Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93186
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊國鑫zh_TW
dc.contributor.advisorKuo-Hsin Yangen
dc.contributor.author吳文嵃zh_TW
dc.contributor.authorWEN-YAN WUen
dc.date.accessioned2024-07-23T16:11:32Z-
dc.date.available2024-07-24-
dc.date.copyright2024-07-23-
dc.date.issued2024-
dc.date.submitted2024-07-19-
dc.identifier.citation[1] 鄭卓仁(2010),「地工泡棉運用於落石防護之模擬測試研究」,國立臺北科技大學土木與防災研究所碩士學位論文
[2] 皮盛榮(2015),「地下指揮所近場爆炸實驗與數值模擬分析」,國防大學理工學院國防科學研究所博士學位論文
[3] 曾世傑(2022),「以試驗與數值分析探討地工織物加勁土抵抗爆壓力之研究」,國立台灣科技大學營建工程系博士學位論文
[4] U.S.D.A. (United States Department of the Army) (1998). Army Technical Manual No. TM 5-855-1: Design and Analysis of Hardened Structures to Convention Weapon Effects. Headquarters Departments of the Army, the Air Force, the Navy and the Defense Special Weapons Agency, Washington, DC, USA.
[5] Wang, J. (2001). Simulation of landmine explosion using LS-DYNA3D software: benchmark work of simulation of explosion in soil and air. Australia: DSTO Aeronautical and Maritime Research Laboratory.
[6] USDA (2008). Unified Facilities Criteria No. UFC 3-340-02: Structures to Resist the Effects of Accidental Explosions. Department of the Army and Defense Special Weapons Agency, Washington, DC, USA.
[7] ASTM D6817 (2021). Standard Specification for Rigid Cellular Polystyrene Geofoam . ASTM International. ASTM International, West Conshohocken, PA, USA
[8] Woods, R. D. (1968). Screening of surface wave in soils. Journal of the soil mechanics and foundations division, 94(4), 951-979.
[9] Horvath, J. S. (1997). The compressible inclusion function of EPS geofoam. Geotextiles and Geomembranes, 15(1-3), 77-120.
[10] Reid, J. D., Coon, B. A., Lewis, B. A., Sutherland, S. H., & Murray, Y. D. (2004). Evaluation of LS-DYNA soil material model 147 (No. FHWA-HRT-04-094). United States. Federal Highway Administration.
[11] Lee, W. Y. (2006). Numerical modeling of blast-induced liquefaction. Brigham Young University.
[12] Wang, Z. L., Li, Y. C., & Wang, J. G. (2006). Numerical analysis of attenuation effect of EPS geofoam on stress-waves in civil defense engineering. Geotextiles and Geomembranes, 24(5), 265-273.
[13] Zarnani, S., & Bathurst, R. J. (2008). Numerical modeling of EPS seismic buffer shaking table tests. Geotextiles and Geomembranes, 26(5), 371-383.
[14] Murillo, C., Thorel, L., & Caicedo, B. (2009). Ground vibration isolation with geofoam barriers: Centrifuge modeling. Geotextiles and Geomembranes, 27(6), 423-434.
[15] Wang, J. G., Sun, W., & Anand, S. (2009). Numerical investigation on active isolation of ground shock by soft porous layers. Journal of sound and vibration, 321(3-5), 492-509.
[16] Jayasinghe, L. B., Thambiratnam, D. P., Perera, N., & Jayasooriya, J. H. A. R. (2013). Computer simulation of underground blast response of pile in saturated soil. Computers & Structures, 120, 86-95.
[17] Bartlett, S. F., Lingwall, B. N., & Vaslestad, J. (2015). Methods of protecting buried pipelines and culverts in transportation infrastructure using EPS geofoam. Geotextiles and Geomembranes, 43(5), 450-461.
[18] Garner, S., Strong, J., & Zavaliangos, A. (2015). The extrapolation of the Drucker–Prager/Cap material parameters to low and high relative densities. Powder Technology, 283, 210-226.
[19] Barsotti, M., Sammarco, E., & Stevens, D. (2016). Comparison of strategies for landmine modeling in LS-DYNA with sandy soil material model development. In Proceedings of 14th international LS-DYNA users conference, June (pp. 12-14).
[20] Busch, C. L., Aimone-Martin, C. T., & Tarefder, R. A. (2016). Experimental evaluation and finite-element simulations of explosive airblast tests on clay soils. International Journal of Geomechanics, 16(4), 04015097.
[21] Dubec, B., & Stonis, P. (2018). Material model parameters identification of blast environment. Security & Future, 2(3), 142-145.
[22] Linforth, S., Tran, P., Rupasinghe, M., Nguyen, N., Ngo, T., Saleh, M., ... & Shanmugam, D. (2019). Unsaturated soil blast: flying plate experiment and numerical investigations. International Journal of Impact Engineering, 125, 212-228.
[23] Fang, C., Yosef, T. Y., Linzell, D. G., & Rasmussen, J. D. (2021). Computational modeling and dynamic response of highway bridge columns subjected to combined vehicle collision and air blast. Engineering Failure Analysis, 125, 105389.
[24] Majumder, M., & Bhattacharyya, S. (2021). An alternate arrangement of geofoam blocks and air pocket to mitigate confined blast induced vibration. International Journal of Geotechnical Engineering, 15(1), 52-65.
[25] Akyelken, F. A., & Kılıç, H. (2022). Experimental and numerical analyses of buried HDPE pipe with using EPS geofoam. KSCE Journal of Civil Engineering, 26(9), 3968-3977.
[26] Mandal, J., Goel, M. D., & Agarwal, A. K. (2022). Study of Different Materials to Mitigate Blast Energy for the Tunnel Subjected to Buried Explosion. In Composite Materials for Extreme Loading: Proceedings of the Indo-Korean workshop on Multi Functional Materials for Extreme Loading 2021 (pp. 505-518). Springer Singapore.
[27] Tseng, S. C., Yang, K. H., Tsai, Y. K., & Teng, F. C. (2022). Investigation of the blast-resistance performance of geotextile-reinforced soil. Geosynthetics International, 30(6), 584-601.
[28] Khodaparast, M., Mohamad Momeni, R., & Bayesteh, H. (2022). Numerical simulation of surface blast reduction using composite backfill. Geosynthetics International, 29(1), 66-80.
[29] Barman, R., Sarkar, A., & Bhowmik, D. (2023). Composite sand-crumb rubber and geofoam wave barrier for train vibration. Geotechnical and Geological Engineering, 1-23.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93186-
dc.description.abstract地表爆炸所產生之壓力波會對地下結構物之安全造成威脅,本研究進行一系列數值模擬以探討地工泡棉加勁土壤於爆炸荷載下之動態行為與爆震波衰減機制。本研究之數值模型可分為未加勁砂土及地工泡棉加勁砂土兩種模型,模型中以150公斤TNT炸藥於土層表面引爆,並於炸藥引爆點距地表3公尺處之土層量測模型估計之土壤壓力及垂直加速度值。比較加入地工泡棉前後之土壤壓力與垂直加速度值,可發現土壤中之尖峰爆壓值衰減60.77%、最大垂直加速度衰減83.24%。本研究經過參數敏感性研究確認地工泡棉之爆壓衰減機制主要依賴地工泡棉與周圍土壤之波阻抗差。此外,本研究針對地工泡棉之建構方法(泡棉種類、泡棉厚度與泡棉埋設深度)進行了參數研究以探討地工泡棉加勁土壤於尖峰爆壓衰減性能最佳化之設計。參數研究結果顯示,隨地工泡棉密度增加、泡棉厚度與埋設深度提升時,土壤中之尖峰爆壓將有顯著衰減,尖峰爆壓之衰減最大可達80.09%,最大垂直加速度衰減則可達到96.97%。本研究基於數值模擬研究成果,提供了地工泡棉加勁土壤受爆炸載重時之量化分析流程與設計建議,可做為未來地下結構物進行防爆性能提升或設計時之參考選項之一。zh_TW
dc.description.abstractPressure waves generated by surface explosions pose a significant threat to the safety of underground structures. This research conducted a series of numerical simulations to investigate the dynamic behavior of geofoam-reinforced soil under blast loads and the blast attenuation mechanism of geofoam-reinforced soil. The numerical models in this research are divided into two types: unreinforced and reinforced. In both models, 150 kg of TNT explosives are detonated on the surface of the soil layer. The blast pressure and vertical acceleration are measured 3 m below the ground surface at the point of detonation.
The results show that, with geofoam reinforcement, the peak blast pressure is reduced by 60.77%, and the peak vertical acceleration is reduced by 83.24%. This confirms that the blast attenuation mechanism of geofoam-reinforced soil is based on the difference in wave impedance between soil and geofoam.
Additionally, parametric studies were conducted to investigate the effects of various geofoam parameters (type, thickness, and embedded depth) on blast attenuation. The results indicate that as the density, thickness, and embedded depth of the geofoam increase, the protection effectiveness also increases. Specifically, the study found an 80.09% reduction in peak blast pressure and a 96.97% reduction in peak vertical acceleration within the scope of this research.
Based on the numerical results, this research provides a quantified research procedure and design recommendations for geofoam-reinforced soil subjected to blast loads, offering valuable guidance for the future design of blast-resistant underground structures.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:11:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-23T16:11:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要... I
Abstract ... II
TABLE OF CONTENTS .... IV
LIST OF TABLES ... VI
LIST OF FIGURES ... VII
Chapter 1. Introduction ... 1
1.1 Motivation ... 1
1.2 Research Objective ... 5
1.3 Research Outline .... 5
Chapter 2. Literature Review .... 8
2.1 Soil Behaviors Under Blast Loads ... 8
2.2 Wave Attenuation Effects of Geofoam .... 18
Chapter 3. Numerical Study Program ... 21
3.1 Introduction of the LS-DYNA Program ... 21
3.2 Numerical Model and Convergence Analysis ... 24
3.3 Material Models and Input Properties ... 33
3.3.1 TNT ... 33
3.3.2 Air ... 34
3.3.3 Soil ... 36
3.3.4 Geofoam .... 45
Chapter 4. Model Validations and Sensitivity Studies .... 47
4.1 Model Validations ... 47
4.1.1 Validation of Soil’s Numerical Model ... 47
4.1.2 Validation of Geofoam’s Numerical Model... 51
4.2 Sensitivity Studies .... 54
Chapter 5. Results and Discussions ... 58
5.1 Response of Unreinforced Ground Subjected to Blast Load ... 58
5.2 Response of Geofoam-Reinforced Ground Subjected to Blast Load ... 63
5.3 Parametric Studies .... 72
5.3.1 Geofoam Type ...74
5.3.2 Thickness of Geofoam ...77
5.3.3 Embedded Depth of Geofoam ... 79
5.4 Design Recommendations ... 85
Chapter 6. Conclusions ... 90
6.1 Conclusions... 90
6.2 Recommendations ... 92
References .... 94
-
dc.language.isoen-
dc.subject數值模擬zh_TW
dc.subject爆炸荷載zh_TW
dc.subject地工合成材料zh_TW
dc.subject地工泡棉zh_TW
dc.subject波阻抗zh_TW
dc.subjectgeofoamen
dc.subjectNumerical simulationen
dc.subjectblast loaden
dc.subjectwave impedanceen
dc.subjectgeosyntheticsen
dc.title地工泡棉加勁土壤受爆炸荷載之數值分析zh_TW
dc.titleNumerical analysis of geofoam reinforced soil subjected to blast loadsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭丁興;蔡營寬;郭安妮zh_TW
dc.contributor.oralexamcommitteeDing-Shing Cheng;Ying-Kuan Tsai;On-Lei Kwoken
dc.subject.keyword數值模擬,爆炸荷載,地工合成材料,地工泡棉,波阻抗,zh_TW
dc.subject.keywordNumerical simulation,blast load,geosynthetics,geofoam,wave impedance,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202401573-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-19-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved