fé u.tilize channél.“estimates to minimize the error
probability.

One of the most important benefits of channel estimation is that it allows the
implementation of coherent demodulation. Coherent demodulation requires the
knowledge the phase of the signal. This can be accomplished by using channel

estimation techniques.

1.3.2 Training Sequences and Blind Method

Once a model has been established, its parameters need to be continuously updated

12



(estimated) in order to minimize the error as the channel changes. If the receiver has
a-priori knowledge of the information being sent over the channel, it can utilize this
knowledge to obtain an accurate estimate of the impulse response of the channel. This
method is simply called Training sequence based Channel estimation. It has the
advantage of being used in any radio communications system quite easily. Even though
this is the most popular method in use today, it still has its drawbacks. One of the
obvious drawbacks is that it is wasteful of bandwidth. Precious bits in a frame that
might have been otherwise used to transport in_form.ation are stuffed with training
sequences for channel estimation_.l This f{lethod 2fléol éu_ffg:rs due to the fact that most

&1

communication systems send information'.F&hilé)é_d frames. It is only after the receipt of
B |

the whole frame that the channel ¢§tirpate caﬂ be é)ﬂ(.tracted from the embedded training
sequence. For fast fading channels this might ﬁot be adequate since the coherence time
of the channel might be shorter than the frame time.

Blind methods on the other hand require no training sequences. They utilize certain
underlying mathematical information about the kind of data being transmitted. These
methods might be bandwidth efficient but still have their own drawbacks. They are
notoriously slow to converge (more than 1000 symbols may be required for an FIR
channel with 10 coefficients). Their other drawback is that these methods are extremely

computationally intensive and hence are impractical to implement in real-time systems.
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They also do not have the portability of training sequence-based methods. One
algorithm that works for a particular system may not work with another due to the fact

they send different types of information over the channel.

1.4 Forgetting Factor Estimation Overview

Recursive least squares (RLS) algorithm has been used extensively in adaptive
filtering, self-tuning control, system identification, prediction, and interference
cancellation [4]. It is well known for its good convergence property and small

Mean square error (MSE) in stationafy eﬂ.\./iforlllments. However, the RLS algorithm

with a constant forgetting factor (FF) i$ n Ot sqi_tz_{ble fortracking time-varying

parameters because its convergence is siow%vhe.n:.the FE s close to one, whereas the
misadjustment is large when the FF is small. The;re.'fore, the forgetting factor of RLS
algorithm needs to be set adaptively in order to yield satisfactory performance in
time-varying environments. Much effort has been directed to modifying the RLS
algorithm. One modification uses a data weighting window on the input data sequence
[5] to adjust the effective memory of the algorithm. However, it is not easy to adjust the
window to the change. Another approach is to vary the forgetting factor according to the
squared error [6]-[8]. This approach can maintain the standard RLS algorithm with the

FF adjusted according to the error. The drawback of these methods is that the control of

14



FF is sensitive to measurement noise. Nevertheless, methods of this kind are widely
employed in variable forgetting factor (VFF) RLS algorithms. Another approach is
variable forgetting factor RLS adaptive algorithm, namely, the gradient-based VFF RLS
algorithm (GVFF-RLS) [9]. The control of the forgetting factor is based on the gradient
of the MSE rather than on the gradient of the instantaneous squared error. The success

of the algorithm relies heavily on an improved mean square error analysis.

1.5 Research Motivation

In the following sections, we will state that the precision of channel estimation is

the critical factor for the channel éétimaiﬁgn b_a_s.éd equalizer. Channel impulse response

-
L

is not available and must be estimated alnd -aen t.rlgcked. ‘Here we using recursive least
square algorithm as channel tracking algorithm, and the forgetting value is the critical
parameter of RLS. We can find that UWA channel is various and variable by using
some metrics such as signal to multipath ration (SMR), Doppler spread, coherence time,
etc. Those metrics are able to reflect the channel condition. So, adaptive adjustment of
forgetting factor of RLS according to the channel condition to improve the accuracy of
channel estimation is necessary. Even the receiving time is the same. It still can’t
explicitly confirm that all the receivers with different depth use the same forgetting

factor to estimate each channel impulse response can all achieve minimum estimation

15



error. Underwater acoustic channel especially, which is confront various ambient noise,
internal-wave, and unexpected situation. So our goal is to find and set the forgetting

factor adaptively. This is the main issue we will discuss and present in this thesis.

1.6 Thesis Overview

This thesis is organized into five sections. We begin in Section II provides a
thorough theoretical foundation for the concepts to follow, channel estimation, channel
tracking, and the key element of equalizer performance. A first order AR process was
used to model a time varying acoustic ché'nnel; .F.l.lréhermore, degree of nonstationarity

was introduced to provide a measure of the ﬂqQ.filation' rate of the channel under

o

_—

o

] | |
tracking. In Section III, we will discuss 'the-gzgoposed forgetting factor estimation and

the implementation method. In Section IV, the _expériment result was presented based
on ASIAEX data, and SMR was used as channel characteristic metrics to reflect the

channel fading

16



Chapter 2 Underwater acoustic channel estimation and

channel tracking

The UWA channels in acoustic communication systems are usually multipath
fading channels, which are causing inter-symbol interference (ISI) in the received
signal. To remove ISI from the signal, much kind of equalizers can be used. These
equalizers require knowledge on the channel impulse response (CIR), which can be
provided by a separate channel estimator. Usually the channel estimation is based on
the known sequence of bits, which'is unique f(;f a c.clartain transmitter and which is

repeated in every transmission burst. Tli}-lsz thé channel‘estimator is able to estimate

o
_——

CIR for each burst separately by-exploiting ihe Knlown transmitted bits and the
corresponding received samples. In data 'transmissi.'én, CIR can be tracked adaptively

by the channel tracking algorithms.

2.1 Channel estimation by Pulse Compression

In this section, we will describe the use of the m-sequence (Maximum Length
Sequence) signal for the measurement of channel impulse responses, in alternative to
the traditional techniques based on the use of impulsive sources.

The m-sequence signal is well known since at least two decades: it is a binary

sequence, in which each value can be simply 0 or 1, obtained by a shift register as the
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one shown in Fig.2-1

'
Y

XOR |-—

Y

= x(n)

Figure 2-1 Shift register for the creation of the m-sequence signal

The obtained signal is periodic, with period of length L given by:
L~15"'Y

in which N is the number of slots in the Ishli-“ﬁ‘_‘i;égi'ster, also called the order of the

m-sequence. Thus an order N=-16fr“r.162.1ns a seciuenbs with a period of 65535 samples.

If a linear time invariant (LTI) system's irﬁpulse response is to be measured using a
m-sequence, the response can be extracted from the measured system output y[n] by
taking its circular cross-correlation with the m-sequence sequence. This is because the
autocorrelation of an m-sequence is 1 for zero-lag, and nearly zero (—1/N where N is the
sequence length) for all other lags; in other words, the autocorrelation of the
m-sequence can be said to approach unit impulse function as m-sequence length

increases. So we can use this property to obtain the channel impulse response [10].
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If the channel impulse response is h[n], the transmitted m-sequence is d[n], the
received signal is y[n], then
y[n] = h[n] * d[n]
where, * denote convolution operation.
Taking the cross-correlation with respect to u[n] of both sides,
Cay = h[n] * Cqq
and assuming that C44 is an impulse (valid for long sequences), we can obtain the

channel impulse response:

T =G

‘@ LY,

2.2 Channel tracking by Recurslivéé‘laéda'slt squa_i'es (RLS) algorithm

Recursive least squares (RLS) afgor‘ithm isused.in adaptive filters to find the filter
coefficients that relate to recursively producing the least squares (minimum of the sum
of the absolute squared) of the error signal (difference between the desired and the
actual signal). This is contrast to other algorithms that aim to reduce the mean square
error. The difference is that RLS filters are dependent on the signals themselves,
whereas MSE filters are dependent on their statistics (specifically, the autocorrelation of
the input and the cross-correlation of the input and desired signals). If these statistics are

known, an MSE filter with fixed coefficients (i.e., independent of the incoming data)

19



can be built [4].

First, consider a UWA channel system model shown in figure 2-2. All data
processing, analysis, and modeling in this thesis are done with respect to a sampled
baseband received signal. Thus all discussion is with respect to discrete time signals and
processes. Given the set of input samples d(n) and the desired response or received

signal y(n), which is

N

yln] = >y’ [nld[n - K] +vin]

k=0

h[n] is the baseband complex 'tjrr_le-'véiryin-g channel impulse response, N is channel
length, and v(n) represents ambient noi{siel_‘Weg"_fWill attei'rfpt to recover the desired signal
i i — L W

d(n) by use of an FIR filter, i(n)- || 25 ||

Noise V (n)

A 4

input h(n) |_’ (_D &

4 / D7 ew

h(n) | —1

/ y(n)

Figure 2-2 Adaptive filter

\4
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Our goal is to estimate the parameters of the filter h, and at each time n we refer to
the new least squares estimate by h(n). As time evolves, we would like to avoid
completely redoing the least squares algorithm to find the new estimate for h(n+1), in
terms of h(n). The benefit of the RLS algorithm is that there is no need to invert
matrices, thereby saving computational power. Another advantage is that it provides
intuition behind such results as the Kalman filter.

The idea behind RLS filters is to minimize the sum of weighted error squares by
appropriately selecting the filter coefﬁcier_lts ﬁ_(_n), updating the filter as new data

arrives. The weighted error squares 1

b

1
—

M= 4

@) H Y el
qij== || "

where the error signal is

N
(i) = y() — ) By’ [n]d[n — K]
k=0

and the forgetting factor or weighting factor A (0<A<1) reduces the influence of old
data.
The LS solution can be obtained as

h(n)=®'(n) z(n)

where
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®(n) = Z An=id(i)d(i)H

And

n

2m) = Y 7A@y

i=1

We want to find a recursive in time way, so we will rewrite the variables ®(n)

and z(n) as functions of ®(n — 1) and z(n — 1):

®(n) = AZ A-1d(@Dd ()M + d()d@)H = Ab(n — 1) + d@)d()H

i=1

2(n) = Y A" @y () dDY@E =he(n — 1) + d@yG)’

e

Applying the matrix inversion formdla?ﬁ)h?(n) ;we obtain
[ ,

P(n) = & 1(n)

220~ 1)d(md@) e (n — 1)

= )L_lq)_l(n -1) - 1+ A—ld(n)ﬂq)_l(n —1)d(n)

Let

A"1P(n — 1)d(n)

k(M) = I dm)"Pn — Da(m)

Using these definitions, we may rewrite P(n) as
P(n) =2"'P(n—1) — A 'k(n)d(m)"P(n - 1)

And we may simplify that
k(n)=P(n)d(n)

We are now able to derive the main time-update equation, that of h(n)
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h(n)=h@-1)+km) ¢ “@)
Where
&n)=y(n) — h"(n-1) d(m)
Now we can collect all necessary equations to form the RLS algorithm, k(n)
{n) h(n) P(n)
Initialization of RLS algorithm:
In RLS algorithm there are two variables involved in the recursions (those with
time index n-1): h(n-1), P(n — 1). We must p__r_ovid,e initial values for these variables in
order to start the recursions :

*h(0)

i

If we have some apriori information abeut the parametersTl this information will
be used to initialize the algorithm.

Otherwise, the typical initialization is
h(0)=0

*P(0)
Recalling the significance of P(n)

it is not a simple matter to select the length of data required for ensuring
invertibility of ®(0).The approximate initialization is commonly used, it don’t require

matrix inversion:
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P0)= o1
Since our knowledge of these parameters at n = 0 is very vague, a very high
covariance matrix of the parameters is to be expected, and thus we must assign a high
value to 9. The recommended value for § is
§> 10007,
For large data length, the initial values assigned at n = 0 are not important, since
they are forgotten due to exponential forgetting factor A.

