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中文摘要 

 
水聲通訊和無線電通訊主要有二個最大的差異點，一是水聲通道有非常長的多重路徑延

遲，範圍可涵蓋十到一百多個符號(symbols)，另一個是通道時變的速度。對於基於通道估測

的等化器來說，通道估測是決定其效能的表現的最重要因素。在本篇論文中以遞迴性最小平

方法做於通道追蹤的演算法，在這種演算法中若使用固定的遺忘因子去追蹤時變通道是不適

合的，因為若當遺忘因子接近1時收斂會變慢，但當遺忘因子過小時又有錯誤調整過大的問題。

所以水聲環境的通道追蹤必需可適性的調整遺傳因子以得到較好的追蹤效能，論文中我們提

出一種較為直接的方法，以一種實現理論最佳值的方法來設定遺傳因子，取代以往以殘差均

方誤差做於依據來調整遺傳因子的方法。最後實驗的效能表現是以「ASIAEX」的資料做為測

試來源，在實驗中會以「信號多徑比」(SMR)做為衡量通道狀況的好壞。在實驗結果中，可以

觀察到我們提出的遺傳因子估測法非常的有效，即時在較為嚴重的衰落通道也能預測準確，

且可以發現的是最佳因子的值和通道的時變速度、「信號多徑比」有很大的關聯。 

 

 

關鍵字:遺忘因子、通道追蹤、通道估測、水聲通道、遞迴性最小平方法 
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Abstract 
Underwater acoustic communications differ from RF communications in two major aspects. 

One is the long multipath delay time covering tens to hundreds of symbols and the other is temporal 

variation of the acoustic channel at a time scale on the order of communication packet length. And 

the precision of channel estimation is the critical factor for the performance of channel estimation 

based equalizer. Here we using recursive least square algorithm as channel tracking algorithm. The 

RLS algorithm with a constant forgetting factor (FF) is not suitable for tracking time-varying 

channel because its convergence is slow when the FF is close to one, whereas the misadjustment is 

large when the FF is small. Therefore, the forgetting factor of RLS algorithm needs to be set 

adaptively in order to yield satisfactory performance in UWA environments. In this thesis, we 

provide a more directly method, say, from implementation of theoretical optimal value to set the FF, 

instead of controlling the forgetting factor based on the residual mean square error. The experiment 

result was presented based on ASIAEX data, and SMR was used as a measure for charactering the 

general quality of the channel. In the experiment result, we can observe that the proposed Forgetting 

Factor estimation is effective, even for severe fading channel. And it’s obvious that the value of 

optimal Forgetting Factor is highly correlated to the channel fading rate and SMR. 

 

 

Key word: forgetting factor、channel tracking、channel estimation、underwater acoustic channel、

Recursive Least Square algorithm 
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Chapter 1 Introduction 

 

The past three decades have seen a growing interest in underwater acoustic 

communications because of its applications in marine research, oceanography, marine 

commercial operations, the offshore oil industry and defense. Continued research over 

the years has resulted in improved performance and robustness as compared to the 

initial communication systems. 

 

1.1 A brief background of underwater acoustic communications 

 

Underwater acoustic communication is a technique of sending and receiving 

message below water. There are several ways of doing such communication but the 

most common is using hydrophones. In underwater communication there are low data 

rates compared to terrestrial communication, since underwater communication uses 

acoustic waves instead of electromagnetic waves. 

High-speed communication in the underwater acoustic channel has been 

challenging because of limited bandwidth, extended multipath, refractive properties of 

the medium, severe fading, rapid time variation and large Doppler shifts. In the initial 

years, rapid progress was made in deep water communication, but the shallow water 

channel was considered difficult. In the past decade, significant advances have been 

made in shallow water communication [1]. 
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The shallow water acoustic communication channel exhibits a long delay spread 

because of numerous multipath arrivals resulting from surface and bottom interactions. 

Movement of transducers, ocean surface, and internal waves lead to rapid time variation 

and, consequently, a high Doppler spread in the channel. Coherent modulation schemes 

such as phase shift keying (PSK) along with adaptive decision feedback equalizers 

(DFE) and spatial diversity combining have been shown to be an effective way of 

communication in such channels. However, the long delay spread (often hundreds of 

symbols) and rapid time variation of the channel often makes this approach 

computationally too complex for real-time implementations. 

Although the underwater channel has a long impulse response, the multipath 

arrivals are often discrete. This opens up the possibility of using a sparse equalizer with 

tap placement based on the actual channel response. This can potentially dramatically 

reduce the number of required taps and hence lead to a lower complexity, faster channel 

tracking and an enhanced performance. 

Due to the symmetry of the linear wave equation, if the sound transmitted from one 

location is received at other locations, reversed and retransmitted, it focuses back at the 

original source location. This is the principle behind time reversal mirrors (TRM) or its 

frequency domain equivalent—active phase conjugation. The temporal compression 

effect of TRM reduces the delay spread of the channel while the spatial focusing effect 
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improves signal-to-noise ratio (SNR) and reduces fading. In fact, the spatial focusing 

precludes the use of multiple receivers for spatial diversity, but opens up the possibility 

of spatial multiplexing and low probability of intercept (LPI) communications. 

Although TRM helps reduce delay spread of the channel, it does not eliminate ISI 

completely. By implementing a DFE at a TRM receiver, the communication 

performance can be further improved. In a TRM-based communication system, a probe 

signal has to be first transmitted from the receiver to the transmitter. The transmitter 

then uses a time-reversed version of this signal to convey information. As the channel 

changes over time, the probe signal has to be retransmitted to sample the channel but 

decoherence times up to several tens of minutes were observed at frequencies of 3.5 

kHz during experiments. A closely related idea—passive phase conjugation 

(PPC)—uses the cross-correlation of two consecutive signals transmitted from the 

transmitter to the receiver to convey information. 

Progress in underwater acoustic telemetry since 1982 is reviewed within a 

framework of six current research areas: 1) underwater channel physics, channel 

simulations, and measurements; 2) receiver structures; 3) diversity exploitation; 4) error 

control coding; 5) networked systems; and 6) alternative modulation strategies[2]. 

1) The purpose of channel simulations is commonly to aid in evaluation of signal 

processing algorithms in an attempt to increase the success of field experiments. Less 
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common are attempts to use these models to explicitly relate time-varying ocean 

processes to telemetry performance and gain true insight. While there are numerous 

modeling techniques for underwater acoustic wave propagation including modal 

decompositions, parabolic equation methods, wave-number integration algorithms, and 

finite difference solutions, the telemetry community has focused almost exclusively, 

and appropriately, on ray theory. 

2)While the substantial attenuation of underwater communication signals as well 

as pervasive noise sources (anthropogenic, biological, and wave phenomena) often 

conspire to reduce available SNR, the phenomenon of reverberation, in both time and 

frequency, has tended to dominate the evolution of receiver strategies for underwater 

acoustic telemetry. Incoherent receivers have generally sought to avoid reverberation 

issues using classical methods while coherent receivers have struggled to accommodate 

reverberation with new powerful adaptive algorithms. 

3)Classical diversity in a communication system refers to the availability of 

multiple, uncorrelated measurements of the transmitted signal. These measurements 

may be taken over different frequency bands, temporal spans, or spatial apertures. Such 

diversity is a powerful tool in combating the effects of fading channels characterized by 

a complex amplitude scaling that is a random variable leading to periods of low SNR. 

4)Coding of communication signals classically falls into one of two categories: 



 

5 

 

source coding in which redundancy is removed from the information to be transmitted 

and channel coding in which structured redundancy is added to the signal to provide 

protection against errors. Both have found widespread application in underwater 

acoustic telemetry. 

5) The last five years have witnessed a surge of interest in underwater acoustic 

networks. Although sporadic interest in multiple point communication is found in 

earlier literature, the relatively recent emphasis on synoptic, spatially sampled 

oceanographic surveillance has provided an impetus to the transfer of networked 

communication technology to the underwater environment. 

6)FSK and QAM, in their various forms, have dominated digital underwater 

acoustic communication applications. Some researchers, however, have begun to 

explore alternative modulation schemes motivated largely by the need to mitigate 

temporal reverberation of the channel. 

 

1.2 The Ocean Acoustic Environment 

 

Underwater acoustic propagation depends on many factors. The direction of sound 

propagation is determined by the sound speed gradients in the water. In the sea the 

vertical gradients are generally much larger than the horizontal ones. These facts, 

combined with a tendency for increasing sound speed with increasing depth due to the 
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increasing pressure in the deep sea reverses the sound speed gradient in the thermocline 

creating an efficient waveguide at the depth corresponding to the minimum sound speed. 

The sound speed profile may cause regions of low sound intensity called "Shadow 

Zones" and regions of high intensity called "Caustics". These may be found by ray 

tracing methods. 

At equatorial and temperate latitudes in the ocean the surface temperature is high 

enough to reverse the pressure effect, such that a sound speed minimum occurs at depth 

of a few hundred meters. The presence of this minimum creates a special channel 

known as Deep Sound Channel, previously known as the SOFAR (sound fixing and 

ranging) channel, permitting guided propagation of underwater sound for thousands of 

kilometres without interaction with the sea surface or the seabed. Another phenomenon 

in the deep sea is the formation of sound focusing areas known as Convergence Zones. 

In this case sound is refracted downward from a near-surface source and then back up 

again. The horizontal distance from the source at which this occurs depends on the 

positive and negative sound speed gradients. A surface duct can also occur in both deep 

and moderately shallow water when there is upward refraction, for example due to cold 

surface temperatures. Propagation is by repeated sound bounces off the surface. 

The speed of sound depends on the medium through which sound waves propagate. 

The speed of sound differs in air and water, with sound waves traveling faster in water. 
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For example, in air at a temperature of 18°C (64°F), the speed of sound is 

approximately 341 meters (1,120 feet) per second. In contrast, in salt water at 

approximately the same temperature, the speed of sound is approximately 1,524 meters 

(5,000 feet) per second. 

The state properties of water (temperature and pressure) and the degree of salinity 

also affect the speed of sound. The propagation of sound waves in sea water can be 

directly affected by suspensions of particulate matter that can scatter, absorb, or reflect 

the waves. Laboratory experiments demonstrate that distilled water—water from which 

salts and other suspended particles have been removed—provides a medium in which 

the speed of sound exceeds the speed of sound in ocean water. The difference in the 

speed of transmission is significant—speed in distilled water may be 20 to 30 times that 

of speeds found in ocean water. 

Because frequency and wavelength are inversely proportional characteristics of 

sound waves, low-frequency signals produce long sound wavelengths. These 

long-wavelength signals encounter fewer suspended particles as they pass through the 

medium and thus are not as subject to scattering, absorption, or reflection. As a result, 

low-frequency signals are able to travel farther without significant loss of signal 

strength.  
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1.2.1 Ambient noise 

 

Measurement of acoustic signals are possible if their amplitude exceeds a 

minimum threshold, determined partly by the signal processing used and partly by the 

level of background noise. Ambient noise is that part of the received noise that is 

independent of the source, receiver and platform characteristics. This it excludes 

reverberation and towing noise for example. 

The background noise present in the ocean, or ambient noise, has many different 

sources and varies with location and frequency.[3] At the lowest frequencies, from 

about 0.1 Hz to 10 Hz, ocean turbulence and microseisms are the primary contributors 

to the noise background. Typical noise spectrum levels decrease with increasing 

frequency from about 140 dB re 1 µPa²/Hz at 1 Hz to about 30 dB re 1 µPa²/Hz at 100 

kHz. Distant ship traffic is one of the dominant noise sources in most areas for 

frequencies of around 100 Hz, while wind-induced surface noise is the main source 

between 1 kHz and 30 kHz. At very high frequencies, above 100 kHz, thermal noise of 

water molecules begins to dominate. The thermal noise spectral level at 100 kHz is 25 

dB re 1 µPa²/Hz. The spectral density of thermal noise increases by 20 dB per decade 

(approximately 6 dB per octave). 

Transient sound sources also contribute to ambient noise. These can include 

intermittent geological activity, such as earthquakes and underwater volcanoes, rainfall 
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on the surface, and biological activity. Biological sources include cetaceans (especially 

blue, fin and sperm whales), certain types of fish, and snapping shrimp. 

 

1.2.2 Internal waves 

 

Internal waves are gravity waves that oscillate within, rather than on the surface of, 

a fluid medium. They arise from perturbations to hydrostatic equilibrium, where balance 

is maintained between the force of gravity and the buoyant restoring force. A simple 

example is a wave propagating on the interface between two fluids of different densities, 

such as oil and water. Internal waves typically have much lower frequencies and higher 

amplitudes than surface gravity waves because the density differences (and therefore the 

restoring forces) within a fluid are usually much smaller than the density of the fluid 

itself. Internal wave motions are ubiquitous in both the ocean and atmosphere. 

Nonlinear solitary internal waves are called solitons. 

The atmosphere and ocean are continuously stratified: potential density generally 

increases steadily downward. Internal waves in a continuously stratified medium may 

propagate vertically as well as horizontally. The dispersion relation for such waves is 

curious: For a freely-propagating internal wave packet, the direction of propagation of 

energy (group velocity) is perpendicular to the direction of propagation of wave crests 

and troughs (phase velocity). An internal wave may also become confined to a finite 
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region of altitude or depth, as a result of varying stratification or wind. Here, the wave is 

said to be ducted or trapped, and a vertically standing wave may form, where the 

vertical component of group velocity approaches zero. A ducted internal wave mode 

may propagate horizontally, with parallel group and phase velocity vectors, analogous 

to propagation within a waveguide. 

At large scales, internal waves are influenced both by the rotation of the Earth as 

well as by the stratification of the medium. The frequencies of these geophysical wave 

motions vary from a lower limit of the Coriolis frequency (inertial motions) up to the 

Brunt-Väisälä, or buoyancy frequency (buoyancy oscillations). Above the 

Brunt-Väisälä frequency may exist evanescent internal wave motions, for example those 

resulting from partial reflection. Internal waves at tidal frequencies are produced by 

tidal flow over topography/bathymetry, and are known as internal tides. Similarly, 

Atmospheric tides arise from, for example, non-uniform solar heating associated with 

diurnal motion. 

 

1.3 An introduction to Channel Estimation 

 

1.3.1 Why Channel Estimation? 

 

Before we approach the problem of predicting and analyzing the observable 

properties of transmission, we must first define what we mean by a channel. In its most 
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general sense, a channel can describe everything from the source to the sink of a radio 

(or acoustic) signal. This includes the physical medium (free space, fiber, waveguides 

etc.) between the transmitter and the receiver through which the signal propagates. The 

word channel refers to this physical medium throughout this work. An essential feature 

of any physical medium is, that the transmitted signal is received at the receiver, 

corrupted in a variety of ways by frequency and phase-distortion, inter symbol 

interference and thermal noise.  

A channel model on the other hand can be thought of as a mathematical 

representation of the transfer characteristics of this physical medium. This model could 

be based on some known underlying physical phenomenon or it could be formed by 

fitting the best mathematical statistical model on the observed channel behavior. Most 

channel models are formulated by observing the characteristics of the received signals 

for each specific environment. Different mathematical models that explain the received 

signal are then fit over the accumulated data. Usually the one that best explains the 

behavior of the received signal is used to model the given physical channel. 

Channel estimation is simply defined as the process of characterizing the effect of 

the physical channel on the input sequence. If the channel is assumed to be linear, the 

channel estimate is simply the estimate of the impulse response of the system. It must 

be stressed once more that channel estimation is only a mathematical representation of 
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what is truly happening. A “good” channel estimate is one where some sort of error 

minimization criteria is satisfied (e.g. MMSE). 

Channel estimation algorithms allow the receiver to approximate the impulse 

response of the channel and explain the behavior of the channel. This knowledge of the 

channel's behavior is well-utilized in modern radio communications.  

1. Adaptive channel equalizers utilize channel estimates to overcome the effects of 

inter symbol interference.  

2. Diversity techniques utilize the channel estimate to implement a matched filter such 

that the receiver is optimally matched to the received signal instead of the 

transmitted one. 

3.  Maximum likelihood detectors utilize channel estimates to minimize the error 

probability. 

4.  One of the most important benefits of channel estimation is that it allows the 

implementation of coherent demodulation. Coherent demodulation requires the 

knowledge the phase of the signal. This can be accomplished by using channel 

estimation techniques. 

 

1.3.2 Training Sequences and Blind Method 

 

Once a model has been established, its parameters need to be continuously updated 
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(estimated) in order to minimize the error as the channel changes. If the receiver has 

a-priori knowledge of the information being sent over the channel, it can utilize this 

knowledge to obtain an accurate estimate of the impulse response of the channel. This 

method is simply called Training sequence based Channel estimation. It has the 

advantage of being used in any radio communications system quite easily. Even though 

this is the most popular method in use today, it still has its drawbacks. One of the 

obvious drawbacks is that it is wasteful of bandwidth. Precious bits in a frame that 

might have been otherwise used to transport information are stuffed with training 

sequences for channel estimation. This method also suffers due to the fact that most 

communication systems send information lumped frames. It is only after the receipt of 

the whole frame that the channel estimate can be extracted from the embedded training 

sequence. For fast fading channels this might not be adequate since the coherence time 

of the channel might be shorter than the frame time.  

Blind methods on the other hand require no training sequences. They utilize certain 

underlying mathematical information about the kind of data being transmitted. These 

methods might be bandwidth efficient but still have their own drawbacks. They are 

notoriously slow to converge (more than 1000 symbols may be required for an FIR 

channel with 10 coefficients). Their other drawback is that these methods are extremely 

computationally intensive and hence are impractical to implement in real-time systems. 
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They also do not have the portability of training sequence-based methods. One 

algorithm that works for a particular system may not work with another due to the fact 

they send different types of information over the channel. 

 

1.4 Forgetting Factor Estimation Overview 

 

Recursive least squares (RLS) algorithm has been used extensively in adaptive 

filtering, self-tuning control, system identification, prediction, and interference 

cancellation [4]. It is well known for its good convergence property and small 

Mean square error (MSE) in stationary environments. However, the RLS algorithm 

with a constant forgetting factor (FF) is not suitable for tracking time-varying 

parameters because its convergence is slow when the FF is close to one, whereas the 

misadjustment is large when the FF is small. Therefore, the forgetting factor of RLS 

algorithm needs to be set adaptively in order to yield satisfactory performance in 

time-varying environments. Much effort has been directed to modifying the RLS 

algorithm. One modification uses a data weighting window on the input data sequence 

[5] to adjust the effective memory of the algorithm. However, it is not easy to adjust the 

window to the change. Another approach is to vary the forgetting factor according to the 

squared error [6]–[8]. This approach can maintain the standard RLS algorithm with the 

FF adjusted according to the error. The drawback of these methods is that the control of 
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FF is sensitive to measurement noise. Nevertheless, methods of this kind are widely 

employed in variable forgetting factor (VFF) RLS algorithms. Another approach is 

variable forgetting factor RLS adaptive algorithm, namely, the gradient-based VFF RLS 

algorithm (GVFF-RLS) [9]. The control of the forgetting factor is based on the gradient 

of the MSE rather than on the gradient of the instantaneous squared error. The success 

of the algorithm relies heavily on an improved mean square error analysis. 

 

1.5 Research Motivation 

 

In the following sections, we will state that the precision of channel estimation is 

the critical factor for the channel estimation based equalizer. Channel impulse response 

is not available and must be estimated and then tracked. Here we using recursive least 

square algorithm as channel tracking algorithm, and the forgetting value is the critical 

parameter of RLS. We can find that UWA channel is various and variable by using 

some metrics such as signal to multipath ration (SMR), Doppler spread, coherence time, 

etc. Those metrics are able to reflect the channel condition. So, adaptive adjustment of 

forgetting factor of RLS according to the channel condition to improve the accuracy of 

channel estimation is necessary. Even the receiving time is the same. It still can’t 

explicitly confirm that all the receivers with different depth use the same forgetting 

factor to estimate each channel impulse response can all achieve minimum estimation 



 

16 

 

error. Underwater acoustic channel especially, which is confront various ambient noise, 

internal-wave, and unexpected situation. So our goal is to find and set the forgetting 

factor adaptively. This is the main issue we will discuss and present in this thesis. 

 

1.6  Thesis Overview 

 

This thesis is organized into five sections. We begin in Section II provides a 

thorough theoretical foundation for the concepts to follow, channel estimation, channel 

tracking, and the key element of equalizer performance. A first order AR process was 

used to model a time varying acoustic channel. Furthermore, degree of nonstationarity 

was introduced to provide a measure of the fluctuation rate of the channel under 

tracking. In Section III, we will discuss the proposed forgetting factor estimation and 

the implementation method. In Section IV, the experiment result was presented based 

on ASIAEX data, and SMR was used as channel characteristic metrics to reflect the 

channel fading  
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Chapter 2 Underwater acoustic channel estimation and 

channel tracking 

 

The UWA channels in acoustic communication systems are usually multipath 

fading channels, which are causing inter-symbol interference (ISI) in the received 

signal. To remove ISI from the signal, much kind of equalizers can be used. These 

equalizers require knowledge on the channel impulse response (CIR), which can be 

provided by a separate channel estimator. Usually the channel estimation is based on 

the known sequence of bits, which is unique for a certain transmitter and which is 

repeated in every transmission burst. Thus, the channel estimator is able to estimate 

CIR for each burst separately by exploiting the known transmitted bits and the 

corresponding received samples. In data transmission, CIR can be tracked adaptively 

by the channel tracking algorithms. 

 

2.1 Channel estimation by Pulse Compression 

 

In this section, we will describe the use of the m-sequence (Maximum Length 

Sequence) signal for the measurement of channel impulse responses, in alternative to 

the traditional techniques based on the use of impulsive sources. 

The m-sequence signal is well known since at least two decades: it is a binary 

sequence, in which each value can be simply 0 or 1, obtained by a shift register as the 
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one shown in Fig.2-1 

 

Figure 2-1 Shift register for the creation of the m-sequence signal 

 

The obtained signal is periodic, with period of length L given by:  

L=2
N-1

 

in which N is the number of slots in the shift register, also called the order of the 

m-sequence. Thus an order N=16 means a sequence with a period of 65535 samples. 

If a linear time invariant (LTI) system's impulse response is to be measured using a 

m-sequence, the response can be extracted from the measured system output y[n] by 

taking its circular cross-correlation with the m-sequence sequence. This is because the 

autocorrelation of an m-sequence is 1 for zero-lag, and nearly zero (−1/N where N is the 

sequence length) for all other lags; in other words, the autocorrelation of the 

m-sequence can be said to approach unit impulse function as m-sequence length 

increases. So we can use this property to obtain the channel impulse response [10]. 
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If the channel impulse response is h[n], the transmitted m-sequence is d[n], the 

received signal is y[n], then 

���� � ���� � ���� 
	�
�
� � �
��
�����������
������  

Taking the cross-correlation with respect to u[n] of both sides, 

���� � ���� � ����
�����ss�m��g������ ���� �s�����m���s
�(������f����g�s
q�
��
s)��	
�����b�������
�
�����
���m���s
��
s��s
:�

����� � ����
 

 

2.2 Channel tracking by Recursive least squares (RLS) algorithm 

 

Recursive least squares (RLS) algorithm is used in adaptive filters to find the filter 

coefficients that relate to recursively producing the least squares (minimum of the sum 

of the absolute squared) of the error signal (difference between the desired and the 

actual signal). This is contrast to other algorithms that aim to reduce the mean square 

error. The difference is that RLS filters are dependent on the signals themselves, 

whereas MSE filters are dependent on their statistics (specifically, the autocorrelation of 

the input and the cross-correlation of the input and desired signals). If these statistics are 

known, an MSE filter with fixed coefficients (i.e., independent of the incoming data) 
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can be built [4]. 

First, consider a UWA channel system model shown in figure 2-2. All data 

processing, analysis, and modeling in this thesis are done with respect to a sampled 

baseband received signal. Thus all discussion is with respect to discrete time signals and 

processes. Given the set of input samples d(n) and the desired response or received 

signal y(n), which is 

���� � $�%�
&

%'(
������ ) *� + ν��� 

h[n] is the baseband complex time-varying channel impulse response, N is channel 

length, and ν(n) represents ambient noise. We will attempt to recover the desired signal 

d(n) by use of an FIR filter,��,(n). 

 

 

 

Noise ν(n) 

－－－－ 

h(n) 

-. (n) 

y(n) 

e(n) 

input 

d(n) 

Figure 2-2 Adaptive filter 

�/(n) 
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Our goal is to estimate the parameters of the filter �, , and at each time n we refer to 

the new least squares estimate by �,(n). As time evolves, we would like to avoid 

completely redoing the least squares algorithm to find the new estimate for �,(n+1), in 

terms of �,(n). The benefit of the RLS algorithm is that there is no need to invert 

matrices, thereby saving computational power. Another advantage is that it provides 

intuition behind such results as the Kalman filter. 

The idea behind RLS filters is to minimize the sum of weighted error squares by 

appropriately selecting the filter coefficients �,(n), updating the filter as new data 

arrives. The weighted error squares is 

0(1) �� $ λ
234

'
5
(�)56 

where the error signal is 


(�) � �(�) )$�,%�
&

%'(
������ ) *� 

and the forgetting factor or weighting factor λ (0< λ71) reduces the influence of old 

data. 

The LS solution can be obtained as 

�,(n)=Φ
-1

(n) z(n) 

where  
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8(9) � $:234;(<);(<)=2
4'>

 

And 

?(9) � �$:234;(<)�(�2
4'>

)﹡ 

We want to find a recursive in time way, so we will rewrite the variables Φ(n) 

and z(n) as functions of Φ(n − 1) and z(n − 1): 

8(9) � :$:2343>;(<);(<)=23>
4'>

+ ;(<);(<)= � :8(9 ) @) + ;(<);(<)= 

?(9) � �λ$ λ
2343>;(<)�(�23>

4'>
)﹡ + ;(<)�(�)﹡ � λ?(9 ) @) + ;(<)�(�)﹡ 

Applying the matrix inversion formula to�A(�) ,we obtain 

�B(9) � 83@(9)� 
������������� :3>83@(9 ) @) ) :3C83@(9 ) @);(9);(9)=83@(9 ) @)D + :3>;(9)=83@(9 ) @);(9)  

Let 

E(9) � :3@B(9 ) @);(9)D + :3>;(9)=B(9 ) @);(9) 
Using these definitions, we may rewrite P(n) as 

�B(9) � :3>B(9 ) @) ) :3>E(9);(9)=B(9 ) @) 
And we may simplify that 

k(n)=P(n)d(n) 

We are now able to derive the main time-update equation, that of �,(n) 
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-. (n)=�-. (n-1)+k(n)ζ
＊
(n) 

Where 

ζ(n)=y(n) −�-. H
(n-1)

 
d(n) 

Now we can collect all necessary equations to form the RLS algorithm,�*(�)  

ζ(n) �,(n) F(�) 
Initialization of RLS algorithm: 

In RLS algorithm there are two variables involved in the recursions (those with 

time index n-1): -. (n-1),�B(9 ) @)��We must provide initial values for these variables in 

order to start the recursions : 

•-. (0) 

If we have some apriori information about the parameters��G  this information will 

be used to initialize the algorithm. 

Otherwise, the typical initialization is 

-. (0)=0 

•P(0) 

Recalling the significance of P(n)  

it is not a simple matter to select the length of data required for ensuring 

invertibility of Φ(0).The approximate initialization is commonly used, it don’t require 

matrix inversion: 
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P(0) = δI 

Since our knowledge of these parameters at n = 0 is very vague, a very high 

covariance matrix of the parameters is to be expected, and thus we must assign a high 

value to δ. The recommended value for δ is 

δ > 100σ
2

u 

For large data length, the initial values assigned at n = 0 are not important, since 

they are forgotten due to exponential forgetting factor λ. 

Summary of the RLS algorithm: 

 
  

Given data d(1), d(2), d(3), . . . , d(N) and y(1), y(2), y(3), . . . , y(N) 

 

1. Initialize w(0)=0, P(0)=δI 

2. For each time instant, n = 1, . . . , N, Compute 

2.1 π = u
H
(n)P(n-1) 

2.2 γ = λ+π d 

2.3 E(9) � H
γ� 

2.4 ζ(n) = y(n) − -. H (n-1)d(n) 

2.5 -. (n)=�-. (n-1)+k(n)ζ
＊
(n) 

2.6 P’=k(n)π  

2.7 P(n)=
>
λ
(P(n- 1)-P’) 



 

25 

 

2.3 The impact of channel estimation error on the equalizer 

 

In this section, we will discuss the impact of channel estimation error on the 

channel estimation based equalizers. 

First, consider the channel and equalizer model. Again, all data processing, 

analysis, and modeling in this thesis are done with respect to a sampled baseband 

received signal. Thus all discussion is with respect to discrete time signals and 

processes. The acoustic channel is modeled as a time-varying, discrete time system 

described by the complex baseband time-varying impulse response. (see Proakis[11] 

and Van Trees[12]. The received signal at time n is given by 

���� � $ �I�&J3>
I'3&K

������ ) m� + ν��� 
This relation also shown in the figure 2-3 

where h[n] is the baseband complex time-varying channel impulse response 

relating the input signal at time (n-m) to the output signal at time n, d[n] is the complex 

baseband transmitted data, and v[n] is complex baseband observation noise. The 

quantities Na and Nc denote, respectively, the number of acausal and causal taps in the 

channel impulse response. 
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And the performance of channel estimation based equalizers is characterized in 

terms of the mean squared soft decision error σ
2

s of each equalizer [13]. Figure 2-4 

shows a channel estimate based decision feedback equalizer (CE-DFE), and Figure 2-5 

shows a linear equalizer. The received signal y[n], is processed to generate estimates of 

the time-varying impulse response of the channel between the transmitter and each 

receive hydrophone. The impulse response estimates are used to compute the equalizer 

filter weights. These filter weights are used to implement the equalizer and estimate the 

desired data symbol d[n]. Then we can define the soft decision error  

εs=�,s[n]-d[n]. 

Furthermore, the mean squared soft decision error σ
2

s can be decomposed into 

two components. These are the minimum achievable error (σ
2

0) and the excess error 

(σ
2

ε) [13]. 

 

Channel  

h[n] 
received 

signal 

y[[n] 

Transmitted 

data  d[n] 

Figure 2-3 system model 

��s
����ν��� 
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The minimum achievable error σ
2

0 is the soft decision error that would be realized 

by the equalizer if the filter coefficient calculation were based upon perfect knowledge 

of the channel impulse response and statistics of the interfering noise field. 

And the excess error (σ
2

ε) is the additional soft decision error that is realized due 

to errors in the estimates of these channel parameters. 

They separately quantify the equalizer errors here that leads to new insights into 

Feed-forward Filter 

hff 

Estimate Time-Varying 

Channel Impulse 

Response:  h[n] 

Decision 

Device 

�,s[n] �,[n] 

 

Received 

Signal 

y[n] 

Figure 2-5 linear equalizer 

Feed-forward Filter 
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Channel Impulse 

Response:  h[n] 

Decision 

Device 

Feedback 

Filter hfb 

�,s[n] �,[n] 

 

Received 

Signal 

y[n] 

Figure 2-4 CE-DFE 
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the factors that can limit equalizer performance and the characteristics of equalizers 

that are robust with respect to channel estimation errors. 

The finally analysis of experimental data verifies that the expressions can 

accurately predict equalizer performance when the second-order statistics of the errors 

in the channel impulse response estimates are known. And they also show that the 

excess error was always a significant contributor to the soft decision error when rough 

sea conditions prevailed. 

So we should set the approximate tracking rate, and improve the accuracy of 

channel estimation further, the huge channel estimation error will degrade the equalizer 

performance. This is the main topic we will discuss in the next two sections. 

 

 

2.4 AR channel model  

 

When the transmission medium became time-varying cause of internal wave, 

ambient noise, or some unexpected situation, the adaptive filtering algorithm now has 

the added task of tracking the time-varying environment. 

Tracking is a steady-state phenomenon, to be contrasted with convergence, which 

is a transient phenomenon. it follows that, for an adaptive filter to exercise its tracking 

capability, it must first pass from the transient mode to the steady-state mode of 

operation, and there must be provision for continuous adjustment of the free 
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parameters of the filter. 

A popular approach for this analytical assessment is to assume a first-order AR 

model, Although higher-order models are also possible, only a few results on the 

tracking performance using these models are currently available, In our analysis of 

tracking characteristics of the adaptive algorithms, we use the first-order AR model. 

This setup is illustrated in Figure 2-6. 

The tap-weight vector h(n) represents the “target”(real channel) to be tracked by 

the filter. In the ASIAEX experiment ,we can get this by pulse compression using 

m-sequence property. 

��,(n) is the tap-weight vector of the adaptive filter. whenever �,(n) equals h(n),the 

minimum mean-square error produced by the adaptive filter equals the irreducible 

error variance σ
2

ν. 

D
s��
���
s��s
:�
�(�) � -M(�);(�) + N(�)� � � � � � � � � � � � � � � � � � � � �

A��� N(�) � �(�) ) -M(�);(�)� � � � � � � � � � � � � � � �
T�
����������f������
���(�)��s�m�
�
��b����
�f��s�-��
��AR�(��M��*�)�
���
ss:�

-(� + D) � ρ-(�) + T(�)� � � � � � � � � � � � � � � � � � � �
W�
�
�� � � ρ��
-ω��T� � � � � � � �����ω���s�D���
��s��
����D4��
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Tracking is generally achievable if ρ is close to 1. The random-walk model is 

obtained by using ρ = 1. 

T��
�
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2.5 The optimal forgetting factor of RLS  

 

The performance of adaptive FIR filters governed by the recursive least-squares 

(RLS) algorithm are done in terms of the steady-state excess mean-square estimation 

error δ and the steady-state mean-square weight deviation ζ[16].  

Let -. k dk, νk and yk denote the weight vector of the adaptive filter at discrete time 

k, the observation vector, observation noise, and the desired filter output, respectively. 

The estimation error ek is given by: 


% � ��% ) -. =�E3@;E 

The steady-state excess mean-square estimation error δ is defined by 

δ� b ��m��c∞
5 56 ) σ6ν          
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T�
 steady-state mean-square weight deviation ζ is defined by 

ζ� b ��m��c∞
d-. E ) -%d 

The value of λ that minimizes ζ, and the minimum value of ζ, are, respectively, 

given by: 

λζ � D ) e ��(f)
σ6ν��(g3@)h

> 6i
 

ζI42 � σνj��(f)��(g3@) 
Where Q is the covariance matrix of the channel increments dk+1-dk, and R is the 

covariance matrix of the observation vector dk, 

The value of λ, denoted by λδ, that minimizes�δ, and the minimum value of��δ, 

denoted by�δI42, are, respectively, given by 

λδ � D ) k��(fg)Nσ6ν

l> 6i
 

δI42 � σνjN��(fg) 
In this thesis, we are focus on the accuracy of channel estimation, so the weight 

deviation is the primary performance index. In the particular case when R=cI, the 

values of forgetting factor λ that minimizes δ or�ζ� are exactly the same. However, the 

transmitted bits are practically uncorrelated with each other. 
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Chapter 3 Optimal forgetting factor estimation 

 

The performance of adaptive FIR filters governed by the recursive least-squares 

(RLS) algorithm is considered into two metrics, one is the steady-state excess 

mean-square estimation error δ and the other one is the steady-state mean-square 

weight deviation�m. In this thesis, we are focus on the accuracy of channel estimation, 

so the weight deviation is the primary performance index. For many times, the values 

of forgetting factor λ that minimizes δ or�m� are exactly the same, it can be easily 

observed in ASIAEX experiment data shown in figure 3-1(the experiment environment 

will be introduced in section 4). 

In the following sections, we will discuss all the parameters that the�:nop needed, 

for instance, the innovation�q, Doppler spread ωd, observation noise ν, etc. 

 

3.1 Implementation of forgetting factor estimation 

 

The value of forgetting factor that minimizes the steady-state mean-square weight 

deviation ζ of RLS algorithm can be obtained by: 

ζ b ��m%c∞
E(d-% ) -. %�λd6) 

λnop � ��g �m��
λ

����m�����%c∞
E(d-% ) -. %�λhd6� 

where -% is real acoustic channel impulse response, and -. %�λ is tap weight 
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vector measured by RLS for forgetting factor λ, an example is shown in figure 3-1. 

And the theoretical value of forgetting factor that minimizes the ζ is mentioned in 

section 2.5, is given by:  

:nop � D ) k ��(gT)r6s��(g;3>)l
> 6i

 

Assume that each tap of Ψ and d are uncorrelated, and Ψ and d are also 

uncorrelated, we can get that: 

 
Figure 3-1optimal forgetting factor for ASIAEX data-day 126-6:15:32 (channel 16) 

0.97 0.975 0.98 0.985 0.99 0.995 1 1.005
0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

x

RLS channel estimation error

λ

0.97 0.975 0.98 0.985 0.99 0.995 1 1.005
0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

x

λ

RLS  mean square estimation error



 

35 

 

λnop � D ) k��(gΨg;)Nσ6ν

l> 6i
 

where N is the dimension of input signal vector d, and 

��(gΨg;) ������ ��tE�T(�)T=(�)�u�;(�);=(�)�v 
������������������� ut���T(�)T=(�);(�);=(�)�v 
������������������� ��tu�T=(�);(�);=(�)T(�)�v 

������������ E�T=(�);(�);=(�)T(�)� 
�� E�5T=(�);(�)56� 

So the equation of λnop can be reformed to: 

λnop � D ) kE�5T=(�);(�)56�Nσ6ν

l> 6i
 

And recall the degree of nonstationarity (DNS) mentioned in section 2.4, we can 

easily correlate the λnop with DNS : 

:nop � D ) wxN 

In order to calculate the DNS at the beginning of a data packet transmission 

period, we should add some bits consisted of “maximum length sequence” in front of 

the data bits ,which is shown in Figure 3-2. N is the number of slots in the shift register, 

also called the order of the m-sequence. Thus an order N=6 means a sequence with a 

period of 63 samples. Consider the long multipath delay time of underwater acoustic 

channel, N should be chosen enough large to guarantee that able to calculate the 



 

36 

 

channel impulse response accurately. M is additional bits, in order to obtain sufficient 

statistics and measure the DNS further. 

 

 

preamble data 

 

 

 

 

 

2
N
-1 + M bits 

    2
N
-1 

 

Figure 3-2 transmission data format 

First, we use the first 2
N
-1 bits to calculate the channel impulse response, as 

mentioned in section 2.1, we can get that: 

h1=Cdy 

Where C is cross-correlation function, d[n] is transmitted m-sequence and y[n] is 

received data. 

The next step is to shift the window to right for 1bit, and calculate the second 

impulse response h2 as shown in Figure 3-3. 

 

 

2
N
-1 + M bits 

     2
N
-1 

 

Figure 3-3 window shift one bit 

Shifting Window  

Shifting Window  
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Follow M+1 times the above-mentioned step, we can get hk for k=1 to M+1. 

And recalling the AR model of section 2.4, as follows  

The innovation�q�is: 

�������������TE � -Ey@ ) z-E         , for k=1,2……,M 

And in matrix form: 

{|
||
} Ψ%�3&K
Ψ%�3&Ky>~~
Ψ%�&J3> ��

��
�
�
{|
||
} �%y>�3&K�%y>�3&Ky>~~�%y>�&J3> ��

��
�
) z

{|
||
} �%�3&K�%�3&Ky>~~�%�&J3> ��

��
�
 

Where,ρ= e
-ωd T 

ωd is Doppler spread bandwidth and can be obtained via scattering function will be 

introduced in next section. The quantities Na and Nc denote, respectively, the number of 

acausal and causal taps in the channel impulse response. 

The observation noise 

      ν% � �% ) -EM;E     ,for k=2,…..,M+1 

Finally, the degree of nonstationarity: 

w � \E�5TE=;E56�E�5ν%56�  

,for k=2,…..,M 

and  
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:nop � D ) wxN 

Where , yk,incr = TE=;E�is the output of the incremental filter, and N=�N� + N� 
 

 

3.2 Doppler-Spread estimation 

 

For waves that propagate in a medium, such as sound waves, the velocity of the 

observer and of the source are relative to the medium in which the waves are 

transmitted. The total Doppler effect may therefore result from motion of the source, 

motion of the observer, or motion of the medium. 

Delay spread and coherence bandwidth are parameters which describe the time 

dispersive nature of the channel in a local area. However, they do not offer information 

about the time varying nature of the channel caused by either relative motion between 

the mobile and base station, or by movement of objects in the channel. Doppler spread 

and coherence time are parameters which describe the time varying nature of the 

channel in a small-scale region. 

Doppler spread ωd is a measure of the spectral broadening caused by the time rate 

of change of the channel and is defined as the range of frequencies over which the 

received Doppler spectrum is essentially non-zero. When a pure sinusoidal tone of 

frequency fc is transmitted, the received signal spectrum, called the Doppler spectrum, 
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will have components in the range fc – fd to fc + fd, where fd is the Doppler shift. The 

amount of spectral broadening depends on fd which is a function of the relative 

velocity of the mobile, and the angle θ between the direction of motion of the mobile 

and direction of arrival of the scattered waves. If the baseband signal bandwidth is 

much greater than ωd the effects of Doppler spread are negligible at the receiver. This 

is a slow fading channel. 

Coherence time Tc is the time domain dual of Doppler spread and is used to 

characterize the time varying nature of the frequency dispersiveness of the channel in 

the time domain. The Doppler spread and coherence time are inversely proportional to 

one another. That is, 

T� b D��� 
Coherence time is actually a statistical measure of the time duration over which 

the channel impulse response is essentially invariant, and quantifies the similarity of 

the channel response at different times. In other words, coherence time is the time 

duration over which two received signals have a strong potential for amplitude 

correlation. If the reciprocal bandwidth of the baseband signal is greater than the 

coherence time of the channel, then the channel will change during the transmission of 

the baseband message, thus causing distortion at the receiver. 

A Doppler spread for a communications channel is measured by providing an 
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estimate of the communications channel and doing Fourier transform along the time 

domain for the estimate of the communications channel �, , which can be calculated by 

some methods mentioned in section 2. The formula expression is shown below and μ

is called delay Doppler spread function: 

���� *� � $�,��� *�
3�6�s�4�p�
4'>

 

Here,��,��� *� b �(���� τ%),��τ% b τ( + (* ) D)�τ  for k=1,….,K are the sampled 

delays,��( is the reference delay.��� and �τ�are the sample intervals in time and delay. 

K is the number of uniformly sampled delay taps, i.e., the channel dimension. 

And�µ��� *� b µ(ν�� τ%) ,�ν� b ν( + (� ) D)�ν for l=1,…,L are the 

sampled Dopplers with ν( and �ν�as the reference Doppler and the Doppler 

sample interval, respectively. 

If�µ��� *��is WSSUS, the scattering function can be expressed as 

F��� *� � Et���� *�v6 

And the other way to obtain the scattering function is that correlating a portion of 

a received signal with the bank of Doppler-shifted replicas of the transmitted 

m-sequence . 

Here is some example shown in Figure 3-4 to Figure 3-7, the data is based on 

ASIAEX experiment, which will be introduced in section 4. Figure 3-4 shows the 
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channel impulse response in time domain and delay domain, and the corresponding 

delay Doppler spread function shown in Figure 3-5.  

 

Figure 3-4 channel impulse response in time domain and delay domain for 

ASIAEX –day 126-6:15:17 (channel 16) 
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Figure 3-5 The scattering function of ASIAEX –day 126-6:15:17  (channel 16)   

 

Where the value Tm is called “multipath spread” and the correspond “coherence 

bandwidth” is: 

(�f)J b DTI 

And for direct path, we can calculate the Doppler spread ωd  (3db bandwidth) as 

shown in Figure 3-6. 

Now we can observe the difference of delay Doppler spread function between the 

calm-water channel shown above and the internal-wave-affected channel shown in 

figure 3-7. it’s obviously that the delay spread and the Doppler spread is growing 

worse in rough sea condition. 

 

frequency(Hz)

d
e
la

y
(s

e
c
o
n
d
s
)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5



 

43 

 

 

Figure 3-6 The direct-path spectrum of ASIAEX -day 126-6:15:17  (channel 16)   
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Figure 3-7 The scattering function and the direct path spectrum of ASIAEX 

-128_12_49_24_3937.mat (channel 16)  

 

 

3.3 Compute the approximate optimal forgetting factor 

 

In section 3.1, we discussed how to find optimal forgetting factor λ of RLS, 

however, this implementation via “degree of nonstationarity” calculating, which suffers 

very high computational complexity. To reduce the computational complexity by some 

simplificative assumption is necessary. Recall the first order AR process of 

time-varying channel: 

            �-%y>�4 � z-%�4 +T%�4      for each tap , i=1,2,…..,N  at time k  

Where,   ρ= e
-ωd T
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Assuming - = -�-�-� , i.e., assuming the mean of the process has been removed so 

that �� = 0. Rearranging the model, we get 

T% � -%y> ) z-% 

In order to avoid any confusing, the notation “i” had been removed. 

we next use this formula to estimate the innovation variance by taking the product 

of the above equation with itself, and taking expectance, 

E�T%T%� � E�-%y>-%y>� ) �ρE�-%y>-%� + ρ6E�-%-%� 
                 =�E�-%-%� ) �zE�-%y>-%� + z6E�-%-%� 
where we have used the fact�E�-%-%� = E�-�-��for any k and j.  

then we get that: 

σ�6=�( )2z�> + z6�( 

where σ�6�is the expected variance of the innovation, r1 is the first autocorrelation 

coefficient, and ci is the ith autocovariance coefficient (so that co = σ�6, the sample 

estimated variance of h). Finally, recall that for AR(1), ρ= r1, so 

r�6=r�6(D ) �z6 + z6) � r�6(D ) z6) 
Again , recall the formula for λnop : 

:nop � D ) \��tgTg;vNr6s  
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Assuming each tap of Ψ�and d are uncorrelated, and Ψ�and d are also uncorrelated, 

so this formula can be reformed: 

λnop � D ) \� tσ��46 � σ��46v&4'> Nr6ν

 

� D ) \� r��46(D ) z6) � σ��46&4'> Nr6ν

 

Suppose that the impact of the decay in the quality of the channel estimate 

resulting from using incorrect signal decisions in the estimation algorithm or the 

feedback of incorrect signal decisions is insignificant. So we can roughly estimate the 

optimal forgetting factor by the above formula. Figure 3-8 shows the transmission 

packet format, and some explanation is stated below. 

