Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92969
Title: 曲線的函數體的位階與畢達哥拉斯數
Levels and Pythagoras Numbers of Function Fields of Curves
Authors: 王羿璁
Yi-Tsung Wang
Advisor: 李庭諭
Ting-Yu Lee
Co-Advisor: 林惠雯
Hui-Wen Lin
Keyword: 平方和,畢達哥拉斯數,函數體,圓錐曲線,代數數體,
sum of squares,level,pythagoras number,function field,conic,number field,
Publication Year : 2024
Degree: 碩士
Abstract: 在本篇文章的第二章中,我們收集了Witt的文章當中的一些結論,在其中證明了曲線在R 上的函數體的畢達哥拉斯數小於等於2。接著在第三章中我們考慮一般體上的函數體,計算圓錐曲線x^2+y^2+n在體K上的函數體F_{n/K}的位階,並證明了若 s(F_{n/K})≦2,則 p(F_{n/k})=2 當且僅當s(K)=1或者K有遺傳歐幾里得性質。此外,證明了當K=Q時,若n≡3,6,7(mod 8) 為無平方因子的正整數,則p(F_{n/Q})=5。在第三章的最後,我們證明了對於m=1,以下敘述成立:x^{2k}+n在Q(x)中是m+1個平方和當且僅當n在Q中是m個平方和;然而此敘述對於m=2,3不成立。第四章中收集了Pourchet的結論,之中證明了對於代數數體K,K(x)的畢達哥拉斯數小於等於5且Q(x)的畢達哥拉斯數恰為5。最後在第五章中我們證明了對於m=1,2,以下敘述成立:對於整係數多項式f(x),f在Q(x)中是m 個平方和當且僅當對於所有正整數n都有f(n)在Q中是m個平方和;然而此敘述對於m=3不成立。
In this paper, we collect some results of Witt’s paper in Chapter 2, which states that the pythagoras numbers of function fields of curves over R are less than 2. Next we consider the function field over general fields in Chapter 3, we compute the levels and pythagoras numbers of the function fields F_{n/K} of the conics x^2+y^2+n over a field K, and prove that if s(F_{n/K})≦2, then p(F_{n/K})=2 if and only if s(K)=1 or K is hereditarily euclidean. Moreover, for K = Q, we show that p(F_{n/Q})=5 for squarefree positive integer n with n≡3,6,7(mod 8). At the end of Chapter 3, we prove that
x^{2k}+n is the sum of m+1 squares in Q(x) if and only if n is the sum of m squares for m=1 but false for m=2,3. In Chapter 4 we collect some results of Pourchet’s paper, which states that the pythagoras number of K(x) is less than 5 for number field K and it is exactly 5 if K=Q. Finally in Chapter 5 we show that for an integer-coefficient polynomial f, f is the sum of m squares in Q(x) if and only if f(n) is the sum of m squares for all positive integers n for m = 1, 2 but false for m = 3.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92969
DOI: 10.6342/NTU202401550
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf417.16 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved