Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93205
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝馬利歐zh_TW
dc.contributor.advisorMario Hofmannen
dc.contributor.author楊維弘zh_TW
dc.contributor.authorWei-Hung Yangen
dc.date.accessioned2024-07-23T16:17:08Z-
dc.date.available2024-07-24-
dc.date.copyright2024-07-23-
dc.date.issued2024-
dc.date.submitted2024-02-17-
dc.identifier.citation[1] C. V. Raman and K. S. Krishnan, “The negative absorption of radiation,” Nature, vol. 122, no. 3062, pp. 12–13, 1928. x, 40
[2] C. Chun-Lin, “Preparation and thermoelectric properties of porous graphene tin diselenide heterostructures,” Master’s thesis, Feng Chia University, Taiwan, 2022. xiii, 6, 83, 85, 86
[3] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-Layer MoS2 Phototransistors,” ACS Nano, vol. 6, no. 1, pp. 74–80, 2012, pMID: 22165908. [Online]. Available: https://doi.org/10.1021/nn2024557 xiii, 97
[4] Lopez-Sanchez, “Ultrasensitive photodetectors based on monolayer MoS2.” Nature Nanotech, vol. 8, pp. 497–501, 2013. xiii, 97
[5] K. J. Hong X, “Ultrafast charge transfer in atomically thin MoS/WSheterostructures.” Nat Nanotechnol., vol. 9, pp. 682–686, 2014. xiii, 97
[6] J. Xia, X. Huang, L.-Z. Liu, M. Wang, L. Wang, B. Huang, D.-D. Zhu, J.-J. Li, C.-Z. Gu, and X.-M. Meng, “CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors,” Nanoscale, vol. 6, pp. 8949–8955, 2014. [Online]. Available: http://dx.doi.org/10.1039/C4NR02311K xiii, 97
[7] L. Y. Hu PingAn, Wang, “Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates,” Nano Letters, vol. 13, no. 4, pp. 1649–1654, 2013, pMID: 23465066. [Online]. Available: https://doi.org/10.1021/nl400107k xiii, 97
[8] S. R. Tamalampudi, Y.-Y. Lu, R. K. U., R. Sankar, C.-D. Liao, K. M. B., C.-H. Cheng, F. C. Chou, and Y.-T. Chen, “High Performance and Bendable Few-Layered InSe Photodetectors with Broad Spectral Response,” Nano Letters, vol. 14, no. 5, pp. 2800–2806, 2014, pMID: 24742243. [Online]. Available: https://doi.org/10.1021/nl500817g xiii, 97
[9] X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors,” Advanced Materials, vol. 27, no. 48, pp. 8035–8041, 2015. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201503873 xiii, 2, 6, 30, 97, 99
[10] K. K. N. Emma P. Mukhokosi, Saluru B. Krupanidhi, “Band Gap Engineering of Hexagonal SnSe2 Nanostructured Thin Films for Infra-Red Photodetection,” Scientific Reports, vol. 7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-15519-x xiii, xv, 3, 5, 97, 99
[11] E. P. Mukhokosi, B. Roul, S. B. Krupanidhi, and K. K. Nanda, “Toward a Fast and Highly Responsive SnSe2-Based Photodiode by Exploiting the Mobility of the Counter Semiconductor,” ACS Applied Materials & Interfaces, vol. 11, no. 6, pp. 6184–6194, 2019. [Online]. Available: https://doi.org/10.1021/acsami.8b16635 xiii, 97, 99
[12] P. Yu, X. Yu, W. Lu, H. Lin, L. Sun, K. Du, F. Liu, W. Fu, Q. Zeng, Z. Shen, C. Jin, Q. J. Wang, and Z. Liu, “Fast Photoresponse from 1T Tin Diselenide Atomic Layers,” Advanced Functional Materials,vol. 26, no. 1, pp. 137–145, 2016. [Online]. Available: https: //onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201503789 xiii, 97, 99
[13] J. Wu, Z. Hu, Z. Jin, S. Lei, H. Guo, K. Chatterjee, J. Zhang, Y. Yang, B. Li, Y. Liu, J. Lai, R. Vajtai, B. Yakobson, M. Tang, J. Lou, and P. M. Ajayan, “Spiral Growth of SnSe2 Crystals by Chemical Vapor Deposition,” Advanced Materials Interfaces, vol. 3, no. 16, p. 1600383, 2016. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/admi.201600383 xiii, 97, 99