Summary of the RLS algorithm:

Given data d(1), d(2), d(3), . . ., d(N) and (1), ¥(2), ¥(3), . . . , (V)

1. Initialize w(0)=0, P(0)=0l

2. For each time instant, n =1, . . ., N, Compute
2.1 m=u"(m)P(n-1)
22 y=And

23 Kk(n) =$

24 {(n)=y(n) — b" (n-1d(n)
2.5 h(m)=h(n-1)+k®m)¢* (n)
2.6 P’=k(n)n

2.7 P(n)Z%(P(n- )-P)
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2.3 The impact of channel estimation error on the equalizer

In this section, we will discuss the impact of channel estimation error on the
channel estimation based equalizers.

First, consider the channel and equalizer model. Again, all data processing,
analysis, and modeling in this thesis are done with respect to a sampled baseband
received signal. Thus all discussion is with respect to discrete time signals and
processes. The acoustic channel is modeled as a time-varying, discrete time system
described by the complex baseband time-_varyi_pg impulse response. (see Proakis[11]

and Van Trees[12]. The received signalat time n is giyen by

&1

This relation also shown in the ﬁgure:'2-3-

where h[n] is the baseband complex time-varying channel impulse response
relating the input signal at time (n-m) to the output signal at time n, d[n] is the complex
baseband transmitted data, and v[n] is complex baseband observation noise. The
quantities Na and Nc denote, respectively, the number of acausal and causal taps in the

channel impulse response.
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Transmitted |::> Channel _,(.B—, received
data d[n] h[n] T signal

noise v[n] yln]

Figure 2-3 system model

And the performance of channel estimation based equalizers is characterized in
terms of the mean squared soft decision error 6% of each equalizer [13]. Figure 2-4
shows a channel estimate based decision feedback equalizer (CE-DFE), and Figure 2-5
shows a linear equalizer. The received sig_nal y__[_n], is processed to generate estimates of

the time-varying impulse response ofithe channel between the transmitter and each

Wk 4
Fie ")

receive hydrophone. The impulse responsé-"é's'ti:“n'_létes are used to compute the equalizer
I |
i I .- '|_'.\I 1 |I

filter weights. These filter weights_'e.ire. iulseq to imf)II:ejment the equalizer and estimate the
desired data symbol d[n]. Then we can déﬁné t.he soft decision error
e~=ds[n]-d[n].
Furthermore, the mean squared soft decision error 6% can be decomposed into

.. . 2
two components. These are the minimum achievable error (67y) and the excess error

(0% [13].
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. dy[n] — d[n]
Feed-forward Filter Decision
—> . >
|::> heg Device
T
R.ecelved : Feedback
Signal e .| Filter hy,
y[n] ;
Estimate Time-Varying
Channel Impulse
Response:  h[n]
Figure 2-4 CE-DFE
Feed-forward Filt dinl [ ision din]
eed-forward Filter
he _>  , Device
* : 1
Received E
Signal ) I. . L
Estimate Time-Varying |
y[n]

Channel Impulse
Response:  h[n]

' Figure 2-5 linear equalizer

The minimum achievable error 6% is the soft decision error that would be realized
by the equalizer if the filter coefficient calculation were based upon perfect knowledge
of the channel impulse response and statistics of the interfering noise field.

And the excess error (6%) is the additional soft decision error that is realized due
to errors in the estimates of these channel parameters.

They separately quantify the equalizer errors here that leads to new insights into
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the factors that can limit equalizer performance and the characteristics of equalizers
that are robust with respect to channel estimation errors.

The finally analysis of experimental data verifies that the expressions can
accurately predict equalizer performance when the second-order statistics of the errors
in the channel impulse response estimates are known. And they also show that the
excess error was always a significant contributor to the soft decision error when rough
sea conditions prevailed.

So we should set the approximate tra_cking_ rate, and improve the accuracy of

channel estimation further, the huge channel estimation error will degrade the equalizer

A F
Fo

performance. This is the main topic we willdiscuss in'the next two sections.
o il

{
2.4 AR channel model

When the transmission medium became time-varying cause of internal wave,
ambient noise, or some unexpected situation, the adaptive filtering algorithm now has
the added task of tracking the time-varying environment.

Tracking is a steady-state phenomenon, to be contrasted with convergence, which
is a transient phenomenon. it follows that, for an adaptive filter to exercise its tracking
capability, it must first pass from the transient mode to the steady-state mode of

operation, and there must be provision for continuous adjustment of the free
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parameters of the filter.

A popular approach for this analytical assessment is to assume a first-order AR
model, Although higher-order models are also possible, only a few results on the
tracking performance using these models are currently available, In our analysis of
tracking characteristics of the adaptive algorithms, we use the first-order AR model.
This setup is illustrated in Figure 2-6.

The tap-weight vector h(n) represents the “target”(real channel) to be tracked by
the filter. In the ASIAEX experiment ;we can ggt this by pulse compression using
m-sequence property.

h(n) is the tap-weight vectorof the a&ﬁpﬁve filter. whenever h(n) equals h(n),the
A '
i1 1 g ¥

minimum mean-square error prod_ﬁcecll-.by t_he adaingilve filter equals the irreducible
error variance °, .
Desired response:

y(m) = h"(n)d(n) + v(n)
And v(n) = y(n) — h¥(n)d(n)
The variation of channel h(n) is modeled by the first-order AR (or Markov)
process:

h(n+ 1) = ph(n) + ¥(n)

Where, p=e®dT ,and mgq is Doppler spread [14]
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h(n) I —t

/

Figure 2-6 AR model

A 4

\ 4

Tracking is generally achievable if ,0 is'close to'1. The random-walk model is
i [ E' :'-. 11

i = | II

obtained by using p =1. < Bl 11§ | {

To determine whether an a;iép;civg- élgorith;h can adequately track the
changing SOE(signal operating environment),one needs to define the speed of
variation of the statistics of the adaptive filter environment. This speed is
quantified in terms of the degree of nonstationarity (DNS), introduced in Macchi

[15], and is defined by:

 [erermamp]
1= TN

where, Y(n)=hn)— poh(n-1)
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Smaller values of 7 (<< 1) imply that the adaptive algorithm can track
time variations of the nonstationary SOE. On the contrary, if 7 > 1, then the
statistical variations of the adaptive filters SOE are too fast for the adaptive
algorithm to keep up with the SOE and lead to massive misadjustment errors. In
such situations, an adaptive filter should not be used.

It won’t be surprised that DNS directly correlate with the optimal forgetting

factor.

2.5 The optimal forgetting factor of RLS

2 F P
| \ Fie ")
| ™ |_.=I "

The performance of adaptive FIR ﬁlt&m‘goylemed by the recursive least-squares
:: I I?: \ ;
(RLS) algorithm are done in terms ofthe steady-state €xcess mean-square estimation
error 6 and the steady-state mean-square weight deviation ([16].
Let hy dy, viand yi denote the weight vector of the adaptive filter at discrete time
k, the observation vector, observation noise, and the desired filter output, respectively.
The estimation error e is given by:

ex = yx — ht_ydy

The steady-state excess mean-square estimation error o is defined by

A 1; 2 _ <2
6 2 1im fey|* — %,
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The steady-state mean-square weight deviation ( is defined by
¢ £1lim ||y — hy|
The value of A that minimizes {, and the minimum value of , are, respectively,

given by:

1/2

=1 [T

o?,tr(R™1)

Where Q is the covariance matrix of the channel increments dy.;-dy, and R is the

covariance matrix of the observation vector dy, " »

- 'E|_'.. ;
The value of A, denoted by As, Ehﬁhlnlmlzéﬁﬁ, and the minimum value of 8,

Q\ IJ/':\.I ,_. -
e | | .

denoted by dmin, are, reSpectf_ively;giVTT by

Omin =0vxm
In this thesis, we are focus on the accuracy of channel estimation, so the weight
deviation is the primary performance index. In the particular case when R=cl, the
values of forgetting factor A that minimizes 6 or { are exactly the same. However, the

transmitted bits are practically uncorrelated with each other.



Chapter 3 Optimal forgetting factor estimation

The performance of adaptive FIR filters governed by the recursive least-squares
(RLS) algorithm is considered into two metrics, one is the steady-state excess
mean-square estimation error ¢ and the other one is the steady-state mean-square
weight deviation . In this thesis, we are focus on the accuracy of channel estimation,
so the weight deviation is the primary performance index. For many times, the values
of forgetting factor A that minimizes 6 or { are exactly the same, it can be easily
observed in ASIAEX experiment data shown 1n f.'.lg}.l.re 3-1(the experiment environment

will be introduced in section )./

Al

] - | |
In the following sections, we will discuss all the patameters that the A, needed,

for instance, the innovation ¥, Dopplér spread @y, observation noise v, etc.

3.1 Implementation of forgetting factor estimation

The value of forgetting factor that minimizes the steady-state mean-square weight
deviation ¢ of RLS algorithm can be obtained by:
A 1i ) 2
C= 11<1_{T010 E(||hy — hys ||
. . “ 2
hopt = arg min IﬁTwE(”hk — s ||
where hy is real acoustic channel impulse response, and Bk,k 1s tap weight
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vector measured by RLS for forgetting factor A, an example is shown in figure 3-1.
And the theoretical value of forgetting factor that minimizes the (" is mentioned in

section 2.5, is given by:

tr(Ry) "

Aopt = 1 — |[———m
oPt L)-thr(Rd_l)

Assume that each tap of ¥ and d are uncorrelated, and ¥ and d are also

uncorrelated, we can get that:

RLS channel estimation error

0.018

0.017

0.016

0.015

0.014

0.013

0.012

0011 1 1 1 1 1
0.97 0.975 0.98 0.985 0.99 0.995 1 1.005

A

RLS mean square estimation error
0.054 T T T

0.052

0.051 B

0.048

0.046

0.044

0.042

004 1 1 1 1 1
0.97 0.975 0.98 0.985 0.99 0.995 1 1.005

A

Figure 3-1optimal forgetting factor for ASIAEX data-day 126-6:15:32 (channel 16)
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tr(RyRy) ]

o = 1= [0

where N is the dimension of input signal vector d, and
tr(RyRg) = tr{E[¥ ()" (n)]E[d(n)d" (n)]}
= E{tr[¥(m)¥" (n)d(n)d" (n)]}
= tr{E[P" (n)d(n)d" () ¥ ()]}
= E[Y"(n)d(n)d" (n)¥(n)]
= E[|¥" (n)d(n)|?]
So the equation of Aop; can be reformed t6:

A a2
7\.opt = — [ | ’NGZV

||

\

_—

"

| ' |
And recall the degree of nonstatioriaritgr. (DNS) mentioned in section 2.4, we can

easily correlate the Aype with DNS =¥
Aope = 1 — \/%

In order to calculate the DNS at the beginning of a data packet transmission
period, we should add some bits consisted of “maximum length sequence” in front of
the data bits ,which is shown in Figure 3-2. N is the number of slots in the shift register,
also called the order of the m-sequence. Thus an order N=6 means a sequence with a

period of 63 samples. Consider the long multipath delay time of underwater acoustic

channel, N should be chosen enough large to guarantee that able to calculate the
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channel impulse response accurately. M is additional bits, in order to obtain sufficient

statistics and measure the DNS further.

preamble data

Shifting Window

- 2N.1 + M bits <—|

L, 2N«

Figure 8-2 transmission data format

First, we use the first 21 bits'to calculate-the channel impulse response, as
' -’_ﬂ..;I..-E.--.'I:':'..'l !
. . . ) ¢ I -#l;"r‘;
mentioned in section 2.1, we can get thdlt: M

A 1
5o T &

|

|

i 4

Where C is cross-correlation function, d[n] is transmitted m-sequence and y[n] is

received data.

The next step is to shift the window to right for 1bit, and calculate the second

impulse response h, as shown in Figure 3-3.

Shifting Window
- 2%-1 + M bits «— |

— 2N'1 <4—

Figure 3-3 window shift one bit
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Follow M+1 times the above-mentioned step, we can get h for k=1 to M+1.
And recalling the AR model of section 2.4, as follows
The innovation W is:
Y, = hy,q1 — phy ,fork=12...... M

And in matrix form;

[ Pk-Na ] [ Mker-na ] [ Bi-na |
|lPk,—Na+1 | Ihk+1,—Na+1 I Ihk,—Na+1 |

i b, |
| Woneos hggiNeza 0 L hione-

I 4

Where,p= ¢4 "

g is Doppler spread bandwidth and cﬁrbe obtained via scattering function will be
I '
1| <& ||

introduced in next section. The quét.nti.t;iels Na and Nc denote, respectively, the number of
acausal and causal taps in the channel irﬁpulée response.
The observation noise

Vi = Vi — hydy Jfork=2,.....M+1

Finally, the degree of nonstationarity:

n = E[|®,"dy|?]
E[[vk]?]
Jork=2,.....M

and
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N

}\optzl_\/_ﬁ

Where , ykiner = ‘PkHdk is the output of the incremental filter, and N=Na + Nc

3.2 Doppler-Spread estimation

For waves that propagate in a medium, such as sound waves, the velocity of the
observer and of the source are relative to the medium in which the waves are
transmitted. The total Doppler effect may therefore result from motion of the source,
motion of the observer, or motion of the rﬁedili.r.n... .. .

Delay spread and coherence Béndv&idt_h a_r_e_'i)ararriefers which describe the time

Ty
L

dispersive nature of the channel.in'a loc;al aFea. I.—Il.owe-ver, they do not offer information
about the time varying nature of tﬁe channel caused by either relative motion between
the mobile and base station, or by movement of objects in the channel. Doppler spread
and coherence time are parameters which describe the time varying nature of the
channel in a small-scale region.

Doppler spread wd is a measure of the spectral broadening caused by the time rate
of change of the channel and is defined as the range of frequencies over which the
received Doppler spectrum is essentially non-zero. When a pure sinusoidal tone of

frequency fc is transmitted, the received signal spectrum, called the Doppler spectrum,
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will have components in the range fc — fd to fc + fd, where fd is the Doppler shift. The
amount of spectral broadening depends on fd which is a function of the relative
velocity of the mobile, and the angle 0 between the direction of motion of the mobile
and direction of arrival of the scattered waves. If the baseband signal bandwidth is
much greater than wd the effects of Doppler spread are negligible at the receiver. This
is a slow fading channel.

Coherence time Tc is the time domain dual of Doppler spread and is used to
characterize the time varying nature of thc_a frequency dispersiveness of the channel in
the time domain. The Doppler sp_rle.ad aI}fl coher?hcé.timé are inversely proportional to

&1

one another. That is, ' | === ||
%
¥

Coherence time is actually a statistical measure of the time duration over which
the channel impulse response is essentially invariant, and quantifies the similarity of
the channel response at different times. In other words, coherence time is the time
duration over which two received signals have a strong potential for amplitude
correlation. If the reciprocal bandwidth of the baseband signal is greater than the
coherence time of the channel, then the channel will change during the transmission of
the baseband message, thus causing distortion at the receiver.

A Doppler spread for a communications channel is measured by providing an
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estimate of the communications channel and doing Fourier transform along the time
domain for the estimate of the communications channel h, which can be calculated by
some methods mentioned in section 2. The formula expression is shown below and ¢

is called delay Doppler spread function:

L
u[L k] = z ﬁ[i' k]e~i2mviidt

i=1
Here, h[i, k] 2 h(iAt, 1), T £ 1o + (k — 1)At  for k=1,....,K are the sampled
delays, Ty is the reference delay. At and At are the sample intervals in time and delay.
K is the number of uniformly sampled dei'ay ta-.I.)s.,. i...e.., the channel dimension.

And p[L K] £ p(v, 1) , v £ vo /(1 DAv for =1\ 5L are the

i

P

sampled Dopplers with v, -and A\:f asq-.Ee rélference Doppler and the Doppler
sample interval, respectively. | 3
If u[l, k] is WSSUS, the scattering function can be expressed as
P[L k] = E{u[L k]}?
And the other way to obtain the scattering function is that correlating a portion of
a received signal with the bank of Doppler-shifted replicas of the transmitted
m-sequence .

Here is some example shown in Figure 3-4 to Figure 3-7, the data is based on

ASIAEX experiment, which will be introduced in section 4. Figure 3-4 shows the
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channel impulse response in time domain and delay domain, and the corresponding

delay Doppler spread function shown in Figure 3-5.

L e
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frequency(Hz) .

Figure 3-5 The scattering function of ASIAEX.—day'126-6:15: 17 (channel 16)

Where the value Ty, is called “multipﬁff:l"si)read” and the correspond “coherence

bandwidth” is:
A - = L
( f)C = Tm

And for direct path, we can calculate the Doppler spread @4 (3db bandwidth) as
shown in Figure 3-6.

Now we can observe the difference of delay Doppler spread function between the
calm-water channel shown above and the internal-wave-affected channel shown in

figure 3-7. it’s obviously that the delay spread and the Doppler spread is growing

worse in rough sea condition.
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Figure 3-6 The direct-path spectrum of ASIAEX -day 126-6:15:17  (channel 16)
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Figure 3-7 The scattering funetion and the direct path spectrum of ASIAEX
-128_12_49_24 3937.mat (qﬁaigil_éli"l 6)

| 0 '
i ! _‘--\ ! |I

3.3 Compute the approxim;fe E(:')p_igima.l f(l:)r.-getting factor
In section 3.1, we discussed how to find optimal forgetting factor A of RLS,
however, this implementation via “degree of nonstationarity” calculating, which suffers
very high computational complexity. To reduce the computational complexity by some
simplificative assumption is necessary. Recall the first order AR process of
time-varying channel:
hy,q; = phy; + W for each tap , i=1,2,......N attimek

Where, p=¢®"
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Assuming h = h’-h, i.e., assuming the mean of the process has been removed so
that h = 0. Rearranging the model, we get
W = hyyq — phy

3T
1

In order to avoid any confusing, the notation “i” had been removed.
we next use this formula to estimate the innovation variance by taking the product

of the above equation with itself, and taking expectance,

E[WWi] = Elhycy 1 hyq | = 2pElhy, 1 by ] + p?E[hyhy]

= Efhychy ] 20E [y sy + p2E[hyhy]
where we have used the fact E[hkhk]ﬁ;:;'-:E [h]-h]-]for'any k and j.
'R '
- [ ! ._-:_.-; ! |I o

then we get that: By A\l 1 :

oyp’=cy —2pr; + p*Co

where oy? is the expected variance of the innovation, r; is the first autocorrelation
coefficient, and ¢; is the ith autocovariance coefficient (so that ¢, = oy,2, the sample
estimated variance of h). Finally, recall that for AR(1), p=ri, so

oy?=0,%(1 — 2p* + p?) = 0, %(1 — p?)

Again , recall the formula for Aqp; :

tr{RyRq}
Aopt = 1 = ’Tzv
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Assuming each tap of ¥ and d are uncorrelated, and ¥ and d are also uncorrelated,

so this formula can be reformed:

N 2 2
Opt - NGZV

. jz{ilchf(l — 0% X 0y’

B No?,
Suppose that the impact of the decay in the quality of the channel estimate
resulting from using incorrect signal decisions in the estimation algorithm or the
feedback of incorrect signal decisiQns is.irelsign__i_ﬁcant. So we can roughly estimate the

optimal forgetting factor by the above formula. Figiife 3-8 shows the transmission

i [ :;_‘E' ":-_ 11
packet format, and some explanation is ;sta&ethbqllbw.
:: I I‘E : |
! '

Preamblel | datal data2 Preafn'ble2 repeat

Preamblel: precisely compute the optimal forgetting factor ,denoted 1 ;

Datal: channel estimation by RLS using 4 |, and calculate oy,; for each tap and o4 in
the end of this section transmission, finally estimate the approximate optimal
forgetting factor, denoted 1 ;

Data2: channel estimation by RLS using 1 .

Preamble2: re-compute the precise optimal forgetting factor, and follow the above steps.

Figure 3-8 transmission format
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Chapter4 Experiment Result

The experiment performance is based on ASIAEX data, which will be introduced
in section 4.1. In section 4.2 a metrics, SMR, was introduced to reflect the quality of
channel. Finally, the performance result discussed in section 4.3 is presented together
with the experiment value, and the prediction value of optimal forgetting factor, and of

channel estimation mean square error.

4.1 The Asian Seas Internatiozna-l Acél,‘_i_s't'ic's.Experiment (ASTAEX)

S
ey
r

Between late April and May 23 26;1:1* a sume of acoustlc and oceanographic

=

= | - -
I
sensors was deployed by a teamy of U % Tagwa Liand Smgapore scientists in the

northeastern South China Sea [17]:.

A side view of the relevant portion of the experiment and associated physical

parameters are shown in Fig. 4-1.

Moored at 13m above the 350-m isobaths on the slope the sound source

transmitted binary phase-shift keying (BPSK) signals at a carrier frequency of 400 Hz

with a bandwidth of 100 Hz. The phase modulation employed was a 5.11-s-long

511-digit m-sequence resulting in a compressed pulse of 10-ms resolution after

matched filtering. These bihourly transmissions were sampled at a rate of 3.2 kHz by
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the vertical hydrophone array moored at the 125-m isobath on the shelf. This listening
array consisted of 16 hydrophones moored vertically in the water column, and array

has an aperture of 79m spanning the depths from 42 to 121 m.

T

RE 1-16

wose

R o WEF
" R R .-:Il

Fig.4-1 Geoméffyof the traﬁ,éipisé!bn experiment

S E Y i

The performance discussed in next section will separate into three parts:
Casel: Receivers without the effect of internal wave, an example of channel condition
is shown in figure 4-2, which is with low phase variation, channel fluctuation , and

small Doppler spread bandwidth.
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01 0 0.1 0z 03 0.4 0s 0.6 0 :
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delay(secand) CIR variation

1.29

phase(radian)

12 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7, 0.8 0.9 1
time(seconds) Th. !

. Phase variation (direct path)

0.1

0.2

delay(seconds)

0.3

0.4

0.5
-1 -0.8 -06 -04 -02 0 02 04 06 08 1

requeney(Fz) Scattering function

Fig.4-2 channel condition-ASIAEX day126-6:17:58 (channel 16)

Case2: Internal wave approach the receivers, an example of channel condition is shown

in figure 4-3, and compare with casel the channel become more severe fading,
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-0.03
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but it’s not vary significant.

01 0 0.1 0.z 03 0.4 0s 06 .
time(second)

delay(secand) CIR variation

I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time(seconds)

Phase variation(direct path)

-1 -0.8 -06 -04 -02 0 0.2 04 06 08 1
frequency(Hz)

Scattering function

Fig.4-3 channel condition-ASIAEX day 128-9:46:3 (channel 16)
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Case3: Internal wave reach the receivers, an example of channel condition is shown in

figure 4-4, which is with high phase variation, channel fluctuation, and large

Doppler spread than case 1 and case 2.

041 a0 0.1 0z 03 0.4 04 0.6 0

time(second)
delay(second) _~CIR fluctuation
I e
=) i) £
Fal ™ al
[ == | [
e | |
| { |
q | ‘L 1| W
1.8 o ‘

phase(radian)

I Il
0.1 0.2 03 04 05 06 07 08 09 1

1.55 I | |
0

time(seconds)

Phase variation(direct path)
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-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

fr H . .
eauency(rz) Scattering function

Fig.4-4 channel condition-ASIAEX day 128- 12:50:04(channel 16)

4.2 Signal-To-Multipath Ratio (SMR)

Underwater acoustic communications differ ftem RF communications in two

B

major aspects. One is the long multipath’ dé%ytlme covering tens to hundreds of
symbols and the other is temporalf“\;ar.iation of the! a}.coustic channel at a time scale on
the order of communication packet length. The épeciﬁcs are environment dependent.
Consequently the performance is not uniform and its prediction capability has so far
eluded the community. The channel impulse response function has been commonly
used as an indicator for the channel effect on communications. In general, for phase
coherent acoustic communications, the channel equalizer performance will degrade if
there are many multipath arrivals that are unstable, i.e., fluctuating rapidly with time.

In the following, we will introduce a metrics, SMR, which can reflect the quality

of channel.
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The SMR introduced by Zielinski et al. [18] is a convenient measure for
evaluating the communication link quality of the channel. Corresponding to the
impulse response function of the channel, every delayed version of the transmitted
symbol will corrupt the received signal. This is known as ISI. The corruption is
proportional to the ratio of the delay to the symbol period. Two parameters are formed:
the signal strength S and the multipath strength M. The estimation of S and M allows
us to define a signal-to-corruptive multipath ratio, SMR, which is used in a similar
manner to the signal-to-noise ratio in a no_ise-li__r_nited channel. In the formula form, the

SMR of baseband signal is defined as:

ISk | Isasks)| L ) L thal
IM| %24 ISl —lSairl X2 1hil — hqicl

SMR =

Where |Sg;| denote the amplitu@e of_direct p?th signal, and |hg;.| denote the
amplitude of the tap of the direct path in chann.el. impulse response, and an explanatory
graph is shown in Fig.4-5

When the signal-to-multipath ratio (SMR) >1, it can be used as a measure of
system robustness against ambient noise and interfering signals. Note that even for
SMR <1 the channel can still be used for transmission, but with a certain probability
of error. This error performance can be improved by using suitable error correcting

coding.
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Figure 4-5 channel impulse response and th?( relatlon between direct path and
multipath for ASTAEX —day 126;6 16[37 (channel 16), and the CIR
correspond to SMR—I 7308

And now we will compare the diffe.renc.e of SMR in different signal receiving
time and different hydrophone receiving depth. Figure 4-6 shows the SMR
measurement for different receiver depth, and it’s obviously that the SMR
monotonically increase with the receiving depth from channel 10 to channel 16, but for
those channel near the surface , say, channel 1 to channel 10 , the SMR is relatively
stable. Figure 4-7 shows some exactly impulse response of channels appeared in
Figure 4-6. Low SMR sometimes indicate that signal has more chance to be interfered

by delay spread or we can probably say that lower SMR relate to more severe signal
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Figure 4-6 SMR of different channels (with different hydrophone depth) for
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Figure 4-7 channel 15, 13, 8, 2 impulse response by pulse compression
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Figure 4-8 and Figure 4-9 show the SMR of channels with different receiving

time, it can be easily observed that even the receiver didn’t suffer from the interference

of internal-wave, for instance period of time 3 and 4, the signal must have the chance

to confront severe ISI.

25

SMR

0.5 —

time

Timel: day 126-6:15:17 to 6:22:34 (the time of above sections aren’t in the same
scale)

Time2: day 127-4:15:28 to 4:52:41

Time3: day 127-5:15:36 to 6:19:56

Time4: day 127-6:45:19 to day 128-5:22:45 (rough trend of SMR in this period)

Time5: day 128-5:45:19 to 5:50:26

Time6:day 128- 9:45:33 to 11:46:12 (internal wave approach the receiver)

Time7:day 128-12:45:22 to 12:51:00 (internal wave reach the receivers)

Figure 4-8 SMR for different receiving time (channel 16)
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Since we talked a lot about the SMR as an index for channel characteristic, we

based on ASTIAEX data showing that SMR is an index for fading condition. When

SMR <<1, the fading is close to Rayleigh fading, which makes received signal

severely attenuated together with large phase variation(close to uniform distribution).

When SMR >>1, the fading is Rice fading and even closer to AWGN channel. Based

on the ASTAEX data, we can see that when internal wave approaching, SMR become

smaller and hence more severely faded.

0.9

0.8F

0.7}
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Figure 4-9 Instantaneous channel impulse response by pulse compression
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4.3 Performance & Results

The acoustic signals received from each of the transmissions were processed to
yield estimates of the time-varying channel impulse response, and scattering function
of the acoustic channel. The received signals for the maximum length sequence
(m-sequence) transmissions were demodulated, receiving filtered, and then sampled to
baseband sequence. The channel impulse response was estimated by pulse compression
as the real acoustic CIR, and tracked by RLS as the experiment acoustic CIR. The
channel scattering function was estimated_ by rr__l_atch.ed filtering the received baseband
signal with a sequence consisting_lo.f freﬁl_uency sﬁifiéd_y?rsions of the transmitted
511point m-seq. ' | == \

(¥

Let’s start from casel mentio_h.ed. in se_cti\on 4, 1, Figure 4-10 shows the value of
SMR at 6:15:17 of experiment day 126, the ho?i.zontal axis is channel index from 1 to
16. We can observe that SMR increases when A increases from channel 11 to channel
16, which are farther from surface than channel 1 to channel 10 are.

Figure 4-11 shows the snapshot of CIR of channel from 1 to 16, the CIR is

estimated by pulse compression, and Figure 4-12 shows the scattering function of all

channels, which can reflect the channel fluctuation.
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Fig. 4-11 CIR of channel 1~16 (day 126 - 6:15:17)
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Fig. 4-12 scattering function of ¢hanrel 1~16 (day 126 - 6:15:17)

Fig. 4-13, Fig. 4-14, and Fig. 4-15 s};ow thé performance of forgetting factor
prediction, compared together with the experiment value, and the prediction value. The
experiment value can be obtained by multi-parameter trial, expressed as:

Aopt = arg n;n\in lliTooE(”hk - ilk,;L”Z
hy is calculated by pulse compression, hy, is obtained by RLS.
And the result like the Figure 3-1 shows, it has a minimum value.
The prediction value can be obtained by the proposed method discussed in section

3. The statistic, M, discussed in section 3.1, first set to 10 to predict the optimal
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forgetting factor, and the result is shown in Fig. 4-13. It’s obvious that the prediction

value is very close to the experiment value at channel 10 to channel 16. It seems that

when the channel is relatively stable for the receivers far away from the surface, the

prediction needn’t too much statistic.

CASE 1
1.002 T T
experiment
—— prediction

0.998 -

0.996

0.994 -

0.992 -

Aopt

0.988 -

0.986 -

0.984 -

0.982 | | | | | | |
0 2 4 6 8 10 12 14 16

channel

Fig. 4-13 performance of optimal forgetting factor prediction(M=10)
(day 126 - 6:15:17)

Fig. 4-14 shows the performance result of M=20, and we can observe that the

prediction accuracy of channel 1 to channel 9 increase when the statistic increase to 20.

It can be explained that the severe fading channel need more statistic to capture the

channel characteristic.
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CASE 1
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——experiment
— prediction
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0.984 -

0.982
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| | I I
~ 6 . 8 ¢ 0 12
channel.

I 4

Fig. 4-14 performance of optih_l’él.f%)_r_fgét"ging factor prediction (M=20)
(day 126 ~6:15:17)
o ; 11 - -_-\ ! |I |

Fig. 4-15 shows the performance result of: M=§O, and we can observe that the
improvement of prediction accuracy is not very significant, and for some channels, for

instance channel 14, the accuracy is growing worse. So in the following performance

comparison, the statistic, M, is set to 20.

Fig. 4-16 shows the channel estimation mean square error for 100 iterations, and
can be expressed as:

& =E(||hyx — ilk,A”z

It shows that the channel estimation MSE of the prediction forgetting factor very
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approach the minimum channel estimation MSE.
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Fig. 4-16 channel estimation error (day 126 - 6:15:17)
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Here is another experiment result, which is for case 2, experiment day 128 at

9:46:53
CASE 2
0.8 ‘
0.7+
0.6+
0.5+
Y
=
n
04+
0.3+
0.2+
01 | | [ | | | [
0 2 4 6 8 10 12 14 16
S channel’
T
Fig. 4-17 SMR of channel 1~16 (day 128-9:46:53)
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Fig. 4-18 CIR of channel 1~16 (day 128-9:46:53)
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Fig. 4-19 scattering function of channel 1~16 (day 128-9:46:53)

Observe the scattering function of channel 3, 4, and 9 in Fig. 4-19, and compare
with the performance of optimal forgetting factor prediction of these three channels in
Fig. 4-20. It was evident that the prediction accuracy is greatly related to the channel
fluctuation. The cause of this fluctuation must be internal wave or undulation of the
surface. And Comparing Figure 4-16 and Figure 4-21, channel estimation error is
growing up for some channels, this phenomena can be impute to the internal wave

interfere with the receivers.
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Fig. 4-20 performance of optimal for_gef__ting factor prediction (M=20)

0.07

0.06

0.05

0.04

0.03

0.02

0.01

=

CASE 2

experiment
—— — prediction

channel

Fig. 4-21 channel estimation error (day 128-9:46:53)
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And the experiment result of last case shown in Fig. 4-22 to Fig. 4-26, it’s for case
3, and the experiment day is day-128 at 12:46:03.
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Fig. 4-22 SMR of Chéﬂ_ﬂﬁ?-k%ﬂq (day 128-12:46:03)
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Observe the estimation resultk.)f .fofge_tting Vélﬂ.:l.le in the severe time-varying
channel, say, near the surface or suffered froﬁl .interval-wave. The comparison is shown
in Fig.4-27. It shows that the value is more lager than the value of calm channel.

Since we talk about more severe fading, much lower value of forgetting factor,
but the result is negative, now consider with the channel dimension. The effective
averaging window length of the RLS algorithms is 1/(1-A). In general, the averaging
window length should be proportional to the channel dimension (a rule of thumb value
is 2-3 times the channel length) to maintain the stability of the algorithms [19].

So, it seems the optimal forgetting factor value depends on two factors:
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1) Fading rate: Faster time varying channel imply smaller A value.

2) Channel dimension: Larger dimension imply large A value.

Compare these three cases as shown in Fig.4-27 and Fig.4-28, it seems that the

channels near the surface are similar to the internal wave channels, smaller forgetting

factor, lower SMR, faster channel fluctuation, and lager Doppler spread etc. But the

channel estimation error is very huge in case 3, even with the optimal forgetting factor.

It indicates that the RLS algorithms can’t fully follow with the fluctuation of internal

wave channel.
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Fig.4-27 optimal forgetting factor comparison of these three cases
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ChapterS Conclusion

In the experiment result, we can observe that the proposed Forgetting Factor
estimation is effective, even for severe fading channel, which is near the surface

or with internal-wave interference.

It’s obvious that the value of optimal Forgetting Factor is highly correlated to the

channel fading rate and SMR.

Faster time varying channel imply smaller FF value, and lower SMR means lager
delay-spread, it may bound the FF value in order to maintain the stability of the

algorithms, but the tracking E:eipaci-t.y_yyj s"___dé'graded,- this phenomenon can be

_—

observe in those channels niear the surface, or with:the internal wave interference.

The proposed approximate optimal forgetﬁng factor estimation confirms that the
channel estimator maintain the minimum channel estimation MSE by using the

estimated FF value in the data receiving period.
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