 

Preamble1 data1 data2 …

… 

Preamble2 repeat 

 

Preamble1: precisely compute the optimal forgetting factor ,denotedλ1 

Data1: channel estimation by RLS usingλ1, and calculate r��4 for each tap and σ� in 

the end of this section transmission, finally estimate the approximate optimal 

forgetting factor, denotedλ2 

Data2: channel estimation by RLS usingλ2. 

Preamble2: re-compute the precise optimal forgetting factor, and follow the above steps. 

Figure 3-8 transmission format 
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Chapter4 Experiment Result 

 

The experiment performance is based on ASIAEX data, which will be introduced 

in section 4.1. In section 4.2 a metrics, SMR, was introduced to reflect the quality of 

channel. Finally, the performance result discussed in section 4.3 is presented together 

with the experiment value, and the prediction value of optimal forgetting factor, and of 

channel estimation mean square error. 

 

4.1 The Asian Seas International Acoustics Experiment (ASIAEX) 

 

Between late April and May 23, 2001, a suite of acoustic and oceanographic 

sensors was deployed by a team of U.S., Taiwan, and Singapore scientists in the 

northeastern South China Sea [17]. 

A side view of the relevant portion of the experiment and associated physical 

parameters are shown in Fig. 4-1.  

Moored at 13m above the 350-m isobaths on the slope the sound source 

transmitted binary phase-shift keying (BPSK) signals at a carrier frequency of 400 Hz 

with a bandwidth of 100 Hz. The phase modulation employed was a 5.11-s-long 

511-digit m-sequence resulting in a compressed pulse of 10-ms resolution after 

matched filtering. These bihourly transmissions were sampled at a rate of 3.2 kHz by 
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the vertical hydrophone array moored at the 125-m isobath on the shelf. This listening 

array consisted of 16 hydrophones moored vertically in the water column, and array 

has an aperture of 79m spanning the depths from 42 to 121 m. 

 

 

 

Fig.4-1 Geometry of the transmission experiment 

 

The performance discussed in next section will separate into three parts: 

Case1: Receivers without the effect of internal wave, an example of channel condition 

is shown in figure 4-2, which is with low phase variation, channel fluctuation , and 

small Doppler spread bandwidth. 

3
5

0
m

 

32km 
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 CIR variation 

 Phase variation (direct path) 

 Scattering function 

Fig.4-2 channel condition-ASIAEX day126-6:17:58 (channel 16) 

Case2: Internal wave approach the receivers, an example of channel condition is shown 

in figure 4-3, and compare with case1 the channel become more severe fading, 
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but it’s not vary significant.  

 CIR variation 

 Phase variation(direct path) 

 Scattering function 

Fig.4-3 channel condition-ASIAEX day 128-9:46:3(channel 16) 
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Case3: Internal wave reach the receivers, an example of channel condition is shown in 

figure 4-4, which is with high phase variation, channel fluctuation, and large 

Doppler spread than case 1 and case 2. 

 CIR fluctuation 
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 Scattering function 

Fig.4-4 channel condition-ASIAEX day 128- 12:50:04(channel 16) 

 

 

4.2 Signal-To-Multipath Ratio (SMR) 

 

Underwater acoustic communications differ from RF communications in two 

major aspects. One is the long multipath delay time covering tens to hundreds of 

symbols and the other is temporal variation of the acoustic channel at a time scale on 

the order of communication packet length. The specifics are environment dependent. 

Consequently the performance is not uniform and its prediction capability has so far 

eluded the community. The channel impulse response function has been commonly 

used as an indicator for the channel effect on communications. In general, for phase 

coherent acoustic communications, the channel equalizer performance will degrade if 

there are many multipath arrivals that are unstable, i.e., fluctuating rapidly with time. 

In the following, we will introduce a metrics, SMR, which can reflect the quality 

of channel. 
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The SMR introduced by Zielinski et al. [18] is a convenient measure for 

evaluating the communication link quality of the channel. Corresponding to the 

impulse response function of the channel, every delayed version of the transmitted 

symbol will corrupt the received signal. This is known as ISI. The corruption is 

proportional to the ratio of the delay to the symbol period. Two parameters are formed: 

the signal strength S and the multipath strength M. The estimation of S and M allows 

us to define a signal-to-corruptive multipath ratio, SMR, which is used in a similar 

manner to the signal-to-noise ratio in a noise-limited channel. In the formula form, the 

SMR of baseband signal is defined as: 

SMR � 5S55M5 � 5S�4�5� 5S45 ) 5S�4�5�4'> �b 5��4�5� 5�45 ) 5��4�5�4'>  

Where�5S�4�5 denote the amplitude of direct path signal, and 5��4�5 denote the 

amplitude of the tap of the direct path in channel impulse response, and an explanatory 

graph is shown in Fig.4-5 

When the signal-to-multipath ratio (SMR) >1, it can be used as a measure of 

system robustness against ambient noise and interfering signals. Note that even for 

SMR < 1 the channel can still be used for transmission, but with a certain probability 

of error. This error performance can be improved by using suitable error correcting 

coding. 
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Figure 4-5 channel impulse response and the relation between direct path and 

multipath for ASIAEX –day 126-6:16:37 (channel 16), and the CIR 

correspond to SMR=1.7308. 

 

And now we will compare the difference of SMR in different signal receiving 

time and different hydrophone receiving depth. Figure 4-6 shows the SMR 

measurement for different receiver depth, and it’s obviously that the SMR 

monotonically increase with the receiving depth from channel 10 to channel 16, but for 

those channel near the surface , say, channel 1 to channel 10 , the SMR is relatively 

stable. Figure 4-7 shows some exactly impulse response of channels appeared in 

Figure 4-6. Low SMR sometimes indicate that signal has more chance to be interfered 

by delay spread or we can probably say that lower SMR relate to more severe signal 
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fading. 

 
Figure 4-6 SMR of different channels (with different hydrophone depth) for 

ASIAEX-day126-6:15:42 

 

channel 15                           channel 13 

 

channel 8                          channel 2 

 

Figure 4-7 channel 15, 13, 8, 2 impulse response by pulse compression  
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Figure 4-8 and Figure 4-9 show the SMR of channels with different receiving 

time, it can be easily observed that even the receiver didn’t suffer from the interference 

of internal-wave, for instance period of time 3 and 4, the signal must have the chance 

to confront severe ISI. 

 

 

Time1: day 126-6:15:17 to 6:22:34 (the time of above sections aren’t in the same 

scale)  

Time2: day 127-4:15:28 to 4:52:41 

Time3: day 127-5:15:36 to 6:19:56 

Time4: day 127-6:45:19 to day 128-5:22:45 (rough trend of SMR in this period)   

Time5: day 128-5:45:19 to 5:50:26 

Time6:day 128- 9:45:33 to 11:46:12 (internal wave approach the receiver) 

Time7:day 128-12:45:22 to 12:51:00 (internal wave reach the receivers) 

 

Figure 4-8 SMR for different receiving time (channel 16) 
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Since we talked a lot about the SMR as an index for channel characteristic, we 

based on ASIAEX data showing that SMR is an index for fading condition. When 

SMR <<1, the fading is close to Rayleigh fading, which makes received signal 

severely attenuated together with large phase variation(close to uniform distribution). 

When SMR >>1, the fading is Rice fading and even closer to AWGN channel. Based 

on the ASIAEX data, we can see that when internal wave approaching, SMR become 

smaller and hence more severely faded. 

 

 

day127-4:18:55                        day128-5:16:23 

 

day128-9:45:48                 day128-12:50:49 

 

Figure 4-9 Instantaneous channel impulse response by pulse compression 
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4.3 Performance & Results 

 

The acoustic signals received from each of the transmissions were processed to 

yield estimates of the time-varying channel impulse response, and scattering function 

of the acoustic channel. The received signals for the maximum length sequence 

(m-sequence) transmissions were demodulated, receiving filtered, and then sampled to 

baseband sequence. The channel impulse response was estimated by pulse compression 

as the real acoustic CIR, and tracked by RLS as the experiment acoustic CIR. The 

channel scattering function was estimated by matched filtering the received baseband 

signal with a sequence consisting of frequency shifted versions of the transmitted 

511point m-seq. 

Let’s start from case1 mentioned in section 4.1, Figure 4-10 shows the value of 

SMR at 6:15:17 of experiment day 126, the horizontal axis is channel index from 1 to 

16. We can observe that SMR increases when λ increases from channel 11 to channel 

16, which are farther from surface than channel 1 to channel 10 are. 

Figure 4-11 shows the snapshot of CIR of channel from 1 to 16, the CIR is 

estimated by pulse compression, and Figure 4-12 shows the scattering function of all 

channels, which can reflect the channel fluctuation. 
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Fig. 4-10 SMR of channel 1~16 (day 126 - 6:15:17) 

 

 

 

 

 

 

 

 

 

 

Fig. 4-11 CIR of channel 1~16 (day 126 - 6:15:17) 
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Fig. 4-12 scattering function of channel 1~16 (day 126 - 6:15:17) 

 

Fig. 4-13, Fig. 4-14, and Fig. 4-15 show the performance of forgetting factor 

prediction, compared together with the experiment value, and the prediction value. The 

experiment value can be obtained by multi-parameter trial, expressed as: 

λnop � ��g �m��
λ

����m�����%c∞
E(d-E ) -. E��    d6 

hk is calculated by pulse compression, -. E� is obtained by RLS. 

And the result like the Figure 3-1 shows, it has a minimum value. 

The prediction value can be obtained by the proposed method discussed in section 

3. The statistic, M, discussed in section 3.1, first set to 10 to predict the optimal 
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forgetting factor, and the result is shown in Fig. 4-13. It’s obvious that the prediction 

value is very close to the experiment value at channel 10 to channel 16. It seems that 

when the channel is relatively stable for the receivers far away from the surface, the 

prediction needn’t too much statistic. 

 

Fig. 4-13 performance of optimal forgetting factor prediction(M=10) 

(day 126 - 6:15:17) 

 

Fig. 4-14 shows the performance result of M=20, and we can observe that the 

prediction accuracy of channel 1 to channel 9 increase when the statistic increase to 20. 

It can be explained that the severe fading channel need more statistic to capture the 

channel characteristic. 

0 2 4 6 8 10 12 14 16
0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

λ
o
p
t

channel

 

 

experiment

prediction

CASE 1 



 

63 

 

 
Fig. 4-14 performance of optimal forgetting factor prediction (M=20)  

(day 126 - 6:15:17) 

 

Fig. 4-15 shows the performance result of M=30, and we can observe that the 

improvement of prediction accuracy is not very significant, and for some channels, for 

instance channel 14, the accuracy is growing worse. So in the following performance 

comparison, the statistic, M, is set to 20. 

Fig. 4-16 shows the channel estimation mean square error for 100 iterations, and 

can be expressed as:  

� � E(d-E ) -. E���d6 

It shows that the channel estimation MSE of the prediction forgetting factor very 
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approach the minimum channel estimation MSE. 

 

Fig. 4-15 performance of optimal forgetting factor prediction(M=30) 

(day 126 - 6:15:17) 

 
Fig. 4-16 channel estimation error  (day 126 - 6:15:17) 
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Here is another experiment result, which is for case 2, experiment day 128 at 

9:46:53 

 
Fig. 4-17 SMR of channel 1~16 (day 128-9:46:53) 

 

 

 

 

 

 

 

 

 

 

Fig. 4-18 CIR of channel 1~16 (day 128-9:46:53) 
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Fig. 4-19 scattering function of channel 1~16 (day 128-9:46:53) 

Observe the scattering function of channel 3, 4, and 9 in Fig. 4-19, and compare 

with the performance of optimal forgetting factor prediction of these three channels in 

Fig. 4-20. It was evident that the prediction accuracy is greatly related to the channel 

fluctuation. The cause of this fluctuation must be internal wave or undulation of the 

surface. And Comparing Figure 4-16 and Figure 4-21, channel estimation error is 

growing up for some channels, this phenomena can be impute to the internal wave 

interfere with the receivers. 
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Fig. 4-20 performance of optimal forgetting factor prediction (M=20) 

 

Fig. 4-21 channel estimation error (day 128-9:46:53) 
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And the experiment result of last case shown in Fig. 4-22 to Fig. 4-26, it’s for case 

3, and the experiment day is day-128 at 12:46:03. 

 

Fig. 4-22 SMR of channel 1~16 (day 128-12:46:03) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-23 CIR of channel 1~16 (day 128-12:46:03) 
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Fig. 4-24 scattering function of channel 1~16 (day 128-12:46:03) 

 

Fig. 4-25 performance of optimal forgetting factor prediction (M=20) 
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Fig. 4-26 channel estimation error (day 128-12:46:03) 

 

Observe the estimation result of forgetting value in the severe time-varying 

channel, say, near the surface or suffered from interval-wave. The comparison is shown 

in Fig.4-27. It shows that the value is more lager than the value of calm channel. 

Since we talk about more severe fading, much lower value of forgetting factor, 

but the result is negative, now consider with the channel dimension. The effective 

averaging window length of the RLS algorithms is 1/(1-λ). In general, the averaging 

window length should be proportional to the channel dimension (a rule of thumb value 
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1) Fading rate: Faster time varying channel imply smaller λ value. 

2) Channel dimension: Larger dimension imply large λ value. 

Compare these three cases as shown in Fig.4-27 and Fig.4-28, it seems that the 

channels near the surface are similar to the internal wave channels, smaller forgetting 

factor, lower SMR, faster channel fluctuation, and lager Doppler spread etc. But the 

channel estimation error is very huge in case 3, even with the optimal forgetting factor. 

It indicates that the RLS algorithms can’t fully follow with the fluctuation of internal 

wave channel.  

 

Fig.4-27 optimal forgetting factor comparison of these three cases 
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Fig.4-28 minimum channel estimation MSE comparison of these three cases 
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Chapter5 Conclusion 

1. In the experiment result, we can observe that the proposed Forgetting Factor 

estimation is effective, even for severe fading channel, which is near the surface 

or with internal-wave interference. 

2. It’s obvious that the value of optimal Forgetting Factor is highly correlated to the 

channel fading rate and SMR. 

3. Faster time varying channel imply smaller FF value, and lower SMR means lager 

delay-spread, it may bound the FF value in order to maintain the stability of the 

algorithms, but the tracking capacity was degraded, this phenomenon can be 

observe in those channels near the surface, or with the internal wave interference. 

4. The proposed approximate optimal forgetting factor estimation confirms that the 

channel estimator maintain the minimum channel estimation MSE by using the 

estimated FF value in the data receiving period. 
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