Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93281
Title: 基於個人化圖譜增強大型語言模型於主動式資訊召回之研究
Personalized Graph-Empowered Large Language Model with Correction for Proactive Information Recall
Authors: 張家誠
Chia-Cheng Chang
Advisor: 陳信希
Hsin-Hsi Chen
Keyword: 生活日誌,主動資訊召回,大型語言模型,個人知識圖譜,答案精煉,
Lifelogging,Proactive Information Recall,Large Language Model,Personal Knowledge Graph,Answer Refinement,
Publication Year : 2024
Degree: 碩士
Abstract: 在日常生活中,人們常會碰到需要回憶過往生活的時刻。然而人們不可能記得每一個細節,因此提供一個可以主動地去提醒人們是否有細節被遺忘或錯置的系統便相當重要。在此研究中,我們著重於兩個目標:如何透過大型語言模型來進行主動式的資訊召回和如何將個人化的知識圖譜運用於提升原始模型的能力。
我們在架構中導入了一個用於修正原始答案的模組,此模組會分析來自於知識圖譜模組的資訊,藉此來改善原始模型預測的結果。在實驗結果中表明,我們的架構不僅能夠提升ChatGPT和Llama3等大型語言模型的性能,也能運用在不同的SOTA模型。
整體來說,我們的研究提出了一個新架構,不僅可以用於加強原始模型的準確率,且在彈性高的特性下,我們可以替換不同的原始模型及搜索知識圖譜的方式,讓模型的成效有更進一步的提升。這個架構不僅在主動式資訊召回這個任務下取得不錯的結果,同時也為其他領域的研究提供了如何利用知識圖譜來運用大型語言模型的方法。
Several studies have focused on developing information recall systems to help individuals remember their personal life experiences. This is due to the fact that people cannot recall every detail of their life events and may sometimes confuse different events. Providing a system that can proactively remind individuals of forgotten or confused details is therefore essential. Recent advancements in large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation. Many works are also exploring how to integrate LLMs into personalized applications. This thesis focuses on two objectives: (1) leveraging LLMs for proactive information recall and (2) introducing personal knowledge graphs to augment the capabilities of detecting information recall needs by refining the decision. We construct a framework that incorporates a refinement module to consult structure information from personal knowledge graph, thereby achieving precise recall support. This framework offers high flexibility, allowing for the replacement of different base models and modification of fact retrieval methods to further improve robustness. Experimental results show that our framework more effectively aids in detecting forgotten events, achieving the goal of helping users recall past experiences.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93281
DOI: 10.6342/NTU202402006
Fulltext Rights: 未授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
1.69 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved