請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93073完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周家蓓 | zh_TW |
| dc.contributor.advisor | Chia-Pei Chou | en |
| dc.contributor.author | 董皓 | zh_TW |
| dc.contributor.author | Hao Tung | en |
| dc.date.accessioned | 2024-07-17T16:16:32Z | - |
| dc.date.available | 2024-07-18 | - |
| dc.date.copyright | 2024-07-17 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-14 | - |
| dc.identifier.citation | 1.交通部,道安資訊查詢網,2024年。https://roadsafety.tw/Dashboard/Custom?type=%E7%B5%B1%E8%A8%88%E5%BF%AB%E8%A6%BD%E5%9C%96%E8%A1%A8
2.交通部,交通工程規範,2021年。 3.政府資訊研究系統GRB,關鍵詞文字雲分析,2024年6月。https://www.grb.gov.tw/search;keyword=%E9%9B%99%E6%95%88%E6%A8%99%E7%B7%9A;type=GRB05 4.中華民國國家標準 CNS 15834,道路標線使用性能,經濟部標準檢驗局,2015年。 5.中華民國國家標準 CNS 1333,道路標線塗料,經濟部標準檢驗局,2017年。 6.中華民國國家標準 CNS 4342,交通反光標誌塗料用玻璃珠,經濟部標準檢驗局,2016年。 7.ASTM D7942 - 15. (2023). Standard Specification for Thermoplastic Pavement Markings in Non Snow Plow Areas. 8.United States Department of Transportation - Federal Highway Administration. (2023). Manual on Uniform Traffic Control Devices (MUTCD). https://mutcd.fhwa.dot.gov/ 9.waka kotahi nz transport agency. (2022). Road Marking Materials. https://www.nzta.govt.nz/resources/road-marking-materials/ 10.bsi. (2018). BS EN 1436:2018 Road Marking Materials. Road Marking Performance for Road Users and Test Methods. 11.日本高速道路株式會社,レーンマク施工管理要領,2017年。 12.Institute of coating technologies . (2022). ΣΧΕΔΙΟ ΕΛΟΤ ΤΠ 1501-05-04-02-00:2022. https://coatinginstitute.org/etep/ 13.instituto de pesquisas rodoviárias – ipr . (2018). NORMA DNIT 100/2018 – ES. https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/coletanea-de-normas/coletanea-de-normas/especificacao-de-servico-es/dnit_100_2018_es.pdf 14.中華人民共和國國家標準,道路交通標線質量要求和檢測方法,2009年。http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=353CFB3F50B9612DF0ACEF4CF6CF8033 15.Hong Kong Highways Department Research & Development Division. Guidance Notes ON Road Markings. 2016 16.Carina, F. (2022). Nordic certification system for road marking materials. Version 9:2022. http://vti.diva-portal.org/smash/get/diva2:822945/FULLTEXT01.pdf 17.Texas department of transportation. (2014). Special Specification 6149 All-Weather Thermoplastic Pavement Markings. https://ftp.txdot.gov/pub/txdot-info/cmd/cserve/specs/2014/spec/ss6149.pdf 18.Cawangan jalan. (2017). STANDARD SPECIFICATION FOR ROAD WORKS JKR/SPJ/2017-S6. 19.Korean National Police Agency. (2022). Traffic Safety Facilities (Road Marking) Installation and Management Manual. 20.Singapore standard. (2022). SS 589:2013 (2022) Specification for Hot-Applied Thermoplastic Road Marking Materials – Materials, Performance and Application. 21.Indian roads congress. (2015). IRC-35:2015. Code of Practice for Road Marking (Second Revision). https://Law.Resource.Org/Pub/in/Bis/Irc/Irc.Gov.in.035.2015.Pdf. 22.Ministry of transportation legal bureau. (2019). REGULATION OF THE DIRECTOR GENERAL OF LAND TRANSPORTATION NUMBER: KP. 106/AJ.501/DRJD/2019 Concerning Technical Instructions for Road Markings. https://Law.Resource.Org/Pub/in/Bis/Irc/Irc.Gov.in.035.2015.Pdf. 23.Ministry of development government of spain. (2012). Guide for the Project and Execution of Horizontal Signaling Works. https://Law.Resource.Org/Pub/in/Bis/Irc/Irc.Gov.in.035.2015.Pdf. 24.Austroads technical specification. (2021). ATS-4110-21 Longitudinal Pavement Marking. https://Austroads.Com.Au/Publications/Test-Methods/Ats-4110/Media/ATS-4110-21_Longitudinal_Pavement_Marking.Pdf. 25.Department of public works and highways. (2013). DPWH Standard Specification for Item 612 - Reflective Thermoplastic Stripping Materials (Solid Form) with Performance Requirements. https://Www.Dpwh.Gov.Ph/Dpwh/Issuances/Department-Order/2967. 26.Ministry of transport and public works. (2022). 210 - Requirements for the Execution of Pavement Demarcations on National Routes. 27.National standards. (2018). Traffic Paints – Thermoplastic Road Marking Materials – Specifications, Test Methods, Constructions and Acceptances. https://iltech.com.vn/Data/upload/files/Tai%20lieu/ILTech_TCVN%208791_2018_Son%20vach%20duong%20he%20nhiet%20deo.pdf 28.European union road federation. (2015). Marking the Way towards a Safer Future. https://erf.be/wp-content/uploads/2018/07/ERF-Paper-on-Road-Markings_release_v2.pdf 29.World health organization. (2023). Global Status Report on Road Safety 2023. https://www.who.int/publications/i/item/9789240086517 30.Board, T. R., National Academies of Sciences, Engineering, & Medicine. (2022). Performance Criteria for Retroreflective Pavement Markers (A. M. Pike, T. P. Barrette, S. Hallmark, N. Oneyear, G. Basulto-Elias, O. Smadi, R. Srinivasan, W. J. Kumfer, T. Saleem, F. Ye, P. J. Carlson, H. G. Hawkins, & T. E. Lindheimer, Eds.). The National Academies Press. https://doi.org/10.17226/26814 31.Calvi, A. (2015). A Study on Driving Performance Along Horizontal Curves of Rural Roads. Journal of Transportation Safety & Security, 7(3), 243–267. https://doi.org/10.1080/19439962.2014.952468 32.Carlson, P. J., Park, E. S., & Kang, D. H. (2013). Investigation of Longitudinal Pavement Marking Retroreflectivity and Safety. Transportation Research Record: Journal of the Transportation Research Board, 2337(1), 59–66. https://doi.org/10.3141/2337-08 33.Avelar, R. E., & Carlson, P. J. (2014). Link between Pavement Marking Retroreflectivity and Night Crashes on Michigan Two-Lane Highways. Transportation Research Record: Journal of the Transportation Research Board, 2404(1), 59–67. https://doi.org/10.3141/2404-07 34.Fiolić, M., Babić, D., Babić, D., & Tomasović, S. (2023). Effect of road markings and road signs quality on driving behaviour, driver’s gaze patterns and driver’s cognitive load at night-time. Transportation Research Part F: Traffic Psychology and Behaviour, 99, 306–318. https://doi.org/10.1016/j.trf.2023.10.025 35.Burghardt, T. E., Maki, E., & Pashkevich, A. (2021). Yellow thermoplastic road markings with high retroreflectivity: Demonstration study in Texas. Case Studies in Construction Materials, 14, e00539. https://doi.org/10.1016/j.cscm.2021.e00539 36.Burghardt, T. E., Pashkevich, A., Fiolić, M., & Żakowska, L. (2019). Horizontal Road Markings with High Retroreflectivity: Durability, Environmental, and Financial Considerations. 37.Burghardt, T. E., & Pashkevich, A. (2023). PREMIUM ROAD MARKINGS: ONE TIME HIGHER EXPENSE FOR LOWER OVERALL COST. New Horizons. 38.Songchitruksa, P., Ullman, G. L., & Pike, A. M. (2011). Guidance for Cost-Effective Selection of Pavement Marking Materials for Work Zones. Journal of Infrastructure Systems, 17(2), 55–65. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000043 39.Grosges, T. (2008). Retro-reflection of glass beads for traffic road stripe paints. Optical Materials, 30(10), 1549–1554. https://doi.org/10.1016/j.optmat.2007.09.010 40.Smadi, O., Hawkins, N., Aldemir-Bektas, B., Carlson, P., Pike, A., & Davies, C. (2014). Recommended Laboratory Test for Predicting the Initial Retroreflectivity of Pavement Markings from Glass Bead Quality. Transportation Research Record: Journal of the Transportation Research Board, 2440(1), 94–102. https://doi.org/10.3141/2440-12 41.Siyahi, A., Kavussi, A., & Boroujerdian, A. M. (2016). Enhancing Skid Resistance of Two-Component Road Marking Paint using Mineral and Recycled Materials. https://api.semanticscholar.org/CorpusID:56426322 42.Rodin III, H., Nassiri, S., Yekkalar, M., Pacific Northwest Transportation Consortium (PacTrans) (UTC), University of Washington. University Transportation Center for Region 10, & Washington State University. Department of Civil and Environmental Engineering. (2018). Evaluation of Motorcyclists’ and Bikers’ Safety on Wet Pavement Markings. https://rosap.ntl.bts.gov/view/dot/63404 43.BURGHARDT, T. E., KÖCK, B., PASHKEVICH, A., & FASCHING, A. (2023). Skid resistance of road markings: Literature review and field test results. Roads and Bridges - Drogi i Mosty, 22(2), 141–165. https://doi.org/10.7409/rabdim.023.007 44.Coves-Campos, A., Bañón, L., Coves-García, J. A., & Ivorra, S. (2018). In Situ Study of Road Marking Durability Using Glass Microbeads and Antiskid Aggregates as Drop-On Materials. Coatings, 8(10), 371. https://doi.org/10.3390/coatings8100371 45.ASTM E1710, “Standard Test Method for Measurement of Retroreflective Pavement Marking Materials with CEN-Prescribed Geometry Using a Portable Retroreflectometer”, 2018. 46.ASTM E2302, “Standard Test Method for Measurement of Retroreflective Pavement Marking Materials with CEN-Prescribed Geometry Using a Portable Retroreflectometer”, 2022. 47.ASTM E2177,” Standard Test Method for Measuring the Coefficient of Retroreflected Luminance (RL) of Pavement Markings using the Bucket Method in a Condition of Wet Recovery”, 2022. 48.Yakopson, S., & Greer, R. W. (2016). Preformed thermoplastic pavement marking and method for high skid resistance with maintained high retroreflectivity (World Intellectual Property Organization Patent WO2016081078A1). https://patents.google.com/patent/WO2016081078A1/en 49.周家蓓主持,陳艾懃協同主持,「熱處理聚酯標線於不同使用環境下抗滑能力與反光強度標準之研究」,公路總局材料試驗所委託研究,民國106年11月。 50.ASTM D7585/D7585M-10, “Standard Practice for Evaluating Retroreflective Pavement Markings Using Portable Hand-Operated Instruments”, 2022. 51.曾翊瑄,「雙校標線材料配比分析與實務應用探討」,國立臺灣大學土木工程學系碩士論文,民國112年8月。 52.Asdrubali, F., Buratti, C., Moretti, E., D’Alessandro, F., & Schiavoni, S. (2013). Assessment of the Performance of Road Markings in Urban Areas: The Outcomes of the CIVITAS RENAISSANCE Project. The Open Transportation Journal, 7(1), 7–19. https://doi.org/10.2174/1874447801307010007 53.內政部,市區道路及附屬工程設計規範(111 02修正版)。https://myway.nlma.gov.tw/wiki/wikimain/2 54.交通部中央氣象署,氣候月平均資料,民國113年6月。https://www.cwa.gov.tw/V8/C/C/Statistics/monthlymean.html 55.Pike, Adam M., and Bharadwaj Bommanayakanahalli. “Development of a Pavement Marking Life Cycle Cost Tool.” Transportation Research Record: Journal of the Transportation Research Board 2672(12):148–57, 2018. 56.Kansas department of transportation. (2002). Kansas Department of Transportation Pavement Marking Policy. Kansas Department of Transportation. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93073 | - |
| dc.description.abstract | 道路標線作為交通工程中至關重要的一環,主要負責指示、警告與禁制之管制交通目的,不僅能發揮反光性能清楚地提供道路資訊,同時也能保持抗滑性能避免用路人打滑,眾多研究亦指出良好的標線能有效降低交通事故數,顯示標線對於道路交通安全至關重要。然而因標線之反光與抗滑性能係分別仰賴玻璃珠與抗滑骨材等不同材料機制,兩者在性能表現上又存有物理性質之互制關係,故縱觀國內外皆鮮少有同時兼顧反光與抗滑之雙效標線研究。
為此本研究之研究目的係力求標線能兼顧優異的反光與抗滑雙性能表現,基於多次標線材料配比實驗,確定雙效標線甲料與乙料之內摻與外撒材料配比,於市區道路現地劃設並展開為期十二個月之回歸反射RL、擴散反射Qd、抗滑係數BPN標線性能長期追蹤檢測。研究結果顯示等比例混合料外撒之甲料不但保有充分的抗滑性能(BPN≥50),更具有亮眼的反光性能(RL≥300 mcd/m2/lx);而前後各自撒佈玻璃珠與抗滑骨材的乙料亦有良好的反光表現(RL≥200 mcd/m2/lx),抗滑表現甚至與僅注重高抗滑之II型標線相當(BPN≥ 55)。同時根據國內外標線規範回顧與實驗數據支持,提出施工驗收與維護標準標線性能建議門檻。進而規劃標線試片外撒量成效實驗,隨著使用材料與外撒量變換分析其雙性能之成效差異與材料經濟性,作為日後標線材料之選擇建議。此外本研究亦建立標線性能指標作為標線性能之等級區分,並依照不同使用情境之性能需求評量標線之服務績效,得知雙效標線甲、乙料不論在日間或夜間、乾燥或多雨都能較一般II型標線提供更佳的服務績效。關於成本效益部分,雙效標線在郊區道路缺乏照明之環境中展露突出的反光性能,克服成本劣勢達到更佳的成本效益,可作為後續標線材料之推廣應用,以此提升道路標線之服務水準落實道路交通安全之目的。 | zh_TW |
| dc.description.abstract | Road markings play a key role of traffic engineering and perform crucial functions such as directing, warning, and regulating traffic. They provide vital road information through their reflective properties and ensure safety by preventing skidding. Numerous studies have shown that well-maintained road markings significantly reduce traffic accidents. However, achieving both high reflectivity and skid resistance in road markings presents a challenge due to the conflict between glass beads and anti-skid aggregates that enhance reflectivity and skid resistance, respectively. Therefore, very few research findings addressed this area.
The objective of this study is to develop dual-performance thermoplastic road markings that offer superior reflectivity and skid resistance simultaneously. Through extensive material proportion experiments, two types of dual-performance marking materials, Types A and B, were identified. These markings were applied on urban roads and subjected to 12 months data collection along with the conventional type II thermoplastic marking. The coefficient of retroreflected luminance (RL), luminance coefficient under diffuse illumination (Qd), and skid resistance (BPN) were assessed. The results indicate that Type A, characterized by an equal mix of materials applied externally, maintained adequate skid resistance (BPN ≥ 50) and exhibited remarkable reflectivity (RL ≥ 300 mcd/m²/lx) after serving 1 year. Type B, which involved the sequential application of glass beads and anti-skid aggregates, demonstrated great reflectivity (RL ≥ 200 mcd/m²/lx) and outstanding skid resistance (BPN ≥ 55) which is even better than type II markings. Based on a comprehensive review of international standards and experimental data, threshold values for construction acceptance and maintenance were also proposed in this research. Additionally, experimental factor designs on the drop-on materials were conducted. The findings provide valuable information for future road markings selection. Performance indicators were established to classify road marking performance levels, assessing service performance according to different usage scenarios. The research revealed that dual-performance Type A and Type B markings offer superior service performance compared to type II markings under various environment conditions. Through cost-effectiveness analysis, dual-performance markings showcased outstanding reflectivity in area with insufficient street lights, such as country roads, even their unit costs are higher than type II markings. It indicates that dual-performance markings are a viable option for widespread application, aiming to enhance the service level of road markings and ultimately improve road traffic safety. The proposed materials and application methods present a practical approach for maintaining markings’ high performances under diverse conditions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:16:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-17T16:16:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 圖次 vii 表次 x 第一章、緒論 1 1.1研究動機與目的 1 1.2研究內容與方法 2 1.3研究流程 3 第二章、文獻回顧 5 2.1我國標線相關規範檢視 5 2.2各國標線規範回顧 11 2.2.1各國標線反光性能規範 11 2.2.2各國標線抗滑性能規範 15 2.3國內外標線規範比較 17 2.4道路安全與標線性能回顧 19 2.5小結 22 第三章、研究方法 23 3.1標線性能檢測方法 23 3.1.1標線反光性能檢測 23 3.1.2標線抗滑性能檢測 25 3.1.3標線檢測點位選擇 27 3.2現地雙效標線劃設實驗 28 3.2.1標線材料配比實驗 28 3.2.1.1內摻材料之配比設計經驗 28 3.2.1.2臺大水源校區配比實驗及追蹤檢測成果 30 3.2.1.3臺大校總區配比實驗及追蹤檢測成果 36 3.2.1.4臺大竹北校區配比實驗及追蹤檢測成果 41 3.2.2現地劃設之雙效標線材料配比說明 44 3.2.3雙效標線現地劃設規劃 46 3.3標線試片外撒量成效實驗 50 3.3.1標線試片之外撒量設計 50 3.3.2外撒儀器與試片劃設步驟 53 第四章、實驗數據收集與分析 57 4.1現地雙效標線之長期追蹤成果 57 4.1.1各標線配比材料檢測數據分析 57 4.1.1.1標線回歸反射係數RL分析 57 4.1.1.2標線擴散反射係數Qd分析 61 4.1.1.3標線抗滑性能BPN分析 63 4.1.2標線性能綜合比較與建議 66 4.2標線外撒量成效之實驗結果 75 4.2.1標線試片密集檢測性能變化探討 75 4.2.2標線性能與外撒量迴歸分析與驗證 80 第五章、研究結果探討與應用 85 5.1道路標線性能指標建立 85 5.2標線服務績效分析 90 5.2.1標線使用情境之權重設定 90 5.2.2標線服務績效比較 92 5.3標線成本效益探討 98 5.3.1標線成本界定與計算 98 5.3.2標線成本效益定義 100 第六章、結論與建議 104 6.1結論 104 6.2建議 106 參考文獻 107 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 標線性能規範 | zh_TW |
| dc.subject | 成本效益分析 | zh_TW |
| dc.subject | 服務績效 | zh_TW |
| dc.subject | 英式擺錘抗滑係數BPN | zh_TW |
| dc.subject | 回歸反射輝度係數RL | zh_TW |
| dc.subject | 雙效性能 | zh_TW |
| dc.subject | Serviceability Performance | en |
| dc.subject | Road Marking performance specifications | en |
| dc.subject | Dual-Performance | en |
| dc.subject | Coefficient of Retroreflected Luminance(RL) | en |
| dc.subject | British Pendulum Number(BPN) | en |
| dc.subject | Cost Effectiveness | en |
| dc.title | 雙效標線之長期績效與成本效益分析 | zh_TW |
| dc.title | Dual Performances Road Marking's Long-term Inspection and Cost-effectiveness Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建旭;蘇育民 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Shiu Chen;Yu-Min Su | en |
| dc.subject.keyword | 標線性能規範,雙效性能,回歸反射輝度係數RL,英式擺錘抗滑係數BPN,服務績效,成本效益分析, | zh_TW |
| dc.subject.keyword | Road Marking performance specifications,Dual-Performance,Coefficient of Retroreflected Luminance(RL),British Pendulum Number(BPN),Serviceability Performance,Cost Effectiveness, | en |
| dc.relation.page | 111 | - |
| dc.identifier.doi | 10.6342/NTU202401729 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 7.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
