請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9314完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高英哲(Ying-Jer Kao) | |
| dc.contributor.author | Yu-Cheng Su | en |
| dc.contributor.author | 蘇育正 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:17:11Z | - |
| dc.date.available | 2009-07-14 | |
| dc.date.available | 2021-05-20T20:17:11Z | - |
| dc.date.copyright | 2009-07-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-02 | |
| dc.identifier.citation | [1] A. W. Sandvik and G. Vidal, Phys. Rev. Lett. 99, 220602 (2007).
[2] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003). [3] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004). [4] G. Vidal, Phys. Rev. Lett. 98, 070201 (2007). [5] S. R. White, Phys. Rev. Lett. 69, 2863 (1992). [6] S. R. White, Phys. Rev. B 48, 10345 (1993). [7] U. Schollw¨ock, Rev. Mod. Phys. 77, 259 (2005). [8] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975). [9] F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93, 227205 (2004). [10] P. Pippan, S. R. White, and H. G. Evertz, arXiv:0801.1947v2. [11] S. ¨Ostlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995). [12] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003). [13] F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066. [14] A. Isacsson and Olav F. Sylju˚asen Phys. Rev. E 74, 026701 (2006). [15] A. W. Sandvik, Phys. Rev. Lett. 101, 140603 (2008). [16] Z.-C. Gu, M. Levin, and X.-G. Wen, Phys. Rev. B 78, 205116 (2008). [17] L. Wang, Y.-J. Kao, and A. W. Sandvik, arXiv:0901.0214v1. [18] U. Schollw¨ock, J. Phys. Soc. Jpn. 74 (2005) Supplement pp. 246-255. [19] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004). [20] A. J. Daley et al., J. Stat. Mech.: Theor. Exp. (2004) P04005. [21] S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999). [22] H. A. Bethe, Z. Physik 71, 205 (1931). [23] C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1388 (1969); C. K. Majumdar and D. K. Ghosh, ibid. 10, 1399 (1969). [24] E. Y. Loh Jr. et. al., Phys. Rev. B 41, 9301 (1990). [25] P. Henelius and A. W. Sandvik, Phys. Rev. B 62, 1102 2000). [26] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press,Cambridge, 2000). [27] N. Metropolis et. al., J. Chem. Phys. 21, 1087 (1953). [28] L. Wang, Y. J. Kao and A. W. Sandvik, unpublished. [29] M. Suzuki, Phys. Lett. A 146, 6 (1990) 319-323; J. Math Phys. 32, 2 (1991) 400-407. [30] D. Nagaj, E. Farhi, J. Goldstone, P. Shor, and I. Sylvester, Phys. Rev. B 77, 214431 (2008). [31] P. Pfeuty, Ann. Phys. 57, 79 (1970). [32] T. J. Osborne and M. A. Nielsen Phys. Rev. A 66, 032110 (2002). [33] R. Brout, K. A. Muller and H. Thomas, Solid State Commun. 4 (1966), 507. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9314 | - |
| dc.description.abstract | 在一維量子自旋系統中,矩陣積態可作為變量數值模擬的試驗波函數。在此研究中,我們展示了兩種建構矩陣積態的方法,這些方法源自於密度矩陣重整群與量子資訊理論。我們發展了兩種在一維量子系統中矩陣積態的演算法,分別為隨機最佳化的量子蒙地卡羅變量模擬 (Variational quantum Monte Carlo simulations with stochastic optimization) 與時間演化間隔消除法 (Time-evolving block decimation)。我們推廣了隨機最佳化的方法至開放邊界 (open boundary condition) 並且探討了伊辛模型加入橫向磁場與海森堡模型。另外,我們處理了無限長的伊辛模型加入橫向磁場,我們的結果顯示量子糾纏 (quantum entanglement)與量子相變息息相關。 | zh_TW |
| dc.description.abstract | In one-dimensional quantum spin systems, the matrix product states (MPS) can be used as a trail wave function for variational numerical simulations. In this thesis, we investigate the construction of MPS which is related to the density matrix renormalization group (DMRG) and the Quantum information theory (QIT). We develop two algorithms, variational quantum Monte Carlo (QMC) simulations with stochastic optimization [1] and time-evolving block decimation (TEBD) [2, 3], in one dimensional systems. We generalize QMC with stochastic optimization to the open boundary condition and study the transverse Ising model and Heisenerg model. We also applied the infinite TEBD algorithm [4] to the infinite transverse Ising model and demonstrate that entanglement is a key ingredient in the quantum phase transition. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:17:11Z (GMT). No. of bitstreams: 1 ntu-98-R96222011-1.pdf: 916947 bytes, checksum: 535dd33f697f13df3f55a1928bac7c9f (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Abstract i
1 Introduction 1 1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Latticemodels . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Transverse Ising model . . . . . . . . . . . . . . . . . . 2 1.2.2 Heisenberg model . . . . . . . . . . . . . . . . . . . . . 2 2 Matrix Product States 4 2.1 MPS fromthe DMRG point of view . . . . . . . . . . . . . . . 4 2.2 MPS fromthe QIT point of view . . . . . . . . . . . . . . . . 6 2.2.1 Tools in Linear Algebra . . . . . . . . . . . . . . . . . 6 2.2.2 Entanglement . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.3 A variant formofMPS . . . . . . . . . . . . . . . . . . 8 3 Variational quantum Monte Carlo simulation with stochastic optimization 12 3.1 Introduction toMonte Carlo simulation . . . . . . . . . . . . . 12 3.1.1 TheMetropolis algorithm . . . . . . . . . . . . . . . . 13 3.1.2 Measuring observable quantities . . . . . . . . . . . . . 15 3.2 Stochastic optimization . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Approximation forms for the open boundary condition . . . . 19 3.4 Methods ofmeasurements . . . . . . . . . . . . . . . . . . . . 22 3.4.1 Measurements byMonte Carlo sampling . . . . . . . . 22 3.4.2 Measurements by summing over all states . . . . . . . 22 3.5 Studies of the transverse Ising model . . . . . . . . . . . . . . 24 3.5.1 The D dependence . . . . . . . . . . . . . . . . . . . . 24 3.5.2 Ground state energy, magnetization and correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.6 Applications to the Heisenberg model . . . . . . . . . . . . . . 28 3.6.1 The D dependence . . . . . . . . . . . . . . . . . . . . 29 3.6.2 Exploiting symmetry . . . . . . . . . . . . . . . . . . . 29 4 Imaginary time evolution with TEBD 33 4.1 Imaginary time evolution . . . . . . . . . . . . . . . . . . . . . 33 4.2 Normalization conditions forMPS . . . . . . . . . . . . . . . . 34 4.3 Updating thematrices . . . . . . . . . . . . . . . . . . . . . . 35 4.4 The formof the wave function . . . . . . . . . . . . . . . . . . 38 4.4.1 Infinite system . . . . . . . . . . . . . . . . . . . . . . 38 4.4.2 Finite system . . . . . . . . . . . . . . . . . . . . . . . 39 4.5 Imaginary time evolution algorithm . . . . . . . . . . . . . . . 40 4.6 Infinite transeverse Ising model . . . . . . . . . . . . . . . . . 41 5 Conclusions 46 Bibliography 47 | |
| dc.language.iso | en | |
| dc.title | 矩陣積態在一維量子自旋系統的應用 | zh_TW |
| dc.title | Matrix Product States in One Dimensional Quantum Spin Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 管希聖(Hsi-Sheng Goan),陳柏中(Po-Chung Chen) | |
| dc.subject.keyword | 矩陣積態,量子蒙地卡羅,隨機最佳化,時間演化間隔消除法,量子糾纏, | zh_TW |
| dc.subject.keyword | matrix product state,quantum Monte Carlo,stochastic optimization,TEBD,iTEBD,entanglement, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-07-03 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 895.46 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
