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摘要 

 

在一維量子自旋系統中，矩陣積態可作為變量數值模擬的試驗波函數。在此研究

中，我們展示了兩種建構矩陣積態的方法，這些方法源自於密度矩陣重整群與量

子資訊理論。我們發展了兩種在一維量子系統中矩陣積態的演算法，分別為隨機

最佳化的量子蒙地卡羅變量模擬  (Variational quantum Monte Carlo simulations 
with stochastic optimization)與時間演化間隔消除法  (Time-evolving block 
decimation)。我們推廣了隨機最佳化的方法至開放邊界 (open boundary condition)
並且探討了伊辛模型加入橫向磁場與海森堡模型。另外，我們處理了無限長的伊

辛模型加入橫向磁場，我們的結果顯示量子糾纏 (quantum entanglement)與量子

相變息息相關。 
 
 

 

關鍵字：矩陣積態、量子蒙地卡羅、隨機最佳化、時間演化間隔消除法、量子糾

纏 



Abstract

In one-dimensional quantum spin systems, the matrix product states (MPS)
can be used as a trail wave function for variational numerical simulations.
In this thesis, we investigate the construction of MPS which is related to the
density matrix renormalization group (DMRG) and the Quantum informa-
tion theory (QIT). We develop two algorithms, variational quantum Monte
Carlo (QMC) simulations with stochastic optimization [1] and time-evolving
block decimation (TEBD) [2, 3], in one dimensional systems. We generalize
QMC with stochastic optimization to the open boundary condition and study
the transverse Ising model and Heisenerg model. We also applied the infinite
TEBD algorithm [4] to the infinite transverse Ising model and demonstrate
that entanglement is a key ingredient in the quantum phase transition.

Keywords: matrix product state, quantum Monte Carlo, stochastic opti-
mization, TEBD, iTEBD, entanglement
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Chapter 1

Introduction

1.1 Overview

The study of low-dimensional strongly correlated quantum systems has been
one of the intriguing topics in theoretical condensed matter physics. How-
ever, because of the complexity of the systems, few analytically exact solu-
tions are available; on the other hand, numerical methods are able to extract
useful properties from these systems. The density matrix renormalization
group (DMRG) invented by White [5, 6] has provided accurate descriptions
of the ground state in one dimensional strongly correlated Hamiltonians [7].
DMRG is developed to extend Wilson’s numerical renormalization group [8]
to general quantum lattice systems. The failure of Wilson’s RG is identi-
fied as the inability to take the boundary conditions into account. DMRG
first only apply to systems with the open boundary condition and later it is
extended to the periodic boundary condition from the quantum information
perspective [9, 10].

The success of DMRG is related to the matrix product states (MPS) [11] .
MPS represents the wave function of the system in the DMRG method, and
according to quantum information perspective [2], MPS can properly account
for entanglement in one dimensional strongly correlated quantum systems.
On the other hand, DMRG in dimensions higher than one is insufficient to
properly account for entanglement of the system [12]. A generalization of
MPS, projected enatngled-pair states (PEPS) [13], is proposed to deal with
the simulation in two or higher spatial dimensions. MPS and PEPS can be
used as trial wave functions [1, 13, 14, 15, 16, 17] in variational methods.
In Ref [1], MPS is combined with quantum Monte Carlo (QMC) method
to sample the physical states instead of summing over all states in order to
reduce the computaional cost.
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Over the last few years, various algorithms for simulating the time evo-
lution of one dimensional quantum systems have been developed [18]. One
of the algorithms called time-evolving block decimation (TEBD) [2, 3] uses
MPS and emphasizes the connection between the computaioanl cost of a
simulation and the amount of entaglement in the system. The scheme is
later recast into the language of DMRG [19, 20]. TEBD can be applied ef-
ficiently to the quantum system which has a small amount of entanglement.
A generalization of TEBD, infinite TEBD [4], is able to simulate one dimen-
sional quantum lattice problems in the thermodynamic limit. The method
simulates the infinite system directly without resorting to extrapolation.

1.2 Lattice models

1.2.1 Transverse Ising model

In this thesis, we study the one dimensional quantum transverse Ising model
for the finite system and the infnite system. The transverse Ising model is
the simplest quantum spin model to exhibit a quantum phase transition [21].
The hamiltonian is given by

H = −(
∑

i

σz
i σ

z
i+1 + hσx

i ), (1.1)

where σx and σz are the Pauli matrices, and sum over i is over all sites.
For h < 1, the ground state of this system has long-range Ising order in the
z-direction. For h > 1, the ground state becomes disorder in the z-direction.
A quantum phase transition occurs when the system goes from h < 1 to
h > 1. The critical point is at h = 1. The transverse Ising model provides a
clear evidence that the lattice is most entangled at the critical point.

1.2.2 Heisenberg model

We also investigate the antiferro Heisenberg model with the next nearest
neighbor interaction. The Hamiltonian is given by

H =
∑

i

J1Si · Si+1 + J2Si · Si+2, (1.2)

where S = h̄
2
σ and J1, J2 > 0. The model is invariant under a global SU(2)

rotation, so the total spin should be conserved. For J2 = 0, the model can
be solved exactly by Bethe ansatz [22]. When J2 > 0, it can be solved by
taking the ground state as a superposition of the nearest neighbor valence
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bond states [23]. For J1, J2 > 0, there is a competition between the nearest
neighbor interaction and the next nearest neighbor interaction which is called
frustration. This causes the “sign problems” [24, 25] in many QMC methods
which originates from the minus sign in the wave function when interchanging
two fermions. An illustration of frustration is shown in Fig. 1.1.

?

Anti-parallel

Anti-parallel

Figure 1.1: An illustration of frustration. The spins tend to lie anti-parallel
to minimize the energy and form a competition between the nearest neighbor
interaction and the next nearest neighbor interaction.

The thesis is organized as follows. In Chapter 2, we review the construc-
tion of MPS from two perspectives and discuss the connection between them.
In Chapter 3, we review the Monte Carlo method and the stochatic optimiza-
tion. We generalize this QMC method to the open boundary condition and
study the transverse Ising model and the Heisenberg model. In chapter 4,
we review the TEBD and iTEBD method in detail for imaginary time evo-
lution. The infinite transverse Ising model is studied and the results imply a
connection between entangelment and quantum phase transition. In chapter
5, we summarize the results and make a conclusion.
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Chapter 2

Matrix Product States

In this chapter, we present the formulation of the matrix product states
(MPS) from the density matrix renormalization group (DMRG) aspect and
from the quantum information theory (QIT) [26] aspect. We will also discuss
the notion of entanglement and use it to justify the use of MPS as a trial
wave function.

2.1 MPS from the DMRG point of view

The development of the density matrix renormalization group method [5, 6]
has enabled us to analyze and understand one-dimensional quantum many
body systems with high accuracy . We shall describe the main idea of DMRG
without going into too much details. First of all, we start from a smaller
system which is small enough that we can diagonalize its Hamiltonian. This
system is labeled as the superblock and it is divided into the system block and
the enviroment block. The goal is to find a set of states of the system block
which can optimally represent the superblock. We construct the reduced
density matrix for the system block and diagonalize it, keeping only a number
of states as basis states (e. g., D states) by dropping off the states with
smaller eigenvalues in the reduced density matrix, as they are less likely
to be accessed. The Hamiltonian of the system block are transformed to
these basis states. Then we add a single spin to the system block and use
the transformed Hamiltonian together with the added spin to construct the
enviroment block; thus, the new superblock can be formed. Repeat this
spin-adding procedure recursively until the system reach the desired size. In
practice, the eigenvalues of the density matrix decrease rapidly so that the
truncation errors are small. The name density matrix renormalization group
reflects the fact that we keep those most relevant states in the density matrix.

4



        (a)                      (b) 

Figure 2.1: (a) Add kth new spin |sk〉 to the system block basis states |ψβ〉k−1

containing k − 1 sites. (b) Form the new super block and construct the
reduced density matrix for the new system block keeping only D states to
form a new set of basis.

The theoretical foundation of the success of DMRG is pointed out by
Östlund and Rommer [11]. Their work shows that the DMRG construction is
closely related to position-dependent matrix product state. At each recursion
step, DMRG is a particularly effective way to generate a D ×D projection
operator Ak

α,β(sk), which projects these states |ψβ〉k−1⊗|sk〉 to a larger system
with a set of new basis states |ψα〉k. That is (Fig. 2.1(a) to Fig. 2.1(b))

|ψα〉k =

D∑
β=1

∑
sk

Ak
αβ(sk)|ψβ〉k−1 ⊗ |sk〉. (2.1)

For a state |Ψ〉 in an one-diensional system containing n spins with pe-
riodic boundary conditions(sn+1 = s1), we can construct a matrix product
state using Eq. (2.1) recursively as shown in Fig. 2.2. |Ψ〉 is transformed into
spin basis

|Ψ〉 =
∑

s1,s2,...,sn

tr(A1(s1)A
2(s2) . . . A

n(sn))|s1s2 . . . sn〉, (2.2)

where tr(· · · ) is the matrix trace. This state contains 2nD2 parameters
ranther than 2n ones. Furthermore, if the system has translational symmetry,

Figure 2.2: The recursive steps to transform the state into spin basis
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the matrices A become independent of position. The wave function is now
written

|Ψ〉 =
∑

s1,s2,...,sn

tr(A(s1)A(s2) . . . A(sn))|s1s2 . . . sn〉. (2.3)

This is the matrix product state we are going to use as a trial wave function
to study the ground state of quantum spin systems, but before that, we would
like to discuss more about the matrix product states and give the criteria for
the validity of MPS as a trial wave function for such approximation.

2.2 MPS from the QIT point of view

To describe the state of n interacting quantum systems, it requires O(exp(n))
parameters. We can see immediately that simulating such systems is a non-
polynomial problem, and this makes the problem intractable for nowadays
computer resources. Therefore, finding an effective approximation method
to simulate quantum interacting systems is valuable to our understanding of
quantum many body systems.

Recently, Quantum Information Theory (QIT) has provided a different
point of view to describe condensed matter systems. A theory of entan-
glement has been established and has offered new insights in dealing with
quantum many body systems. It is possible to reduce the number of param-
eters needed to describe a slightly entangled system from a non-polynomial
order to a polynomial order.

In this section, we will first introduce two useful theorems in linear algebra
which we are going to use to develop the theory, and then the concept of
entanglement will be introduced. Finally, we construct a variant form of
matrix product states and compare it with the form discussed in the previous
section .

2.2.1 Tools in Linear Algebra

Linear algebra has played an important role in the formulation of quantum
mechanics. The rich properties of linear algebra has helped us express the
theory in a concise language, and this is especially true in the field of Quan-
tum Information Theory. We present two important tools, singular value
decomposition and Schmidt decomposition, which are used in QIT but not
the standard materials in quantum mechanics textbooks. No attempt is
made at mathematical rigor. These tools are suitable for the study of com-
posite quantum systems, which are the key structures in quantum many body
systems.

6



Singular value decomposition. Let A be a m×n matrix (suppose n > m).
Then there exists an m ×m unitary matrix U , an n × n unitary matrix V
and an m× n diagonal matrix D such that

A = UDV T = U

⎛
⎜⎜⎜⎝

d1 0 0 0 . . . 0
0 d2 0 0 . . . 0
...

. . .
...

0 . . . 0 dm . . . 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
n

V T ,

where the diagonal elements of D are called singular values of A, and d1 ≥
d2 ≥ . . . ≥ dm ≥ 0. V T is the transpose of V .

The singular value decomposition is a useful technique to factorize a gen-
eral matrix into two unitary operators and a diagonal operator. Dealing
with these operators is easier than dealing with a general matrix. Here is a
numerical example

A =

(
1 2
2 1

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)(
3 0
0 1

)( 1√
2
− 1√

2
1√
2

1√
2

)
. (2.4)

Schmidt decomposition. A pure state |ΨAB〉 of a composite system , AB,
can be decomposed into two orthonormal states |iA〉 for system A, and |iB〉
for system B such that

|ΨAB〉 =
∑

i

λi|iA〉|iB〉.

where λi ≥ 0 and
∑

i λ
2
i = 1 in order to normalize the state|Ψ〉. The num-

ber of λi is called Schmidt rank. The vectors |iA〉 and |iB〉 of the Schmidt
decomposition are determined up to a phase, while Schmidt rank and λi are
uniquely determined.

The Schmidt decomposition can be proved from the singular value de-
composition. We will make use of this fact to perform our simulation in
section 4.3. The proof is outlined and a numerical example is given below.

Let |jA〉 and |kB〉 be any orthornormal basis for systems A and B. Then
|ΨAB〉 can be written

|ΨAB〉 =
∑
j,k

Ajk|jA〉|kB〉,

and by the singular value decomposition of Ajk

|ΨAB〉 =
∑
j,k

UjiDiiV
T
ik |jA〉|kB〉.

7



Defining |iA〉 =
∑

j Uji|jA〉, |iB〉 =
∑

k Vki|kB〉 and Dii = λi we get

|ΨAB〉 =
∑

i

λi|iA〉|iB〉, (2.5)

where λ1 ≥ λ2 ≥ . . . ≥ 0. This completes our proof.
The numerical example is given according to Eq. (2.4)

|ΨAB〉 = |0A〉|0B〉+ 2|0A〉|1B〉+ 2|1A〉|0B〉+ |1A〉|1B〉
= 3[

1√
2
(|0A〉+ |1A〉) 1√

2
(|0B〉+ |1B〉) ]

+ [
1√
2
(|0A〉 − |1A〉) 1√

2
(−|0B〉+ |1B〉) ].

This suggests that we can perform the Schmidt decomposition through the
singular value decomposition, and this approach will be used in our simula-
tion to find λi in section 4.3.

2.2.2 Entanglement

For a state |ΨAB〉, it is entangled if it cannot be decomposed into a product
state |ΨA〉|ΨB〉. An example below illustrates the notion of entanglement.

|ΨAB〉 = |0A〉|1B〉+ |1A〉|1B〉
= (|0A〉+ |1A〉)|1B〉 = |ΨA〉|ΨB〉 (product state)

|ΨAB〉 = |0A〉|0B〉+ |1A〉|1B〉 �= |ΨA〉|ΨB〉 (entangled state)

We can clearly see that a state is entangled if and only if the Schmidt
rank is greater than one, so the entanglement between system A and B can
be characterized by the Schmidt rank. The larger the Schmidt rank, the
more entangled the state, and vice versa. This is the key idea in justifying
the approximation of reducing the number of parameters from the one that
is exponential in the systme size n to the one that is linear in n.

2.2.3 A variant form of MPS

Let us now construct a variant form of MPS [2]. Consider a pure state |Ψ〉
for an n body system, we first perform the Schmidt decomposition to |Ψ〉
cutting the state at bond k between kth site and (k + 1)th site as shown in
Fig. 2.3

|Ψ〉 =

χk∑
αk=1

λαk
|ψ[1···k]

αk
〉|ψ[k+1···n]

αk
〉 (2.6)

8



where χk is the Schmidt rank at bond k.
After cutting the state |Ψ〉 at bond k, we further cut the state |ψ[k+1···n]

αk 〉
at bond k + 1

|ψ[k+1···n]
αk

〉 =

χk+1∑
αk+1=1

λαk+1
|ψ[k+1]

αk+1
〉|ψ[k+2···n]

αk+1
〉, (2.7)

and expand the state |ψ[k+1]
αkαk+1〉 in terms of the spin basis

|ψ[k+1]
αk+1
〉 =

∑
sk+1

Γ[k+1]sk+1
αkαk+1

|sk+1〉. (2.8)

Let us substitute Eq. (2.7) in Eq. (2.6)

|ψ[k+1···n]
αk

〉 =

χk+1∑
αk+1=1

∑
sk+1

Γ[k+1]sk+1
αkαk+1

λαk+1
|sk+1〉|ψ[k+2···n]

αk+1
〉, (2.9)

and in a similar way, we can get

|ψ[1···k]
αk
〉 =

χk−1∑
αk−1=1

∑
sk

λαk−1
Γ[k]sk

αk−1αk
|ψ[1···k−1]

αk−1
〉|sk〉, (2.10)

and therefore, Eq. (2.6) becomes

|Ψ〉 =

χk−1∑
αk−1=1

χk∑
αk=1

χk+1∑
αk+1=1

∑
sk,sk+1

λαk−1
Γ[k]sk

αk−1αk
λαk

Γ[k+1]sk+1
αkαk+1

λαk+1
|ψ[1···k−1]

αk−1
〉|sk〉|sk+1〉|ψ[k+2···n]

αk+1
〉. (2.11)

For a state |Ψ〉 with periodic boundary condition, repeat the above pro-
cedure recursively, and the state |Ψ〉 is decomposed into

|Ψ〉 =
∑

α1,··· ,αn

∑
s1,··· ,sn

Γ[1]s1
αnα1

λα1Γ
[2]s2
α1α2

λα2 . . . λαn−1Γ
[n]sn
αn−1αn

λαn |s1s2 . . . sn〉

where each α ranges from one to the corresponding Schmidt rank.

bond k

Figure 2.3: The Schmidt decomposition of |Ψ〉.
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So far the expression is exact. The Schmidt rank χα for each bond grows
exponentially with n. There are ground states in one-dimensional many body
systems which are slightly entangled so that the values of λα decrease rapidly
with α [2]. Hence, we can obtain a good approximation of the state |Ψ〉 by
truncating λα at some α. We define χmax ≡ max{χ1, χ2, . . . , χn}, and for
slightly entangled states, χmax is truncated to some number D. In practice,
D is determined through trial and error.

Thus, the state |Ψ〉 is now written

|Ψ〉 =
D∑

α1,··· ,αn=1

∑
s1,··· ,sn

Γ[1]s1
αnα1

λα1Γ
[2]s2
α1α2

λα2 . . . λαn−1Γ
[n]sn
αn−1αn

λαn|s1s2 . . . sn〉,

(2.12)
where each α runs from one to D, or, to write it in a more compact form

|Ψ〉 =
∑

s1,··· ,sn

tr(Γ[1]s1λ[1]Γ[2]s2λ[2] . . . λ[n−1]Γ[n]snλ[n])|s1s2 . . . sn〉, (2.13)

where Γ[k] is a D ×D matrix and λ[k] is a D-dimensional vector. This state
contains n(2D2 +D) parameters rather than 2n ones.

To compare Eq. (2.2) and Eq. (2.13), we first note the similarity between
Eq. (2.1) and Eq. (2.9). After the truncation step, Eq. (2.9) is written

|ψ[k+1···n]
αk

〉 =

D∑
αk+1=1

∑
sk+1

Γ[k+1]sk+1
αkαk+1

λαk+1
|sk+1〉|ψ[k+2···n]

αk+1
〉.

Compare with Eq. (2.1)

|ψα〉k =

D∑
β=1

∑
sk

Ak
αβ(sk)|ψβ〉k−1 ⊗ |sk〉.

We can immediately see that Ak
αβ(sk) ≡ Γ

[k]sk

αβ λβ. Or, from Eq. (2.10),

Ak
αβ(sk) ≡ λαΓ

[k]sk

αβ . It depends on at which end the spin is added. Now the
D states kept in DMRG iterating steps has a clear physical meaning. The
number D is characterized by the amount of entanglement of the state; that
is, the intrinsic computational cost is quantify by the entanglement. Also,
the representation of the state |Ψ〉 in Eq. (2.2) and (2.13) are equivalent.

Before ending this chapter, we would like to present a form of MPS for a
system with open boundary condition. The wave function is written

|Ψ〉 =
∑

s1,s2,...,sn

V 1(s1)A
2(s2)A

3(s3) . . . A
n−1(sn−1)V

n(sn)|s1s2 . . . sn〉 (2.14)

10



where V 1(s1) and V n(sn) are D-dimensional vectors. This form can be de-
rived from the above argument with a slight change in Eq. (2.12). We approx-
imate this representation to simulate systems with open boundary conditions.
More discussion about this form is in the next chapter.
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Chapter 3

Variational quantum Monte
Carlo simulation with
stochastic optimization

When an analytical solution is hard to obtain, variational methods is a useful
approach to getting an approximate solution. For a system described by the
Hamiltonian H , we set up a form of the trial wave function |Ψ〉 with several
parameters and implement the fact that

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 ≥ Eground state. (3.1)

By adjusting the parameters, we lower the energy as much as we can and
obtain the approximate ground state wave function for the system H .

In this chapter, MPS is used as a trial wave function. The matrix ele-
ments are regarded as parameters and are adjusted to approach the ground
state. We will first discuss the Monte Carlo simulation, and then describe
the optimization scheme. Finally, the above method is used to deal with
one-dimensional quantum spin models.

3.1 Introduction to Monte Carlo simulation

Generally speaking, methods which involve making use of random numbers
can be called Monte Carlo(MC) simulation. Monte Carlo simulation is an
important method in condensed matter physics. Because of the complex-
ity of many body systems, especially in strongly correlated systems where
perturbation is unmanageable, many problems cannot be solved analytically.
In this situation, Monte Carlo simulation is an effective method to extract
statistical properties from the systems.
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3.1.1 The Metropolis algorithm

The goal of the Monte Carlo simulation is to calculate the expectation value
〈Q〉, which is an ensemble average of some observable quantity Q,

〈Q〉 =

∑
ci
Wci

Qci∑
ci
Wci

, (3.2)

where Qci
is the value of the observable quantity in the ith configuration

ci and Wci
is the weight of the ith configuration ci. So the probability Pci

for the ith configuration to occur is Pci
=

Wci∑
ci

Wci
. To calculate 〈Q〉, we

average the quantity Qci
over all states, 〈Q〉 =

∑
i Pci

Qci
; however, in reality,

it is impossible to prepare all the configurations for large systems in our
simulation. On the other hand, picking out the states randomly from the
system is usually a poor method. In most cases, it only samples out a very
small fraction of the states. The remedy of this problem is that instead of
calculating the ensemble average, we calculate, through a Markov process,
the average of the observable quantity by generating a chain of states which
obey the probability of occurrence Pci

.
A Markov process is a mechanism to generate a new state cν from a state

cμ through the transition probability t(cμ → cν). The transition probability
for a Markov process should depend only on the properties of the current
configurations cν and cμ ,and the transition probability should not vary over
time.

To generate a chain of states which obey the probability of occurrence
Pci

, we first write down the master equation

dPcμ

dt
=
∑
cν

[Pcν t(cν → cμ)− Pcμt(cμ → cν)]. (3.3)

For an equilibrium system,
dPcμ

dt
= 0; furthermore, we enforce the detail

balance condition such that

Pcν t(cν → cμ) = Pcμt(cμ → cν). (3.4)

It is now clear that if the generated configurations are distributed according
to Pci

, the transition probability t(cν → cμ) should satisfy

Wcμ

Wcν

=
Pcμ

Pcν

=
t(cν → cμ)

t(cμ → cν)
. (3.5)

Now the problem comes to “how do we manipulate the algorithm to sat-
isfy the above condition?”. Even if we can suggest many Markov processes
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to generate a new state, we may not find one with the right transition proba-
bility. The solution to this problem is the concept called an acceptance ratio.
We decompose the transition probability into two parts:

t(cμ → cν) = g(cμ → cν)a(cμ → cν), (3.6)

where g(cμ → cν) is the selection probability, and a(cμ → cν) is the accep-
tance ratio (or called the “acceptance probability”). The selection probability
is the probability that generates a new state cν from an old state cμ. The
acceptance ratio says that when we start from a state cμ and our algorithm
generates a new state cν , we should accept the change to the new state ac-
cording to the acceptance ratio. So, no matter what Markov processes we
choose to generate a new state which determine the selection probability, we
can always satisfy the condition Eq. (3.2) as long as we adjust the acceptance
ratio.

The most famous and widely used algorithm is called the Metropolis algo-
rithm [27]. In the Metropolis algorithm the selection probability g(cμ → cν)
are all chosen to be equal. Therefore, Eq. (3.5) is now written

Wcμ

Wcν

=
t(cν → cμ)

t(cμ → cν)
=
g(cν → cμ)a(cν → cμ)

g(cμ → cν)a(cμ → cν)
=
a(cν → cμ)

a(cμ → cν)
. (3.7)

The acceptance ratio is determined according to the weights. We define

a(cν → cμ) = min{1, Wcμ

Wcν

}. (3.8)

In this chapter, we deal with one-dimensional S = 1
2

quantum spin system,
using the single-spin-flip method to generate a new configuration; in other
words, we flip a spin at a time and calculate the acceptance ratio to decide
whether to accept the flip or not. The Metropolis algorithm goes as follows.

1. Generate a spin configuration c1 randomly as a starting configuration.

2. Flip a spin in the configuration ci to generate a new one ci+1 .

3. Calculate the acceptance ratio

a(ci → ci+1) = min{1, Wci+1

Wci

}. (3.9)

Compare the acceptance ratio a(ci → ci+1) with a random number
r ∈ [0, 1), if a(ci → ci+1) > r, the configuration is update to ci+1,
otherwise it is rejected.

4. Go back to 2.

It is a standard algorithm in the Monte Carlo simulation.
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3.1.2 Measuring observable quantities

As mentioned in the previous section, to measure the expectation value 〈Q〉,
we have to run over all the configurations if we naively use Eq. (3.2). However,
in the Metropolis algorithm, a chain of states is generated according to the
occurrence probability of the states. That is, the number of a configuration
generated is proportional to its weight in the system. So, we measure the
observable quantity Q when the configuration is updated to a new one, and
suppose the measurement performed M times, then the expectation value
〈Q〉 is now written

〈Q〉 =

∑M
i=1Qi

M
. (3.10)

In our simulation scheme, we flip a spin at a time to generate a new
configuration. The difference between the old one and the new one is small.
In other words, if we measure the observable quantity 〈Q〉 in each update,
the measurement may be correlated. Then it is not a true Markov process.
To solve this problem, we do not measure the observable quantity 〈Q〉 in
each update. Instead, we perform the measurement after one Monte Carlo
step. We define one Monte Carlo step as attempting to flip spins n times.
The number n is the length of the spin chain.

In order to minimize the noise caused by the randomness in the Monte
Carlo simulation, we use the blocking method called the binning procedure.
First, we perform m Monte Carlo steps and perform the measurement after
each Monte Carlo step. Second, we divide the measurements intom/b groups.
Each group contains b measurement results, and the cumulative results are
taken average over b. This step is called making a bin. Finally, the observable
quantities are obtained by taking the bin average over m/b. The binning
procedure is illustrated in Fig. 3.1.

m
measurements 

b measurements  

Figure 3.1: A sketch for the binning procedure.
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3.2 Stochastic optimization

To obtain an approximate ground state wave function, our goal is to find the
matrix elements that minimize the expectation value of the energy E = 〈H〉
by the derivatives of the energy with respect to the matrix elements. We
illustrate the optimization scheme through a S = 1

2
translationally invariant

periodic spin system with n spins.
The first step is finding an appropriate form of E for Monte Carlo sam-

pling. The wave function of a spin chain can be written

|Ψ〉 =
∑

s1,s2,...,sn

tr(A(s1)A(s2) . . . A(sn))|s1s2 . . . sn〉 =
∑

S

F (S)|S〉, (3.11)

where the spins si = ±1 are the eigenvalues of σz
i , |S〉 = |s1, s2, . . . , sn〉, and

F (S) is the coefficient for state |S〉; A(±1) are two D×D general matrices,
and they are taken to be real. The expectation value of energy can be
expressed as

E =

∑
S,S′ F (S)F (S ′)〈S|H|S ′〉∑

S F
2(S)

=

∑
S F

2(S)E(S)∑
S F

2(S)
= 〈E(S)〉, (3.12)

where E(S) =
∑

S′
F (S′)
F (S)
〈S|H|S ′〉. Identifying F 2(S) as the weight of the

configuration, we can use Metropolis algorithm, with the transition proba-

bility t(S → S ′) = min{1, F 2(S′)
F 2(S)

}, to generate successive spin configurations

by flipping a spin at a time. Through measuring E(S) in the successive gen-
erated spin configurations, we then average over these measurements using
the binning procedure to get E = 〈E(S)〉.

Second, the derivatives of the energy with respect to the matrix elements
are also required. Taking derivatives directly, we have

∂E

∂as
ij

=
∂

∂as
ij

[

∑
S,S′ F (S)F (S ′)〈S|H|S ′〉∑

S F
2(S)

]

= 2〈 1

F (S)

∂F (S)

∂as
ij

E(S)〉 − 2〈 1

F (S)

∂F (S)

∂as
ij

〉〈E(S)〉 (3.13)

Calculating ∂F (S)
∂as

ij
seems to be a formidable task; however, if we write out
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those indices of the matrices, we can get

∂F (S)

∂as
ij

=
∂

∂as
ij

tr(A(s1)A(s2) . . . A(sn))

=
n∑

k=1

δs,sk

∂

∂as
ij

[as1
α1α2

as2
α2α3
· · ·ask−1

αk−1αk
ask

αkαk+1
ask+1

αk+1αk+2
· · ·asn−1

αn−1αn
asn

αnα1
]

=
n∑

k=1

δs,sk
a

sk+1

jαk+2
ask+2

αk+2αk+3
· · ·asn−1

αn−1αn
asn

αnα1
as1

α1α2
as2

α2α3
· · ·ask−1

αk−1i

=

n∑
k=1

δs,sk
[A(sk+1)A(sk+2) · · ·A(sn)A(s1) · · ·A(sk−2)A(sk−1)]ji.

(3.14)

Define the matrices

M(k) = A(sk+1)A(sk+2) · · ·A(sn)A(s1) · · ·A(sk−2)A(sk−1), (3.15)

the derivatives of the weight is rewritten

∂F (S)

∂as
ij

=

n∑
k=1

δs,sk
Mji(k). (3.16)

In order to minimize the energy, we have to calaulate F (S), F (S ′) and
M(k) during the update and the measurement. These terms involves many
matrix multiplication and are time consuming. Here we implement a scheme
to reduce the computational effort of calculating these terms for the update
and the measurement. Noticing the form of M(k), we introduce two more
matrices L(k) = A(sk)A(sk+1) · · ·A(sn) and R(k) = A(s1)A(s2) · · ·A(sk)
such that M(k) = L(k + 1)R(k − 1). Also, we defineL(N + 1) = R(0) = I.
The scheme goes as follows.

1. Calculate and store L(2), L(3), . . . , L(n) based on a random initail con-
figuration or the configuration from the previous run.

2. Start from s1, we flip the spins sequentially to generate successive spin
configurations. Each flip is based on Metropolis probability, t(S →
S ′) = min{1, F 2(S′)

F 2(S)
}. Using the cyclic property of the trace, we calcu-

late F (S ′) by F (S ′
k) = tr(A(−sk)M(k)).

3. After each attempt to flip the spin sk, L(k + 1) is no longer needed, so
we store R(k) = R(k − 1)A(sk) in its place for future use.
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4. After a sweep of spin updates, we start measurement from the spin sn.
Now the matrices R(k) are all generated and stroed. Traverse the spin
chain from k = n to 1 for measuring observable quantities, and the
matrices L(k) are generated and stored.

5. Go back to 2 until the energy is converged.

After b measurements, we obtain a bin measurement of energy and the
derivatives. We update the matrix elements after a bin is made. The bin
measurement are used to update the matrix elements as

ij:

as
ij → as

ij − q(p) · rs
ij · sign(

∂E

∂as
ij

), (3.17)

where rs
ij ∈ [0, 1) is random and q(p) is the maximum change which decreases

as a function of some number p. Each parameter is changed according to the
sign of the derivative, but they are changed independently with a random
but well bounded number. After each update of all the matrix elements, the
matrices are normalized so that the largest element |as

ij |=1. In our simu-
lation, we use the form q(p) = q0p

−α, with q0 = 0.05 – 0.1 and α = 0.7 –
0.8.

As mentioned in section 3.1.2, the real output of the expextation value
is the average over bins. Let p be the number of outputs; that is, q(p) de-
creases with output numbers. Furthermore, when the energy approaches the
minimum, the derivatives will become smaller, and the noise from random-
ness may affect the measurement of the derivatives. So, in order to minimize
the noise, we use the form b = b0p to increase measurements in a bin with
b0 = 100 – 200 and 20 – 40 bins are averaged to make an output. Also, if we
perform the above procedure to obtain optimized matrices, then, by using
the optimized matrices as initial values of the matrices, we restart the above
optimization but with a smaller q0. Repeating this process produces better
convergence.

A typical optimization process is shown in Fig. 3.2. Each point is an
output with 20 bins and b0 = 100. We notice that the energy decreased
exponentially, and the variance of the energy was also reduced quickly during
the optimization process. When using the matrices obtained in the previous
run as the initial matrices, and with a smaller q0, the energy reached a lower
value.

The computaional cost of the above optimization scheme scales as ND3,
while DMRG scales asND6. Besides, it can generalized to the open boundary
condition which scales as ND2. The generalization is straightforward. We
discuss the scheme in the next section.
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Figure 3.2: The periodic trnasverse Ising spin chain with 32 spins and D = 6
at h = 1. The first run starts with random matrices and q0 = 0.1. The
second run starts with the optimized matrices obtained in the first run and
q0 = 0.01. In the second run, the difference between the optimized energy
and the exact energy is less than 10−4.

3.3 Approximation forms for the open bound-

ary condition

We present a form of MPS for open boundary condition at the end of sec-
tion 2.2.3, and in this section, we suggest an approximate form to reduce the
computational cost. For the open boundary condition, the vectors V (s) and
the matrices A(s) are dependent of position;

|Ψ〉 =
∑

s1,s2,...,sn

V 1(s1)A
2(s2)A

3(s3) . . . A
n−1(sn−1)V

n(sn)|s1s2 . . . sn〉.

Update the vectors and the matrices one by one would be time consuming;
also, if a long chain is simulated, it will require a lot of computer memory
and become unmanagable. We approximate the above form by assuming
V (S) and A(S) are independent of position. The wave function for the open
boundary condition is now written

|Ψ〉 =
∑

s1,s2,...,sn

V (s1)A(s2)A(s3) . . . A(sn−1)V (sn)|s1s2 . . . sn〉 =
∑

S

F (S)|S〉.
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The reason behind this approximation is that the boundary effect is expected
to decrease quickly for the inner spins, so we still assume translational in-
variance for the matrices A(s).

The optimization scheme can be adopted with some minor changes. For
the open boundary condition, in order to update the elements vs

i and as
ij , we

need to compute

∂E

∂vs
i

= 2〈 1

F (S)

∂F (S)

∂vs
i

E(S)〉 − 2〈 1

F (S)

∂F (S)

∂vs
i

〉〈E(S)〉

and
∂E

∂as
ij

= 2〈 1

F (S)

∂F (S)

∂as
ij

E(S)〉 − 2〈 1

F (S)

∂F (S)

∂as
ij

〉〈E(S)〉.

To calculate the derivatives of F (S), we introduce the vectors Lv(k) =
V (s1)A(s2) . . .A(sk) and Rv(k) = A(sk) . . .A(sn−1)V (sn). Then the deriva-
tives can be expressed as

∂F (S)

∂vs
i

= δs,sn[Lv(n− 1)]i + δs,s1[Rv(2)]i

and
∂F (S)

∂as
ij

=
n−1∑
k=2

δs,sk
[Lv(k − 1)]i[Rv(k + 1)]j .

Now we can incorporate the above form into the optimization scheme in the
previous section. One thing to notice is that we now calculate and store
Rv(2), Rv(3), . . . , Rv(n − 1) first, and Lv(k) is generated later in the opti-
mization process.

We further explore the the approximate form of F (S). The approximation
is based on the assumption that we can ignore the boundary effect for the
inner spins. However, we only assume different form at both ends of the spin
chian. So in order to absorb the boundary effect, we insert matrices between
V (s) and A(s) such that

FB(S) = V (s1)B(s1)A(s2) . . . A(sn−1)B(sn)V (sn)

or
FC(S) = V (s1)C(1)A(s2) . . .A(sn−1)C(n)V (sn)

where B(s) depends on the spins at each ends; C(1) and C(n) are two ma-
trices which are independent of spins direction. In Fig. 3.3, we investigate
the D dependence of the the relative error in the energy for different forms.
We observe that after adding the matrices B(s), the optimized energy in-
deed converged to a lower value. It should be noticed that the number of
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Figure 3.3: Comparison of the D dependence for the different coefficeint
forms. The system is the open critical transverse Ising chain with 32 spins
at h = 1.
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Figure 3.4: The open transverse Ising spin chain with 32 spins and D = 6
at h = 1. The first run starts with random matrices and q0 = 0.1. The
second run starts with the optimized matrices obtained in the first run and
q0 = 0.01. In the second run, the difference between the optimized energy
and the exact energy is less than 10−4.
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the added parameters are the same for FB(S) and FC(S), but FB(S) has a
better convergence. From now on, we use FB(S) as the coefficient of the
trial wave function with the open boundary condition.

Fig. 3.4 shows a typical convergence process for open boundary condi-
tion. As with the periodic boundary condition, the energy also decreased
exponetially, and the variance was reduced rapidly. Furthermore, when the
vectors and the matrices obtained in the first run are used in the second run,
the optimized enegy also reached a lower value.

3.4 Methods of measurements

In the previous sections, we measure the energy by Monte Carlo sampling
because the measurement process can be incorporated into the optimization
process; however, the MPS state features a powerful property which is able
to sum over all states. We first discussed the measurements by Monte Carlo
sampling and then the method to sum over all states.

3.4.1 Measurements by Monte Carlo sampling

Suppose we want to measure the expetation value of the operator Ô. The
expectation value can be expressed as

〈Ô〉 =

∑
S,S′ F (S)F (S ′)〈S|Ô|S ′〉∑

S F
2(S)

(3.18)

=

∑
S F

2(S)
∑

s′
F (S′)
F (S)
〈S|Ô|S ′〉∑

S F
2(S)

. (3.19)

The Monte Carlo method can be applied to find the expectation value by
taking F 2(S) as the weight and use the Metropolis algorithm to sample the
states. The advantage of the Monte Carlo method is that it avoids summing
over all states which costs lots of computational resources, and sometimes it
is even impossible to sum over all states; however, the price to pay is that
we have to devise an efficient algorithm to sample the states. In the one
dimensional case, it is suffice to use the Metropolis algorithm.

3.4.2 Measurements by summing over all states

We first demonstrate the method by calculating the normalized factor 〈Ψ|Ψ〉
for a periodic system. The generalization to the open boundary condition is
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Table 3.1: Results for the critical transverse Ising model. PBC stands for
the periodic boundary condition and OBC for the open boundary condition.
The statitical errors in the last displayed digits are indicated; the statistical
errors are less than 10−5.

n D E/n (MC) E/n (ALL) E/n (exact)
PBC 16 6 -1.27528(6) -1.275285 -1.275287

32 12 -1.27374(5) -1.273744 -1.273751
50 16 -1.27344(5) -1.273445 -1.273449

OBC 16 6 -1.25101(9) -1.251018 -1.251024
32 12 -1.26200(6) -1.262005 -1.262009
50 16 -1.26602(0) -1.266019 -1.266023

straight forward. Expand the MPS form directly,

〈Ψ|Ψ〉 =
∑
S,S′

F (S)F (S ′)〈S|S ′〉

=
∑
{si}

tr(A(s1)A(s2) . . .A(sn))tr(A(s1)A(s2) . . .A(sn))

=
∑
{si}

as1
α1α2

as1

α′
1α′

2
as2

α2α3
as2

α′
2α′

3
· · ·asn

αnα1
asn

α′
nα′

1

=
∑
{si}

tr([A(s1)⊗ A(s1)][A(s2)⊗ A(s2)] · · · [A(sn)⊗A(sn)]).

We define the D2×D2 tensor T (k) =
∑

sk
A(sk)⊗A(sk) and the normalized

factor is rewritten,
〈Ψ|Ψ〉 = tr(T (1)T (2) · · ·T (n)). (3.20)

Instead of conrtacting D × D matrices for all possible configurations, we
contract D2 ×D2 matrices for just one time.

A key notion of the MPS is that it allows local updates; that is, we can
update some matrix A(sk) by acting the operator on it without changing
other matrices. Suppose the operator Ô acts on the kth spin. We define
Ã(sk) =

∑
s′k
Ôsks′kA(s′k) and the tensor T̃ (k) =

∑
sk
A(sk) ⊗ Ã(sk). So the

expectation value of the operator Ô can be calculated

〈Ψ|Ô|Ψ〉 = tr(T (1)T (2) · · · T̃ (k) · · ·T (n)). (3.21)

In Table 3.1, we compare the energy obtained from the Monte Carlo
method and the summing-over-all-states method. The optimized matrices
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from the Monte Carlo method is used to sum over all states. The excellent
agreement between these two methods indicates that the sampling of the
states is faithful.

3.5 Studies of the transverse Ising model

In this section, we study the tansverse Ising model by the stochastic op-
timization and measure the physical quantity from the optimized MPS by
summing over all states.

3.5.1 The D dependence

In Fig. 3.5, we investigated the D dependence for different sizes of the spin
chain. The realtive energy error derceased exponetially with D; however, as
D grows larger, the decreasing rate becomes smaller. This phenomenon re-
sults from the stochastic optimization where we update each matrix elements
independently regardless of their mutual denpendence.
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(b) Open boundary condition

Figure 3.5: Relative error in the energy as a function of D at h = 1.

3.5.2 Ground state energy, magnetization and correla-
tion functions

The ground state structure of the transverse Ising model changes as the
transvese field h is varied. Fig. 3.6 shows the energy per bond as a function
of h and Fig. 3.7 the magnetization for the periodic boundary condition.
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Figure 3.6: Energy per bond as a function of h for the periodic boundary
condition.

These figures show that when h→ 0, the ground state is a product of spins
pointing in the the same z direction,

|Ψg〉 =
n∏

i=1

| ↑〉i. (3.22)

When h is much greater than one, the ground state approaches a product
of spins pointing in the positive x direction,

|Ψg〉 =
n∏

i=1

| →〉i. (3.23)

where | →〉i = (| ↑〉i + | ↓〉i)/
√

2 and | ←〉i = (| ↑〉i − | ↓〉i)/
√

2 which are
eigenstates of σx.

Using the stochastic optimization, a symmetry breaking state is found as
shown in Fig. 3.7(b), but for finite size n, there is no symmetry breaking in
the ground state. The ground state has spin inversion symmetry. That the
magnetization dropped quickly to zero indicates that the symmetry under
the global phase flip appeared. From the squared magnetization,

〈σ2〉 = (
1

n

n∑
i=1

σz
i )

2, (3.24)
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(b) Magnetization 〈σz〉
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(c) Squared magnetization 〈σ2〉

Figure 3.7: Magnetization as a function of h for the periodic boundary con-
dition.
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shown in Fig. 3.7(c), 〈σ2〉 is not zero after the drop. Therefore, the results
suggested that the state fluctuated between the spin inversion symmetry
states.

The short range correlation function C i
12 = 〈σi

1σ
i
2〉 − 〈σi

1〉〈σi
2〉 where i =

x, y, or z is shown in Fig. 3.8(a). The short range correlation also has a
structural change near h = 1. The long range correlation Ci

1k = 〈σi
1σ

i
k〉 −

〈σi
1〉〈σi

k〉 near h = 1 is shown in Fig. 3.8(b). Near the critical point, we
observe a strong long range correlation in the z-direction.
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Figure 3.8: Correlation for the periodic boundary condition. The system is
the transverse Ising model with n = 50 and D = 16.
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The open boundary system has a similar behavior with the periodic sys-
tem; however, because of the dangling bonds at both ends, the spins near the
edges behave differently. Fig. 3.9 shows the edge effect of the magnetization
〈σx

i 〉 as a function of position.
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Figure 3.9: Magnetization 〈σx
i 〉 as a function of position i for the open bound-

ary condition with n = 50 and D = 16. The dotted line is the corresponding
magnetization for the periodic boundary condition.

3.6 Applications to the Heisenberg model

The stochastic optimization can be applied to the S = 1
2

antiferro Heisenberg
chain with the next-nearest-neighbor interaction. The ground state of the
antiferro Heisenberg chain can be divided into two sublattices as shown in
Fig. 3.10; thus, for the periodic boundary condition, we use the trial wave
function

|Ψ〉 =
∑

s1,s2,...,sn

tr(A(s1)B(s2)A(s3) . . . A(sn−1)B(sn))|s1s2 . . . sn〉,

where A(s) and B(s) are D×D matrices with s = ±1; for the open boundary
condition,

|Ψ〉 =
∑

s1,s2,...,sn

VA(s1)C(s1)B(s2)A(s3) . . .A(sn−1)C(sn)VB(sn)|s1s2 . . . sn〉,
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Figure 3.10: Two sublattices of the antiferro Heisenberg chain.

where VA(s), VB(s) are D dimensional vector and C(s) are D×D matrices.
In this section, we add symmetry terms in the coefficients and explore

the results for the S = 1
2

antiferro Heisenberg chain with the next-nearest-
neighbor interaction.

3.6.1 The D dependence

Fig. 3.11 shows the D dependence for different sizes of the antiferro Heisen-
berg chain. The relative error decreases exponentially with D as in the
transverse Ising case.
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(a) Periodic boundary condition
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Figure 3.11: Relative error in the energy as a function of D.

3.6.2 Exploiting symmetry

The ground state of the antiferro Heisenberg chain has the following symme-
tries

Ẑ|s1s2 . . . sn〉 = z| − s1 − s2 . . .− sn〉 (spin inversion)

T̂ |s1s2 . . . sn〉 = t|sns1s2 . . . sn−1〉 (translation)

R̂|s1s2 . . . sn〉 = r|snsn−1 . . . s1〉 (reflection)
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where z, t and r equals to ± 1. For the ground state, z = t = r = 1. These
symmetries can be incorporated into the form of the trial wave function
enforcing the states with these symmetries to have the same weight in the
Monte Carlo simulation. It is written

|Ψ〉 =
∑

S

F (S) + zF (ẐS) + tF (T̂ S) + rF (R̂S) + zrF (ẐR̂S)

+ ztF (ẐT̂ S) + rtF (R̂T̂S) + zrtF (ẐR̂T̂ S)|S〉.
In Fig. 3.12, we investigate the convergence behavior as the symmetry

terms are added. Adding symmetry terms helps to recover the symme-
tries, we observe that the spin inversion term improves the energy most.
Among these symmetries, updating the configuration to the spin inversion
state requires a global spin flip which is hard to obtain. As mentioned in sec-
tion 3.5.2, there is no symmetry breaking in the ground state with the finite
size n. When the spin inversion term is added, the measured magnetization
approaches zero; that is, it helps to recover the spin inversion symmetry and
thus makes the optimized state more close to the truly ground state.
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Figure 3.12: The convergence behavior as the symmetry terms are added.
The system size is n = 16 and D = 6

By combining different symmetries, the method is able to find the ground
state and the first few excited states of the antiferro Heisenberg model with
the next-nearest-neighbor interaction which is frustrated [28]. The method
is free from sign problems because the transition probability from states to
states involves with F 2(S) which is definitely positive. We extend the method
to the open boundary condition and the results are summarized in Table 3.2
and in Fig. 3.13. As shown in Fig. 3.13, we can clearly see that the peak of
the energy level is caused by the level crossing of the states with different
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symmetries. In Fig. 3.13(a), at J2/J1 = 0.5, the energy per site of the ground
state and the singlet excited state both are −3

8
regardless of the site number.

It is called the Majumdar-Ghosh point [23]. The ground state and the singlet
excited state are both doubly degenerate dimer products of singlet pairs on
neighboring sites. On the other hand, in Fig. 3.13(b), only the ground state
becomes dimer products of singlet pairs at J2/J1 = 0.5 and the energy is also
−3

8
regardless of the site number.

Table 3.2: Symmetry combinations

PBC n = 4l n = 4l + 2
(z, t, r) (z, t, r)

Ground singlet (+1,+1,+1) (−1,−1,−1)
Excited singlet (+1,−1,+1) (−1,+1,−1)
Excited triplet (−1,−1,−1) (+1,+1,+1)

OBC n = 4l n = 4l + 2
(z, r) (z, r)

Ground singlet (+1,+1) (−1,−1)
Excited (−1,+1) (+1,−1)

Excited triplet (−1,−1) (+1,+1)
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Figure 3.13: Optimized energy for the antiferro Heisenberg model with the
next-nearest-neighbor interaction. The system size is n = 16 and D = 6; the
relative errors in the energy are less than 10−4.
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Chapter 4

Imaginary time evolution with
TEBD

In this chpter, the variant form of the MPS is used to simulate the imaginary
time evolution. We first review the imaginary time evolution and the normal-
ization conditions of MPS. Then the TEBD algorithm and the generalization
of it, the infinte time-evolving block decimation (iTEBD), are discussed. Us-
ing these methods, we discuss the feasibility of the update scheme for the
finite translationally invariant periodic systems and the ground state proper-
ties of the infinite transverse Ising model. The results show that entanglement
indeed plays an important role in quantum phase transition.

4.1 Imaginary time evolution

The imaginary time evolution is a method to obtain the ground state of a
system. Consider a time independent Hamiltonian H , the time dependent
Schrödinger equation is

ih̄
∂|Ψ(t)〉
∂t

= H|Ψ(t)〉.

It can be solved by the seperation of variables. The solution is

|Ψ(t)〉 =
∑

i

cie
−iEit/h̄|ψi〉, (4.1)

where ci are complex numbers, Ei are the eigenvalues of H and |ψi〉 are the
eigenstates of H . Set τ = it

h̄
, Eq. (4.1) becomes

|Ψ(τ)〉 =
∑

i

cie
−τEi|ψi〉. (4.2)
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Because the ground state energy is the lowest, as τ → ∞, only the ground
state |ψ0〉 remains. In other words, the imaginary time evolution operator
e−τH can be viewed as a projection operator which projects out the ground
state. It can re-expressed as

|ψ0〉 =
e−τH |Ψ〉
‖e−τH |Ψ〉‖ τ →∞. (4.3)

For the transverse Ising model with n spins,

H =

n∑
i=1

σz
i σ

z
i+1 + hσx

i =

n∑
i=1

H
(z)
i +H

(x)
i . (4.4)

The evolution operator e−τH is a 2n × 2n matrix which is hard to handle on
a computer if n is large; however, we can appoximate the evolution operator
by the second order Suzuki-Trotter decomposition [29],

eδ(F+G) = eδF/2eδGeδF/2 +O(δ3),

where F and G do not commute. Since σz
i σ

z
i+1 does not commute with the

operator σx
i , we decompose the state into local operators

e−τH = (e−δH)
τ
δ ≈ ([

n∏
i=1

e−δH
(x)
i /2][

n∏
i=1

e−δH
(z)
i ][

n∏
i=1

e−δH
(x)
i /2])

τ
δ . (4.5)

The operators e−δH
(z)
i and e−δH

(x)
i /2 can be transformed exactly into the ma-

trix form by the similarity transformation M(e−δH) = Ue−δHdiagU † where
Hdiag is the diagonalized H and U is formed by the eigenvectors of H . The
way to decompose the Hamiltonian is not unique. See Ref. [3] for another
way to decompose the Hamiltonain.

4.2 Normalization conditions for MPS

Recall that in section 2.2.3, we have the following equation:

|Ψ〉 =

χk∑
αk=1

λαk
|ψ[1···k]

αk
〉|ψ[k+1···n]

αk
〉, (2.6)

|ψ[k+1···n]
αk

〉 =

χk+1∑
αk+1=1

∑
sk+1

Γ[k+1]sk+1
αkαk+1

λαk+1
|sk+1〉|ψ[k+2···n]

αk+1
〉, (2.9)
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|ψ[1···k]
αk
〉 =

χk−1∑
αk−1=1

∑
sk

λαk−1
Γ[k]sk

αk−1αk
|ψ[1···k−1]

αk−1
〉|sk〉. (2.10)

Requiring |ψ[k+1···n]
αk 〉 and |ψ[1···k]

αk 〉 to be orthonormal states, the vectors λ and
the matrices Γ obey the following normalization conditios,

〈Ψ|Ψ〉 =

χk∑
αk=1

λ2
αk

= 1, (4.6)

and from Eq. (2.9) and Eq. (2.10) we have

〈ψ[k+1···n]
α′

k
|ψ[k+1···n]

αk
〉 =

χk+1∑
αk+1=1

∑
sk+1

Γ
[k+1]sk+1∗
α′

kαk+1
λαk+1

Γ[k+1]sk+1
αkαk+1

λαk+1
= δα′

kαk
,

(4.7)
and

〈ψ[1···k]
α′

k
|ψ[1···k]

αk
〉 =

χk−1∑
αk−1=1

∑
sk

λαk−1
Γ

[k]sk

αk−1α′
k
λαk−1

Γ[k]sk
αk−1αk

= δα′
kαk
. (4.8)

The normalization conditions are important when applying the imaginary
time evolution operator e−δH to the state |Ψ〉 because e−δH is not an unitary
operator; that is, after e−δH acts on a normalized state |Ψ〉, we have |Ψ′〉 =
e−δH |Ψ〉, and 〈Ψ′|Ψ′〉 no longer equals to 1. This causes the convergence
process to be unstable during the numerical simulation, so it is important
to normalize the state properly after applying a non-unitary operator. On
the other hand, normalization by multiplying the inverse of 〈Ψ′|Ψ′〉 is not
enough to keep Γ and λ in the normalization conditions. In the next section,
we discuss a method for normalization which can solve this problem.

In the previous chapter, the normalzation conditions are not emphasized
because we reach the ground state by varying the parameters in the function
〈Ψ|H|Ψ〉/〈Ψ|Ψ〉. The numerical simulation is stable regardless of the nor-
malization conditions. The wave function can be normalized by multiplying
the inverse of 〈Ψ|Ψ〉 after the optimized matrices are obtained.

4.3 Updating the matrices

As menotioned in section 3.4.2, a useful feature of the MPS is that it allows
local update. For a one-local operator Ô(1) acting on the kth spin, the matrix
Γ[k]sk is updated to Γ̃[k]sk according to

Γ̃[k]sk
αkαk+1

=
∑
s′k

Ô
(1)

sks′k
Γ

[k]s′k
αkαk+1 . (4.9)

35



Updating a two-local operator Ô(2) acting on the kth and the k + 1th
spin involves updating the matrices Γ[k], Γ[k+1] and the λ on the bond k.
Recall that in section 2.2.1, the Schmidt decomposition of a state |Ψ〉 can be
found by performing the singular value decomposition to the matrix that de-
scribes the relation of the two subsystems of the state |Ψ〉. From Eq. (2.11),∑

αk
λαk−1

Γ
[k]sk
αk−1αkλαk

Γ
[k+1]sk+1
αkαk+1 λαk+1

describes the relation of the two subsys-

tems |ψ[1···k−1]
αk−1 〉|sk〉 and |sk+1〉|ψ[k+2···n]

αk+1 〉 jointed by λαk
on the bond k. We

define a tensor

Θsksk+1
αk−1αk+1

=

D∑
αk=1

λαk−1
Γ[k]sk

αk−1αk
λαk

Γ[k+1]sk+1
αkαk+1

λαk+1
, (4.10)

and the staet |Ψ〉 is rewritten as

|Ψ〉 =
D∑

αk−1=1

D∑
αk=1

D∑
αk+1=1

∑
sk,sk+1

Θsksk+1
αk−1αk+1

|ψ[1···k−1]
αk−1

sk〉|sk+1ψ
[k+2···n]
αk+1

〉. (4.11)

When the operator Ô(2) acts on the state |Ψ〉, the tensor Θ changes as

Θ̃sksk+1
αk−1αk+1

=
∑

s′ks′k+1

Ô
(2)sksk+1

s′ks′k+1
Θ

s′ks′k+1
αk−1αk+1. (4.12)

To find the updated Γ and λ, we recast the tensor Θ̃ into a 2D × 2D
matrix

M(skαk−1)(sk+1αk+1) =

(
Θ̃↑↑

αk−1αk+1
Θ̃↑↓

αk−1αk+1

Θ̃↓↑
αk−1αk+1

Θ̃↓↓
αk−1αk+1

)
, (4.13)

Using the singular value decomposition, the matrix M is decomposed into
two unitary matrices and one diagonal matrix. We truncate the the diagonal
entries of the diagoal matrix by keeping only the D largest diagonal entries,
and the D largest diagonal entries are identified as the updated λ; that is,

M(skαk−1)(sk+1αk+1) =

(
U (↑) · · ·
U (↓) · · ·

)
︸ ︷︷ ︸

2D

(
λ̃[k] 0

0
. . .

)(
V (↑) V (↓)

· · · · · ·
)}

2D,

(4.14)
where λ̃[k] is the updated vector of λ on the bond k and the dotted parts are
all discarded. Comparing Eq. (4.14) with Eq. (4.13), we obtain the updated
matrices Γ̃ by

Γ̃[k]sk
αk−1αk

= (λ[k−1]
αk−1

)−1Usk
αk−1αk

, Γ̃[k+1]sk+1
αkαk+1

= V sk+1
αkαk+1

(λ[k+1]
αk+1

)−1. (4.15)

36



Figure 4.1: Translationally invariance translating by two.

There is another way to find the updated matrices and vectors, see Ref. [2].
For a translationally invariant system, the matrices Γ and the vectors

λ should be site independent; however, the above update method breaks
the translational invarinace translating by one site, but it still preserves the
translational invariance translating by two sites. So we define matrices Γ[A]sA

on odd sites, Γ[B]sB on even sites and two vectors λ[A] on odd bonds, λ[B] on
even bonds. It is shown in figrue 4.1. In this circumstance, when performing
the imaginary time evolution, instead of applying Eq. (4.5), we can just apply
the following evolution operators

[e−δH
(x)
A /2e−δH

(x)
B /2e−δH

(z)
BAe−δH

(z)
ABe−δH

(x)
A /2e−δH

(x)
B /2]

τ
δ . (4.16)

It is because the matrices are identical on even sites or on odd sites, and
the terms in each square bracket are commute in Eq. (4.5). Updating a set
of local matrices effectively updates other matrices in paralell. A sketch for
this procedure is shown in Fig. 4.2. Although we decompose the matrices
into A and B two groups, the numerical results show that we still obtain the
translational invariance translating by one site after many updates.

We now introduce a method to keep Γ and λ in the normalization condi-
tions [30]. We describe the method for the translationally invariant system.

Figure 4.2: Update the matrices in parallel. The dashed square are updated
simutaneously.
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First, we form the matrix MAB
(sAα)(sBγ) =

∑
β λ

[B]
α Γ

[A]sA

αβ λ
[A]
β Γ

[B]sB

βγ λ
[B]
γ . We per-

form the singular value decomposition to MAB and obtain a new vector λ̃[A]

and the new matrices Γ̃[A], Γ̃[B]. The Schmidt rank does not increase in this
case because it dose not involve any interaction between the two sites. We
rescale λ̃[A] to satistfy

∑D
α=1 λ̃

[A]2
α = 1. Using Γ̃[A], Γ̃[B] and λ̃[A], we form

the matrix MBA and again obtain the new vector λ̃[B] and the new matrices.
Repeating the above procedure over and over decreases the error in the nor-
malization of the martices Γ. We perform this nomalization procedure after
evolving the imaginary time δ each time.

4.4 The form of the wave function

For the transverse Ising model, the ground states of the finite periodic sys-
tem and the infinite system both have the translational invairance, so the
above update mehtod is suitable for studying these systems. In this section,
we discuss the wave function form and the measurement method for these
systems.

4.4.1 Infinite system

To construct the wave fuction form of the infinite system, we notice the form
in Eq. (2.11)

|Ψ〉 =

χk−1∑
αk−1=1

χk∑
αk=1

χk+1∑
αk+1=1

∑
sk,sk+1

λαk−1
Γ[k]sk

αk−1αk
λαk

Γ[k+1]sk+1
αkαk+1

λαk+1
|ψ[1···k−1]

αk−1
〉|sk〉|sk+1〉|ψ[k+2···n]

αk+1
〉. (2.9)

This decomposition of the state |Ψ〉 does not contain any information about
the boundary condition. For an infinite system, the decomposition can
be visualized as in Fig. 4.3. λαk−1

Γ
[k]sk
αk−1αk stores the information of the

state |ψ[−∞···k−1]
αk−1 〉|sk〉 and Γ

[k+1]sk+1
αkαk+1 λαk+1

stores the information of the state

|sk+1〉|ψ[k+2···∞]
αk+1 〉. The Schmidt coefficients λαk

describes how these two states
are jointed together. Thus, the decomposition is actually an effective form
for the infinite systems.

For the infinite system with translational invariance, we use the following
form,

|Ψ〉 =

D∑
α,β,γ=1

∑
sA,sB

λαΓ
[A]sA

αβ λβΓ
[B]sB

βγ λγ |ψ[−∞···B]
α 〉|sA〉|sB〉|ψ[A···∞]

γ 〉. (4.17)
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bond k

Figure 4.3: Visualization of the decomposition.

To measure the physical quantities, the site on which the operator acts is
transformed to the spin basis. The expectation value of the operator Ô(1)

acting on a single site is

〈Ψ|Ô(1)|Ψ〉 =
D∑

α,β=1

∑
sA,s′A

[λ[B]
α (Γ

[A]sA

αβ )∗λ[A]
β ]Ô

(1)
sA,s′A

[λ[B]
α Γ

[A]s′A
αβ λ

[A]
β ], (4.18)

and the expectation value of a two-local operator Ô(2) acting on the site and
the nearest site is written

〈Ψ|Ô(2)|Ψ〉 =

D∑
α,β,β′,γ=1

∑
sA,sB,s′A,s′B

[λ[B]
α (Γ

[A]sA

αβ )∗λ[A]
β (Γ

[B]sB

βγ )∗λ[B]
γ ]

Ô
(2)
sA,sB,s′A,s′B

[λ[B]
α Γ

[A]s′A
αβ′ λ

[A]
β′ Γ

[B]s′B
β′γ λ[B]

γ ]. (4.19)

We have tried using the QMC with stochastic optimization to optimize
the above wave fuction to see whether it would converge to the infinite case or
not. It turns out that it does not converge to a fixed value. It can be explained
by the fact that the decomposition contains no boundary information ,and
thus there is too much degrees of freedom for variational methods.

4.4.2 Finite system

For the n spins periodic system with translational invariance, the following
form seems to be a good candidate:

|Ψ〉 =
∑

s1,··· ,sn

tr(Γ[A]s1λ[A]Γ[B]s2λ[B] . . . λ[A]Γ[B]snλ[B])|s1s2 . . . sn〉. (4.20)

To measure the physical quantity, we group the matrices and vecotrs into

A(sk) ≡ Γ[A]skλ[A] B(sk) ≡ Γ[B]skλ[B] (4.21)

where A(sk) and B(sk) are D ×D matrices. As mentioned in section 3.4.2,
we form the D2 × D2 tensors T [A](k) =

∑
sk
A(sk) ⊗ A(sk) and T [B](k) =
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∑
sk
B(sk)⊗B(sk); also, when the operator Õ acts on the kth site, we have

T̃ [A](k) =
∑

sk
A(sk) ⊗ Ã(sk) or T̃ [B](k) =

∑
sk
B(sk) ⊗ B̃(sk). Because the

matrices and vectors are all kept in the normalization condition, 〈Ψ|Ψ〉 = 1,
the expectation value is written

〈Ô〉 = tr(T [A](1)T [B](2) · · · T̃ [m](k) · · ·T [A](n−1)T [B](n)), (4.22)

where m = A or B depending on the odd site or the even site. Furthermore,
the cyclic property of the trace can be used to simplify the calculation.

However, in this case, using the above wave function is only an approxi-
mation because there is no information about the periodic boundary during
the process of update. Take the simplest case for example, consider a two
spins system, the schmidt rank is two. On the other hand, the above update
scheme gives a schmidt rank D regardless of the lattice size. To fully account
for the boundary effect, one should use matrices and vectors which depend
on position. However, in this scheme, we need to update the matrices and
vectors site by site and a lot of computing time and memory is requried. The
QMC algorithm developed in Chapter 3 avoids this porblem and there is no
explicit truncation during the update. The boundary effect incorporates into
the wave fuction automatically.

4.5 Imaginary time evolution algorithm

1. Decompose the Hamiltonian into two non-commute groups F and G.
The operators in each group commutes.

2. Perform the Suzuki-Trotter decomposition to the imaginary time evo-
lution operator e−τH .

e−τH = [e−δ(F+G)]
τ
δ ≈ [e−δF/2e−δGe−δF/2]

τ
δ

where δ > 0 and δ/τ � 1.

3. Apply the evolution operator evolving imaginary time δ 1 to the state.

|Ψtimag+δ〉 ≈ e−δF/2e−δGe−δF/2|Ψtimag
〉.

4. Perform the nomalization procedure.

5. Go back to 3 until it reaches time τ or until it reaches a optimal state.

1We use progressively decreasing values of δ ∈ {0.1, 0.01, 0.001, ...} to reach a better
convergence.
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4.6 Infinite transeverse Ising model

In this section, we investigate the infinite transverse Ising model by iTEBD.
The infinite transverse Ising model can be solved exactly via femioniza-
tion [31]. Comparing the simulation results with the exact solutions, it shows
that the imaginary time evolution with MPS provides accurate approxima-
tion for the ground state.
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Figure 4.4: The distribution of the singular values λi for different h.

Fig. 4.4(a) shows the distribution of the singular values λi as a function
of h. Recall that λi can be viewed as a measure of entanglement. We can
compare it with the single site entanglement which is obtained from the
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von Neumann entropy S calculated from the single site density matrix ρ1,
S = −tr(ρ1logρ1). The single site entanglement can be viewed as a measure
of how entangled the lattice is [32]. In Fig. 4.5 we plot the exact single
site entanglement, and we also plot the exact nearest site correlation [31],
Cz

12 = 〈σz
1σ

z
2〉 − 〈σz

1〉〈σz
2〉. The two show similar behavoir. The decreasing

rate of the distribution of λi shows a qualitative agreement with the single
site entanglement. For a fixed h, we observe that the singular values decrease
exponentially and then after some value i, the decreasing rate becomes slower.
Furthermore, as h approaches to 1, the decreasing rate of the singular values
also becomes slower, indicating that the system has a maximum entanglement
at the critical point [12, 32].
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Figure 4.5: The single site entanglement and the nearest site correlation.

Fig. 4.6 shows a typical convergence process of the energy. We compare
the ground state energy with the exact solutions. It is shown in Fig. 4.7. With
D = 1, the wave function is approximated as a product state which fails to
account for the entanglement. This result corresponds to the molecular field
theory [33] which is a mean field theory. With D > 1, as D grows larger, the
ground state energy obtained by the imaginary time evolution converges to
the exact energy. There are two main errors. One is the error from Suzuki-
Trotter decomposition, and one is the error from the truncation steps in the
updating process. Comparing Fig. 4.4(a) with Fig. 4.7, the cuvrve of the
relative error of energy has a similar shape with the decreasing rate of λi as
a function of h. This indcates that the main error comes from the truncation
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error.
In Fig. 4.8, we plot the magnetization and compare them with the exact

solution. The D = 1 case corresponds to the mean field results which ap-
proximate the state as a product state, and the dotted line is obtained from
the molecular field theory. In the case of D = 10, the magnetization 〈σx〉
shows a good agreement with the exact solution. Although the magnetiza-
tion 〈σz〉 cannot be obtained via fermionization because of the spin inversion
invariance of the hamiltoian, it can be obtained from the large−k limit of
the correlation function 〈σz

1σ
z
k〉 [31]. Fig. 4.9 shows that modest values of

D can produce good approximations of the ground state, and as D becomes
larger, the drop of the magnetization approaches the critical value h = 1.
Comparing Fig. 4.5 with Fig. 4.8, the magnetization of the product state
approximation begins to deviate as soon as the entanglement begins to grow.
Also, the critical point in the product state approximation is not at h = 1
but h = 2. These results show that entanglement is essential to the quantum
phase transition. The product state aprroximation fails to account for the
correct characteristics of the system when it is near the critical point.
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Figure 4.6: Energy convergence process.
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Figure 4.8: Magnetization as a function of h. The dotted lines are the
molecular field results.
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Chapter 5

Conclusions

In this thesis, we have reviewed the construction of MPS from two per-
spectives: desity matrix renormalization group (DMRG) and quantum in-
formation theory (QIT). The connection between these two perspectives are
shown leading to a clear picture of the physical meaning, which relates to en-
tanglement, about the effectiveness of turncation steps in DMRG. Next, We
develope two algorithms in detail within MPS ansatz which can deal with one
dimensional quantum spin systems. First, we develope quantum Monte Carlo
simulation with stochastic optimization. The notion behind this method is
easy to understand. By rewriting the equation of expectation values, the
sampling of states becomes classical-like. We show the convergence behav-
ior of this method with the periodic and open boundary conditions. The
results show excellent agreement with exact solutions even at critical point.
We apply this method to a detailed study of the transverse Ising model.
In addition, this method is free from sign-problem. By combining different
symmetries, we calculate the gound state and the first few excited states of
the Heisenberg model with the next nearest enighbor interaction, and the re-
sults give a clear evidence that the peak of the energy levels comes from the
crossing of different symmetry states. Second, we develop the time-evolving
block decimation algorithm (TEBD) and gives a detailed procedure for the
imaginary tme evolution. We discuss the feasibility to apply TEBD to the
periodic boundary condition. We also apply the infinite TEBD to the infi-
nite transverse Ising model. The distribution of the Schmidt coefficients as a
function of h is shown. Comparing with the convergence behavior of the en-
ergy for different D, we identify the main error source in the imaginary time
evolution to be the trucation error. Finally, comparing the single site en-
tanglement, the nearest site correlation and the phase diagram, these results
imply that the entanglement can be used as an indicator to the quantum
phase transition.
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