[14] M. Kumar, S. Rani, A. Pandey, K. S. Gour, S. Husale, P. Singh, and V. Singh, “Highly responsive, low-bias operated SnSe2 nanostructured thin film for trap-assisted NIR photodetector,” Journal of Alloys and Compounds, vol. 838, p. 155384, 2020. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0925838820317473 xiii, 97, 99
[15] E. P. Mukhokosi, G. V. Manohar, T. Nagao, S. B. Krupanidhi, and K. K. Nanda, “Device architecture for visible and near-infrared photodetectors based on two-dimensional snse2 and mos2: A review,”Micromachines, vol. 11, no. 8, 2020. [Online]. Available: https: //www.mdpi.com/2072-666X/11/8/750 xv, 5, 9, 13, 15
[16] R. Mas-Ballest´e, C. G´omez-Navarro, J. G´omez-Herrero, and F. Zamora, “2D materials: to graphene and beyond,” Nanoscale, vol. 3, pp. 20–30, 2011. [Online]. Available: http://dx.doi.org/10.1039/C0NR00323A 1
[17] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,”Proceedings of the National Academy of Sciences, vol. 102, no. 30, pp.10 451–10 453, 2005. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.0502848102 1
[18] M. Kumar, S. Rani, Y. Singh, K. S. Gour, and V. N. Singh, “Tin-selenide as a futuristic material: properties and applications,” RSC Adv., vol. 11, pp. 6477–6503, 2021. [Online]. Available: http://dx.doi.org/10.1039/D0RA09807H1
[19] M. Yi and Z. Shen, “A review on mechanical exfoliation for the scalable production of graphene,” J. Mater. Chem. A, vol. 3, pp. 11 700–11 715, 2015. [Online]. Available: http://dx.doi.org/10.1039/C5TA00252D 1
[20] B. Adilbekova, Y. Lin, E. Yengel, H. Faber, G. Harrison, Y. Firdaus, A. El-Labban, D. H. Anjum, V. Tung, and T. D. Anthopoulos, “Liquid phase exfoliation of MoS2 and WS2 in aqueous ammonia and their application in highly efficient organic solar cells,” J. Mater. Chem. C, vol. 8, pp. 5259–5264, 2020. [Online]. Available: http://dx.doi.org/10.1039/D0TC00659A 1
[21] C. Huo, Z. Yan, X. Song, and H. Zeng, “2D materials via liquid exfoliation: a review on fabrication and applications,” Science Bulletin, vol. 60, no. 23, pp. 1994–2008, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2095927316302535 1, 28
[22] G. Olimpio, D. Farias, C.-N. Kuo, L. Ottaviano, C. S. Lue, D. W. Boukhvalov, and A. Politano, “Tin Diselenide (SnSe2) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors,” Materials, vol. 15, no. 3, 2022. [Online]. Available:https://www.mdpi.com/1996-1944/15/3/1154 2
[23] Z. Jin, X. Li, J. T. Mullen, and K. W. Kim, “Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides,”Phys. Rev. B, vol. 90, p. 045422, Jul 2014. [Online]. Available:https://link.aps.org/doi/10.1103/PhysRevB.90.045422 2
[24] D. Wu, C. Jia, F. Shi, L. Zeng, P. Lin, L. Dong, Z. Shi, Y. Tian, X. Li, and J. Jie, “Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing,” J. Mater. Chem. A, vol. 8, pp. 3632–3642, 2020. [Online]. Available: http://dx.doi.org/10.1039/C9TA13611H 2
[25] L. Shi, Q. Li, Y. Ouyang, and J. Wang, “Effect of illumination and se vacancies on fast oxidation of ultrathin gallium selenide,”Nanoscale, vol. 10, pp. 12 180–12 186, 2018. [Online]. Available: http://dx.doi.org/10.1039/C8NR01533C 2
[26] C. K. Zankat, P. M. Pataniya, A. Patel, S. A. Bhakhar, S. Narayan, G. Solanki, K. Patel, V. Pathak, C. Sumesh, and P. Jha, “Selfpowered photodetector based on SnSe2/MoSe2 heterostructure,” Materials Today Energy, vol. 18, p. 100550, 2020. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S2468606920301696 2
[27] J. Choi, J. Jin, I. G. Jung, J. M. Kim, H. J. Kim, and S. U. Son, “SnSe2 nanoplate–graphene composites as anode materials for lithium ion batteries,”Chem. Commun., vol. 47, pp. 5241–5243, 2011. [Online]. Available:http://dx.doi.org/10.1039/C1CC10317B 2
[28] R. Y. Wang, M. A. Caldwell, R. G. D. Jeyasingh, S. Aloni, R. M. Shelby, H.-S. P. Wong, and D. J. Milliron, “Electronic and optical switching of solution-phase deposited SnSe2 phase change memory material,” Journal of Applied Physics, vol. 109, no. 11, p. 113506, 2011. [Online]. Available: https://doi.org/10.1063/1.3587187 2
[29] K. Saritha, A. Suryanarayana Reddy, and K. Ramakrishna Reddy, “Investigation on Optical Properties of SnSe2 Thin Films Synthesized by Two – Stage Process,” Materials Today: Proceedings, vol. 4, no. 14, pp. 12 512–12 517, 2017, 2nd International Conference on Solar Energy Photovoltaic, 17th–19th December, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S221478531732059X 2
[30] F. Zhang, C. Xia, J. Zhu, B. Ahmed, H. Liang, D. B. Velusamy, U. Schwingenschl¨ogl, and H. N. Alshareef, “SnSe2 2D Anodes for Advanced Sodium Ion Batteries,” Advanced Energy Materials, vol. 6, no. 22, p. 1601188, 2016. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201601188 3
[31] Y. Zhang, Y. Shi, M. Wu, K. Zhang, B. Man, and M. Liu, “Synthesis and Surface-Enhanced Raman Scattering of Ultrathin SnSe2 Nanoflakes by Chemical Vapor Deposition,” Nanomaterials, vol. 8, no. 7, 2018. [Online]. Available: https://www.mdpi.com/2079-4991/8/7/515 3, 74, 77
[32] A. Shafique, A. Samad, and Y.-H. Shin, “Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: a first principles study,” Phys. Chem. Chem. Phys., vol. 19, pp. 20 677–20 683, 2017. [Online]. Available: http://dx.doi.org/10.1039/C7CP03748A 4
[33] Y.-Y. Wang, D.-R. Chen, J.-K. Wu, T.-H. Wang, C. Chuang, S.-Y. Huang, W.-P. Hsieh, M. Hofmann, Y.-H. Chang, and Y.-P. Hsieh, “Two-dimensional mechano-thermoelectric heterojunctions for self-powered strain sensors,”Nano Letters, vol. 21, no. 16, pp. 6990–6997, 2021, pMID: 34387505. [Online]. Available: https://doi.org/10.1021/acs.nanolett.1c02331 5, 6
[34] Z. Wang and F. Pang, “A facile way to control phase of tin selenide flakes by chemical vapor deposition,” Chemical Physics Letters, vol. 702, pp. 90–95, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0009261418303610 6, 30
[35] B. An, Y. Ma, G. Zhang, C. You, and Y. Zhang, “Controlled synthesis of few-layer SnSe2 by chemical vapor deposition,” RSC Adv., vol. 10, pp. 42 157–42 163, 2020. [Online]. Available: http://dx.doi.org/10.1039/D0RA08360G6, 30, 81
[36] Y.-Y.Wang, “Two-Dimensional Mechano-Thermoelectric Heterojunctions for Self-Powered Sensors,” Master’s thesis, National Taiwan University, Taiwan, 2021. 6
[37] T.-H.Wang, “Epitaxially grown high quality tin diselenide on graphene at low temperature and its thickness dependent thermoelectric properties,” Master’s thesis, Chung Yuan Christian University, Taiwan, 2021. 7
[38] G. Konstantatos, “ Current status and technological prospect of photodetectors based on two-dimensional materials. ,” Nat Commun, vol. 9, p. 5266, 2018. 9
[39] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der waals semiconductors,” Chem. Soc. Rev., vol. 44, pp. 3691–3718, 2015. [Online]. Available: http://dx.doi.org/10.1039/C5CS00106D 9, 12
[40] C. L. Novoselov K., Fal ko V., “A roadmap for graphene.” Nature, vol. 490, pp. 192–200, 2012. [Online]. Available: https://doi.org/10.1038/nature11458 9
[41] M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Applied Physics Letters, vol. 103, no. 2, 07 2013, 021113. [Online]. Available:https://doi.org/10.1063/1.4813621 9
[42] N. S. Tian H., Chin M.L., “Optoelectronic devices based on two-dimensional transition metal dichalcogenides. ,” Nano Res., vol. 9, p. 1543–1560, 2016. [Online]. Available: https://doi.org/10.1007/s12274-016-1034-9 10
[43] F. Wang, Z. Wang, L. Yin, R. Cheng, J. Wang, Y. Wen, T. A. Shifa, F. Wang, Y. Zhang, X. Zhan, and J. He, “2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection,”Chem. Soc. Rev., vol. 47, pp. 6296–6341, 2018. [Online]. Available: http://dx.doi.org/10.1039/C8CS00255J 12
[44] P. Yu, X. Yu, W. Lu, H. Lin, L. Sun, K. Du, F. Liu, W. Fu, Q. Zeng, Z. Shen, C. Jin, Q. J. Wang, and Z. Liu, “Fast Photoresponse from 1T Tin Diselenide Atomic Layers,” Advanced Functional Materials, vol. 26, no. 1, pp. 137–145, 2016. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201503789 15
[45] M. Kumar, S. Rani, A. Pandey, K. S. Gour, S. Husale, P. Singh, and V. Singh, “Highly responsive, low-bias operated SnSe2 nanostructured thin film for trap-assisted NIR photodetector,” Journal of Alloys and Compounds, vol. 838, p. 155384, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838820317473 16
[46] M. Hempel, D. Nezich, J. Kong, and M. Hofmann, “A Novel Class of Strain Gauges Based on Layered Percolative Films of 2D Materials,” Nano Letters, vol. 12, no. 11, pp. 5714–5718, 2012, pMID: 23045955. [Online]. Available:https://doi.org/10.1021/nl302959a 23
[47] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. [Online].Available:https://www.science.org/doi/abs/10.1126/science.1102896 28
[48] Z. Cai, B. Liu, X. Zou, and H.-M. Cheng, “Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures,”Chemical Reviews, vol. 118, no. 13, pp. 6091–6133, 2018, pMID: 29384374. [Online]. Available: https://doi.org/10.1021/acs.chemrev.7b00536 28
[49] Y. Huang, K. Xu, Z. Wang, T. A. Shifa, Q. Wang, F. Wang, C. Jiang, and J. He, “Designing the shape evolution of snse2 nanosheets and their optoelectronic properties,” Nanoscale, vol. 7, pp. 17 375–17 380, 2015. [Online]. Available: http://dx.doi.org/10.1039/C5NR05989E 29
[50] Y.-P. Hsieh, M. Hofmann, and J. Kong, “Promoter-assisted chemical vapor deposition of graphene,” Carbon, vol. 67, pp. 417–423, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0008622313009603 29
[51] L. Huang, Y. Yu, C. Li, and L. Cao, “Substrate Mediation in Vapor Deposition Growth of Layered Chalcogenide Nanoplates: A Case Study of SnSe2,” The Journal of Physical Chemistry C, vol. 117, no. 12, pp.6469–6475, 2013. [Online]. Available: https://doi.org/10.1021/jp400274a 30
[52] D. Colombara, S. Delsante, G. Borzone, J. Mitchels, K. Molloy, L. Thomas, B. Mendis, C. Cummings, F. Marken, and L. Peter, “Crystal growth of Cu2ZnSnS4 solar cell absorber by chemical vapor transport with I2,”Journal of Crystal Growth, vol. 364, pp. 101–110, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022024812008342 30
[53] R. Nitsche, H. B¨olsterli, and M. Lichtensteiger, “Crystal growth by chemical transport reactions—I: Binary, ternary, and mixed-crystal chalcogenides,” Journal of Physics and Chemistry of Solids, vol. 21, no. 3, pp. 199–205, 1961. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0022369761900981 31
[54] J. D. Jackson, Classical Electrodynamics, 3rd ed. Wiley & Sons Ltd, 1998. 37
[55] Harris and Bertolucci, Symmetry and Spectroscopy. Dover Publications, 1989. 37
[56] D. A. Long, The Raman Effect. Wiley & Sons Ltd, 2002. 40
[57] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,”Phys. Rev. Lett., vol. 56, pp. 930–933, Mar 1986. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.56.930 43
[58] M. Dunlap and D. J. E. Adaskaveg, Introduction to the Scanning Electron Microscope, 1997. 46
[59] J. I. Pankove, Optical Processes in Semiconductors. Courier Corporation, 1971. 48
[60] J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” physica status solidi (b), vol. 15, no. 2, pp. 627–637, 1966. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.19660150224 50
[61] E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, vol. 22, no. 179, pp. 0903–0922, 1970. [Online]. Available: https://doi.org/10.1080/14786437008221061 50
[62] P. Makuła, M. Pacia, and W. Macyk, “How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra,” The Journal of Physical Chemistry Letters, vol. 9, no. 23, pp. 6814–6817, 2018. [Online]. Available: https://doi.org/10.1021/acs.jpclett.8b02892 50
[63] E. Ruiz-Trejo, “The optical band gap of Gd-doped CeO2 thin films as function of temperature and composition,” Journal of Physics and Chemistry of Solids, vol. 74, no. 4, pp. 605–610, 2013. [Online]. Available:https://www.sciencedirect.com/science/article/pii/S0022369712003800 50
[64] F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev., vol. 92, pp. 1324–1324, Dec 1953. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRev.92.1324 53
[65] J. Tauc and A. Menth, “States in the gap,” Journal of Non-Crystalline Solids, vol. 8-10, pp. 569–585, 1972, amorphous and Liquid Semiconductors. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0022309372901949 53
[66] N. Chopra, A. Mansingh, and G. Chadha, “Electrical, optical and structural properties of amorphous V2O5TeO2 blown films,” Journal of Non-Crystalline Solids, vol. 126, no. 3, pp. 194–201, 1990. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0022309390908198 53
[67] D. Souri and K. Shomalian, “Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60x) V2O5–40TeO2–xSb2O3 glasses,” Journal of Non-Crystalline Solids, vol. 355, no. 31, pp. 1597–1601, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022309309003366 54
[68] A. L. R.J. Mart´ın-Palma, “Vapor-deposition techniques,” Engineered Biomimicry, pp. 383–398, 2013. 64
[69] E. Lorchat, G. Froehlicher, and S. Berciaud, “Splitting of Interlayer Shear Modes and Photon Energy Dependent Anisotropic Raman Response in N-Layer ReSe2 and ReS2,” ACS Nano, vol. 10, no. 2, pp.2752–2760, 2016, pMID: 26820232. [Online]. Available: https://doi.org/10.1021/acsnano.5b07844 74
[70] A. N. C.D. Wagner, “NIST Standard Reference Database 20,” 2003. 77
[71] W. Dong, C. Lu, M. Luo, Y. Liu, T. Han, Y. Ge, X. Xue, Y. Zhou, and X. Xu, “Enhanced UV–Vis photodetector performance by optimizing interfacial charge transportation in the heterostructure by SnS and SnSe2,” Journal of Colloid and Interface Science, vol. 621, pp. 374–384, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S002197972200594X 77, 79
[72] S. Jin, D. Wu, W. Song, H. Hao, W. Gao, and S. Yan, “Superior acetone sensor based on hetero-interface of SnSe2/SnO2 quasi core shell nanoparticles for previewing diabetes,” Journal of Colloid and Interface Science, vol. 621, pp. 119–130, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0021979722006130 79
[73] T. J. S. J. S. S. Seung Hwae Heo, Jae Sung Son, “Fabrication of highperformance SnSe2 thermoelectric thin films with preferred crystallographic orientation.” Applied physics letters, vol. 120, 2022. 84
[74] M. Mu˜noz Rojo, J. J. Romero, D. Ramos, D.-A. Borca-Tasciuc, T. Borca- Tasciuc, and M. Mart´ın Gonzalez, “Modeling of transient thermoelectric transport in Harman method for films and nanowires,” International Journal of Thermal Sciences, vol. 89, pp. 193–202, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1290072914002981 84
[75] C. Xie, C. Mak, X. Tao, and F. Yan, “Photodetectors Based on Two-Dimensional Layered Materials Beyond Graphene,” Advanced Functional Materials, vol. 27, no. 19, p. 1603886, 2017. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201603886 96
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93205-
dc.description.abstract二維材料的領域日新月異,新興的材料與合成方法也不斷推陳出新。當中我們選擇熱電性質良好的二硒化錫作為研究對象,並且於先前研究中設計出以石墨烯催化低溫生長大面積、高品質的二硒化錫獲得極大成功。更低的生長溫度將降低生長時所需的能量消耗,以節約電能,並且有望使材料生長於低熔點的基板上。我們接續石墨烯催化的成功經驗,嘗試了以美耐皿海綿碳化形成的含氮多孔碳於低溫設置的化學氣相沉積合成法,沉積二硒化錫薄膜於熔融石英基板上。實驗結果顯示,由多孔碳催化的二硒化錫薄膜在100°C的溫度設置下有大面積及較好結晶。透過元素分析、拉曼光譜、吸收光譜及X射線光電子能譜確認了薄膜的成分為二硒化錫。而從原子力顯微鏡掃描中,我們發現催化生長出來的二硒化錫薄膜是多片單層二硒化錫結晶堆疊而成。
我們也檢驗了由此合成方式合成之二硒化錫薄膜的熱電性及在光偵測器的應用。在光偵測器應用中,由此方法合成之二硒化錫薄膜因其特殊的多層結構使其有著較低的載子遷移率,而有了很高的光響應率,這個高的光響應率優於多數的二硒化錫研究,並且是在低溫情況下的出最好的結果。
最後,由於生長出來的二硒化錫薄膜是多片單層二硒化錫結晶堆疊而成,可以預期在受到外應力導致形變時,層與層之間的距離將發生改變,進而影響電阻值,此一特性有望作為壓力應變計使用。由於壓力應變計需要使用可撓性的基板,我們將可以使用的低溫催化生長方法可以使二硒化錫薄膜生長在可撓玻璃上,並且在後續的實驗中成功證實了其電阻的可變性。由於催化生長的環境溫度較低,可以期望未來將二硒化錫薄膜生長在更加便宜且低熔點的可撓基板上,例如 : PET等塑膠基板。
zh_TW
dc.description.abstractThe field of two-dimensional materials is evolution fast and new materials and synthesis methods are constantly being introduced. Among them, we chose tin diselenide, which has good thermoelectric properties, as the research object. In the previous research, we designed a large-area, high-quality tin diselenide catalyzed by graphene at low temperatures and got great success. Lower growth temperature will reduce the energy consumption required for growth to save electricity. It also gives us the possibility to make materials grow on a low-melting point substrate. Continuing the successful experience of graphene catalysis, we tried the chemical vapor deposition synthesis method of nitrogen-riched porous carbon formed by the carbonization of melamine sponge at low temperature, and deposited tin diselenide thin film on the fused quartz substrate. The experimental results show that the tin diselenide thin film catalyzed by porous carbon has a large area and better crystallization under the temperature setting of 100oC. Through elemental analysis, Raman spectroscopy, absorption spectroscopy, and X-ray photoelectron spectroscopy, it was confirmed that the composition of the film was tin diselenide. From the scanning of the atomic force microscope, we found that the tin diselenide film grown by catalysis is stacked with multiple single-layer tin diselenide crystals.
We also examined the thermoelectric properties of the tin diselenide film synthesized by this new method and its application in photodetectors. In the application of photodetectors, the tin diselenide thin film synthesized by this method has a low carrier mobility due to its special multilayer structure and high photoresponsivity. This high photoresponse is better than most of the tin diselenide research, and it is the best result at low temperatures.
Finally, since the synthesized tin diselenide thin film is composed of stacking multiple single-layer tin diselenide crystals, when the external stress causes deformation, the distance between the layers will change and affect the resistance value. This feature may be used as a pressure strain gauge. Since the pressure strain gauge needs to use a flexible substrate, we will use the low-temperature catalytic growth method to grow the tin diselenide film on the flexible glass, and successfully confirm the variability of its resistance in subsequent experiments. Due to the low synthesis temperature of the material growth, we may make tin diselenide thin films grown on flexible substrates with cheaper and lower melting points in the future, such as plastic substrates such as PET.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:17:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-23T16:17:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract i
List of Figures ix
List of Tables xv
1 Introduction 1
1.1 Properties of Tin Diselenide . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Research Motivation . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Photodetector and Photoresponse . . . . . . . . . . . . . . . . . . 8
1.3.1 Photoconductivity . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Figures of Merit for Photodetectors . . . . . . . . . . . . 12
1.3.3 Photodetectors Based on SnSe2 . . . . . . . . . . . . . . 15
1.4 Thermoelectric Material . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Seebeck Effect . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Peltier Effect . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Thomson Effect . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.4 Figure of Merit for Thermoelectric materials . . . . . . . 21
1.5 Strain Gauges and Gauge Factor . . . . . . . . . . . . . . . . . . 23
1.5.1 Strain Gauges . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.2 Gauge Factor . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Synthesizing Experiments 25
2.1 Production of Porous Carbon Promoter . . . . . . . . . . . . . . . 25
2.2 Synethesis Tin Diselenide by CVD . . . . . . . . . . . . . . . . . 28
2.2.1 Brief Introduction of Chemical Vapor Deposition . . . . . 28
2.2.2 Synthesis Tin Diselenide Experiment . . . . . . . . . . . 30
3 Apparatus And Analyses 35
3.1 Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.1 Scattering And Raman Effect . . . . . . . . . . . . . . . 36
3.1.2 Raman Spectrometer . . . . . . . . . . . . . . . . . . . . 40
3.2 Surface Characteristics Analysis . . . . . . . . . . . . . . . . . . 43
3.2.1 Atomic Force Microscope . . . . . . . . . . . . . . . . . 43
3.2.2 Scanning Electron Microscope . . . . . . . . . . . . . . . 45
3.3 Optical Properties Examination . . . . . . . . . . . . . . . . . . . 47
3.3.1 Absorption Spectroscopy . . . . . . . . . . . . . . . . . . 47
3.3.2 Tauc Plot . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Urbach Energy . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 I-V Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.1 Two-Probe Method . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 The van der Pauw Method . . . . . . . . . . . . . . . . . 57
3.5 Other Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.1 Photo Lithography System . . . . . . . . . . . . . . . . . 63
3.5.2 Thermal evaporator . . . . . . . . . . . . . . . . . . . . . 64
4 Result and Discussion 67
4.1 Characterizations of Material . . . . . . . . . . . . . . . . . . . . 67
4.1.1 Absorption Spectra Mapping . . . . . . . . . . . . . . . . 68
4.1.2 Raman Spectra Mpping . . . . . . . . . . . . . . . . . . . 72
4.1.3 Stoichiometric Composition . . . . . . . . . . . . . . . . 75
4.1.4 AFM Characterization . . . . . . . . . . . . . . . . . . . 79
4.1.5 SAED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Thermoelectric Properties of The Promoter Assisted SnSe2 Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2 I-V Measurements . . . . . . . . . . . . . . . . . . . . . 86
4.2.3 Photoresponse and Figures of Merit . . . . . . . . . . . . 92
4.2.4 Out looks - Applications in Strain Gauges . . . . . . . . . 100
5 Conclusion 103
Reference 105
-
dc.language.isoen-
dc.title催化劑輔助低溫化學氣相沉積合成二硒化錫之研究zh_TW
dc.titleLow-Temperature CVD Synthesis of Tin Diselenide with A Promoteren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor謝雅萍zh_TW
dc.contributor.coadvisorYa-Ping Hsiehen
dc.contributor.oralexamcommittee陳永芳;丁初稷zh_TW
dc.contributor.oralexamcommitteeYang-Fang Chen;Chu-Chi Tingen
dc.subject.keyword二硒化錫,低溫催化生長,多孔碳,光偵測器,光反應,熱電材料,壓力應變器,zh_TW
dc.subject.keywordTin Diselenide,Low Temperature-Catalytic Synthesis,Porous Carbon,Photo Detector,Photoresponse,Thermoelectric Material,Strain Gauge,en
dc.relation.page116-
dc.identifier.doi10.6342/NTU202301860-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-02-17-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf13.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved