Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9286
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李達源(Dar-Yuan Lee)
dc.contributor.authorYi-Fang Wuen
dc.contributor.author吳懿芳zh_TW
dc.date.accessioned2021-05-20T20:16:00Z-
dc.date.available2011-07-14
dc.date.available2021-05-20T20:16:00Z-
dc.date.copyright2009-07-14
dc.date.issued2009
dc.date.submitted2009-07-07
dc.identifier.citation戶刈義次。1963。作物學試驗法。東京農業技術學會印行。第 159-176 頁。
行政院環保署環境檢驗所。2002。土壤中砷檢測方法-砷化氫原子吸收光譜法。 (NIEA S310.62C)。
何聖賓。2007。土化分析講義。SCA_9~4。
林聖淇、趙方傑、黃文達、徐新貴、姚佩萱、張尊國。2008。關渡平原水田土壤 砷物種與水稻植體濃度關係探討。農業工程學報,第54卷第2期。
林家棻。1967。台灣省農田肥力測定。台灣省農業試驗所報告。台灣省農業試驗 所刊行。No.28:第2頁。
徐貴新、張尊國、林聖淇。2009。北投關渡砷之調查分析,北投關渡地區砷汙染研討會論文集。pp.20-47。
郭婉菁。2008。以氧化鐵濾紙抽出法評估五價砷汙染土壤中砷的植物有效性及其毒性。國立台灣大學農業化學研究所碩士論文。
Adriano, D.C., 2001. Trace elements in terrestrial environments biogeochemistry bioavailability and risk of metals, second ed. Springer-Verlag, New York.

Aggett, J., G.A. O’Brien. 1985. Detailed model for mobility of arsenic in lacustrine sediments based on measurements in Lake Ohakuri. Environ. Sci. Technol. 19: 231-237.
Alam M.G.M., S. Tokunaga, T. Maekawa. 2001. Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere 43, 1035-1041.
Ball, D.F. 1964. Loss-on ignition as an estimate of organic matter and organic carbon in non-calcareous soil. J. Soil Sci. 15: 84-92.
Bouyoucos, G. J. 1936. Directions for making mechanical analysis of soils by the hydrometer method. Soil Sci. 42: 225-228.
Brannon, J.R., W.H. Patrick. Jr. 1987. Fixation, transformation, and mobilization of arsenic in sediments. Environ. Sci. Technol. 21: 450-459.
Cai, Y., M. Georgiadis., J. W. Fourqurean. 2000. Determination of arsenic in seagrass using inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B 55: 1411-1422.
Carina, L., M. Brigante., M. Avena. 2007. Adsorption kinetics of phosphate and arsenate on goethite. A comparative study. J. Colloid Interf. Sci. 311: 354-360.
Davies, B. E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. Proc. 38: 150-151.
Duel, L. E., A.R. Swoboda. 1972. Arsenic solubility in a reduced environment. Soil Sci. Soc. Am. J. 36: 276-278.
Elkhatib, E. A., O.L. Bennet, R.J. Wright. 1984. Arsenite sorption and desorption in soils. Soil Sci. Soc. Am. Proc. 48: 1025-1029.
Emsley, J. 1991. The elements. p. 250. In Oxford chemistry guides. Clarendon Press, Oxford, (Ed.),
Ferguson, J.F., J. Gavis. 1972. Review of arsenic cycle in natural waters. Water Res. 11:1259-1274.
Frankenberger, W.T. Jr., Ed. Environmental chemistry of arsenic. Marcel Dekker: New York, 2002.
Gambrell, R.P., R.A. Khalid, Patrick Jr., W.H., 1980. Chemical availability of mercury, lead and zinc in Mobile Bay sediment suspension as affected by pH and oxidation-reduction conditions. Environ. Sci. Technol. 14: 431-436.
Gambrell, R.P., Partrick, W.H. Jr. 1989. Cu, Zn, and Cd availability in a sludge-amended soil under controlled pH and redox potential conditions. In: Bar-Yosef, B. et al., eds. Inorganic contaminants in the vadose zone. Berlin: Springer-verlag. 89-106.
Gibson, M.J., J.G. Farmer. 1986. Multi-step sequential chemical extraction of heavy metals from urban soils. Environ. Pollut. Ser. B 11:117–135.
Goldberg, S., 2002. Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 66: 413-421.
Hickey, M.G., J.A. Kittrick. 1984. Chemical partitioning of cadmium, copper, nickel, and zinc in soils and sediments containing high levels of heavy metals. J. Environ. Qual. 13: 372–376.
Hsu, K.H., L.L. Hsieh, H.Y. Chiou, C.J. Lee., C.Y. Wang, T.H. Lee, and C.J. Chen, 1999. Comparison of characteristics and arsenic toxicity between residents of southwestern region and northeastern basin in Taiwan: A study on prevalence of hypertension. Chin J. Public. Health, Vol. 18(suppl. 1), pp. 124-133.
Huang, R. Q., S. H. Gao, W. L. Wang, S. Staunton, G. Wang. 2006. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Sci. Total Environ. 368: 531-541.
Jain, A., K.P. Raven, R. H. Loeppert. 1999. Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH- release stoichiometry. Environ. Sci. Technol. 33: 1179-1184.
Jain, A., R.H. Loeppert. 2000. Effect of competing aniona on the adsorption of arsenate and arsenite by ferrihydrite. J. Environ. Qual. 29 (5): 1422-1430.
Laverman, A.M., J.S. Blum, J.K. Schaefer, E.J.P. Phillips, D.R. Lovley, R.S. Oremland. 1995. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61:3556-3561.
Livesey, N.T.; P.M.Huang. 1981. Adsorption of arsenate by soils and its relation to selected chemical properties and anions. Soil Sci. 131: 88-94.
Loeppert, R.H., A. Jain, M.A.A. El-Haleem, B.K.Biswas. 2002. Quantity and speciation of arsenic in soils by chemical extraction. p.436. In: Y. Cai, O.C. Braids. (ed.) Biogeochemistry of Environmentally Important Trace Elements. American Chemical Society.
Ma, J. F., N. Yamaji, N. Mitani, X. Xu, Y. H. Su, S. P. McGrath, F. J. Zhao. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of the United State of America (PNAS) 105: 9931-9935.
Ma, L.Q., G.N. Rao. 1997. Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. J. Environ. Qual. 26: 259–264.
Manning, B., S. Goldberg. 1996. Modelling competitive adsorption of arsenate
with phosphate and molybdate on oxide minerals. Soil Sci. Soc. Am. J. 60:
121–131.
Manning, B.A., D.A. Martens. 1997. Speciation of arsenic(III) and arsenic(V) in sediment extracts by high-performance liquid chromatography-hydride generation atomic absorption spectrophotometry. Environ. Sci. Technol. 31: 171–177.

Masscheleyn, P. H., R.D. Delaune, W.H. Partrick, Jr. 1991a. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25: 1414-1419.
Masscheleyn, P. H., R.D. Delaune, W.H. Partrick, Jr. 1991b. Arsenic and selenium chemistry as affected by sediment redox potential and pH. J. Environ. Qual. 20: 522-527.
Masue, Y., R. H. Loeppert, T. A. Kramer. 2007. Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides. Environ. Sci. Technol. 41: 837-842.
McGeehan, S.L. 1996. Arsenic sorption and redox reactions: Relevance to transport and remediation. J. Eviron. Sci. Health A31:2319-2336.
Mckeague, J. A., J. H. Day. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 45: 49-62.
McLean, E. O. 1982. Soil pH and Lime requirement. p.119-224. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2. 2nd ed. ASA and SSSA, Madison, WI.
Meng, X.G., S.B.Bang, G.P. Korfiatis. 2000. Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res. 34: 1255-1261.
Meng, X., G.P. Korfiatis, S. Bang, K. Bang. 2002. Combined effects of anions on arsenic removal by iron hydroxides. Toxicol. Lett. 113: 103-111.
Mehra, O.P., M. L. Jackson. 1960. Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7: 317-327.
Min Z., L. Bohan, L. Ming, Z. Yong, Z. Qingru, O. Bin. 2008. Arsenic removal from contaminated soil using phosphoric acid and phosphate. Environ. Sci. 20, 75-79.
Nelson, D. W., L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p.539-579. In A. L. Page et al.(ed.) Methods of soil analysis, Part 2. 2nd ed. ASA and SSSA, Madison, WI.
Nickson,R.T.; J.M. McArthur, W.G. Burgess, K.M. Ahmed, P. Ravenscroft, M. Rahman. 1998. Arsenic poisoning of Bangladesh groundwater. Nature,395,338.
O’Nell, P. 1995. Arsenic. P.105-119. In B. J. Alloway (ed.) Heavy metals in soils. John Wiely &Sons, Inc., New York.
Onken, B.M., D.C. Adriano. 1997. Arsenic availability in soil with time under saturated and subsaturated conditions. Soil Sci. Soc. Am. J. 61: 746-752.
Palermo, M.R., R.A. Shafer, J.M. Brannon, T.E. Myers, C.L. Truitt, M.E. Zappi. 1989. Evaluation of dredged material disposal alternatives for USNavy homeport at Everett, Washington. Tech. Rep. EL-89-1. Vicksburg, MS: U.S. Army Corps of Eng. Water-ways Exp. Stn.

Patrick, W.H. Jr.; R.D. DeLaune. 1977. Chemical and biological redox systems affecting nutrient availability in coastal wetlands. Geosci Man. 18: 131-137.
Penrose, W. R. Arsenic in the marine and aquatic environ- ments: analysis occurrence and significance. CRC Crit. Rev. Enuiron. Cont. 1974, 4, 465-482.
Pierce, M. I.; C. B. Moore. 1982. Adsorption of arsenite and arsenate on amorphous iron hydroxide: Water Res. 16: 1247-1253.
Pierzynski, G.M., 1998. Past, present, and future approaches for testing metals for environmental concerns and regulatory approaches. Commun. Soil Sci. Plant Anal. 29: 1523–1536.
Rabenhorst, M. C. 1988. Determination of organic and carbonate carbon in calcareous soils using dry combustion. Soil Sci. Soc. Am. J. 52: 965-969.
Rubin, E. J., W. A. Dean. 1947. Anion exchange in soils. Ⅱ. Methods of study. Soil Sci. 63: 389-397.
Sadiq M., T.H. Zaida, A.A. Mian. 1983. Environmental behaviour of arsenic in soils: Theoretical Water. Air and Soil Pollution. 20: 369-377.
Sakata, M. 1987. Relationship between adsorption of arsenic(III) and boron by soil and soil properties. Enuiron. Sci. Technol, 21: 1126-1130.
Soon, Y. K., S. Abboud. 1991. A comparison of some methods for soil organic carbon determination. Commun. Soil Sci. Plant Anal. 22: 943-954.
Sposito, G., L.J. Lund, A.C. Chang. 1982. Trace metal chemistry in aridzone field soils amended with sewage sludge: I Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases.. Soil Sci. Soc. Am. J. 46: 260–264.
Terwelle, H.F., E.C. Slater. 1967. Uncoupling of respiratory chain phosphor-ylation by arsenate. Biophys. Acta 143: 1-17.
Tessier, A., P.G.C. Campbell, M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate heavy metals. Anal. Chem. 51: 844–851.
Tseng, C.H., T.Y. Tai, C.K. Chong, C.P. Tseng, M.S. Lai, B.J. Lin, H.Y. Chiou, Y.M. Hsueh, K.H. Hsu, and Chen, C.J.2000. Long-term arsenic exposure and incidence of non-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ. Health Persp., Vol. 108, pp. 847-851.
Violante, A., M. Pigna. 2002. Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci. Soc. Am. J. 66: 1788-1796.
Wauchope, R.D. 1975. Fixation of arsenical herbicides, phosphate, and arsenate in soil. J. Environ. Qual. 4: 355-358.
Woolson, E.A., J.H. Axley, P.C. Kearney. 1971. The chemistry and phytotoxicity of arsenic in soils: I Contaminated field soils. Soil Sci. Soc. Am. Proc. 35: 938-943.
Woolson, E.A. 1977. Generation of alkylarsines from soil. Weed Sci. 25: 412-416.
Zheng, Y., M. Stute, A. van Geen, D. Gavrieli, R. Dhar, H.J. Simpson, P. Schlosser, K.M. Ahmed. 2004. Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 19: 201-214.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9286-
dc.description.abstract土壤中砷形態的轉變受氧化還原電位、pH值和微生物的影響。而As(Ⅲ)的毒性較As(Ⅴ)大,在溶液中易移動。因此本研究目的在於探討砷在土壤浸水孵育後砷物種型態及濃度之變化及其對水稻毒害之評估。
本研究以三種土壤性質差異大的土壤-平鎮、太康和將軍系土壤,添加As(Ⅴ)製備為0至480 mg As(Ⅴ) kg-1等六種不同濃度處理之砷污染土;另取三個不同砷濃度之關渡平原土壤,為供試土壤。以水土比1:1的比例作0至42天的浸水孵育試驗。土壤溶液抽出後以0.01 M磷酸溶液作保存,以HPLC/ICP/MS測定As(Ⅲ)、DMA、MMA 和As(Ⅴ)含量。結果發現,浸水後,土壤溶液中As(Ⅲ)濃度隨孵育時間增加而增加,而總砷濃度以關渡土壤增加最多,且土壤溶液中砷與鐵濃度改變趨勢相似,可能因土壤浸水期間,土壤溶液中鐵還原導致砷溶出增加。且浸水後鐵、砷和硫因浸水逐漸還原,砷與鐵、硫形成難溶之化合物,會造成土壤溶液中砷和鐵含量減少。但在人工製備之砷汙染土,砷在土壤溶液相及固相間未達平衡,導致土壤浸水孵育後,因砷被土壤固相吸附使溶液相中砷濃度減少。另外發現在供試土壤之酸性土壤溶液中以As(Ⅲ)佔總砷比例較高,而中性偏鹼性之土壤溶液則以As(Ⅴ)佔總砷比例較高。浸水孵育後,As(Ⅲ)佔總砷的比例會增加。各供試土壤種植之水稻,在人工添加480 mg As(V) kg-1處理下皆出現毒害情形。由於浸水孵育前之土壤溶液中As(Ⅲ)濃度與水稻植體株高有顯著負相關,推估使水稻株高降低20 %之土壤溶液中As(Ⅲ)濃度為0.02 mg L-1;且以NaH2PO4抽出之總砷濃度與植體株高百分比之劑量反應關係有較顯著的負相關,推估其EC20為78.7mg kg-1。因此,此兩種抽出方法可有效評估土壤中砷對水稻毒害之影響。
zh_TW
dc.description.abstractThe distribution of As species in soils is influenced by redox potential, pH, and microbial activity. Arsenite is more toxic and mobile than arsenate. Therefore, to understand the As species distribution is very important to evaluate the mobility and phytotoxicity in As-contaminated soils. In this study, the As speciation in soil solutions of flooded As-contaminated soils were determined and the relationship between the As speciation and toxicity to rice plants was investigated.
Three Guandu soils containing different levels of As and three soils spiked with various levels of As(V) were used in this study to determine the As speciation of soil solutions under flooded incubation condition for 42 days. The soil solutions were taken and preserved in 0.01 M H3PO4 immediately and then the concentrations of As(Ⅲ), DMA, MMA and As(V) were determined using HPLC/ICP/MS. The results showed that in all studied soils As(Ⅲ) concentrations increased with flooding time and the extent of increase was higher in Guandu soils than that in other studied soils. In addition, the change of As concentration had the same pattern with that of Fe. It may result from that As release in soil solution due to Fe reduction or As precipitation with Fe. Moreover, total As concentration in soil solutions also increased with flooding time and the extent of increase was higher in Guandu soils than three As(V)-spiked soils. It may be due to that spiked-As(V) was adsorbed by soil solids during the flooding incubation period. Among the studied soils, As(Ⅲ) percentages of total As in solutions of acid soils were higher that As(V). On the contrary, As(V) percentages of total As in solutions in alkaline soils were higher that As(Ⅲ). For the relationship between As species concentration in soil solutions with rice seedling growth, As(Ⅲ) concentration before flooding was significantly and better correlated with plant height of rice seedlings than other As species. The effective toxicity concentrations of decreasing 20% of rice plant height were 0.02 mg As(Ⅲ) L-1. The results also showed that there was a significant relationship between the plant height of rice seedlings and soil arsenic extracted by NaH2PO4, and the effective toxicity concentrations of decreasing 20% of rice plant height were 78.7 mg As(Ⅲ) kg-1. Therefore, soil solutions As(Ⅲ) and NaH2PO4 extracted As could be used for the assessment of availability and phytotoxicity of arsenic in soils.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:16:00Z (GMT). No. of bitstreams: 1
ntu-98-R96623015-1.pdf: 1819342 bytes, checksum: 1bf96f6db741d208e1f7e713ed6724d8 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要……………………………………………………………………………………Ⅰ
Abstract…………………………………………………………………………………Ⅱ
目錄……………………………………………………………………………………Ⅳ
表次……………………………………………………………………………………Ⅶ
圖次……………………………………………………………………………………Ⅷ
第一章 緒論………………………………………………………………………1
1.1砷………………………………………………………………………………1
1.2砷的汙染………………………………………………………………………3
1.3 土壤中的砷……………………………………………………………………4
1.4環境中氧化還原電位變化對砷之影響………………………………………5
1.5土壤中砷的測定……………………………………………………………………………………8
1.6研究目的……………………………………………………………………………………9
第二章 材料與方法…………………………………………………………………10
2.1 供試土壤之製備…………………………………………………………………10
2.1.1試驗土壤基本性質分析…………………………………………………10
2.1.2三種供試土壤添加As(V)之處理………………………………………14
2.1.3土壤中砷總量測定:砷化氫原子吸收光譜法………………………………………15
2.2以NaH2PO4抽出土壤中砷之含量……………………………………………………………………………………………16
2.3土壤浸水不同天數孵育………………………………………………………18
2.3.1土壤浸水處理……………………………………………………………18
2.3.2浸水孵育土壤溶液的收集與測定………………………………………18
2.4 浸水土壤之氧化還原電位測定……………………………………………………………………………………………………………………20
2.4.1 白金電極製備……………………………………………………………………………………………………………20
2.4.2白金電極校正……………………………………………………………20
2.4.3供試土壤前處理…………………………………………………………………………………………………………21
2.4.4供試土壤之氧化還原電位測定…………………………………………21
2.5水稻幼苗之毒性試驗…………………………………………………………24
2.5.1供試水稻品種………………………………………………………24
2.5.2供試土壤前處理 …………………………………………………………24
2.5.3秧苗培育………………………………………………………24
2.5.4 實驗方法………………………………………………………………27
2.5.5 植體分解……………………………………………………………………………………………………………………………………………27
2.6統計分析……………………………………………………………………………………………………………28
第三章 結果與討論…………………………………………………………………29
3.1供試土壤之理化性質…………………………………………………………………29
3.2以磷酸二氫鈉抽出土壤有效性砷…………………………………………………………………33
3.2.1以NaH2PO4抽出液中鐵和錳含量…………………………………36
3.3供試土壤在浸水孵育前其土壤溶液相中砷濃度及其物種之分布…………………39
3.3.1未添加任何As(Ⅴ)之土壤,其土壤溶液中砷濃度及其物種之分布…39
3.3.2添加As(Ⅴ)之土壤,其土壤溶液中砷濃度及其物種之分佈…………43
3.3.3浸水孵育前,土壤溶液中鐵、錳、矽和磷濃度…………………………………………44
3.4土壤浸水孵育42天期間,土壤溶液中砷的物種及濃度變化………………48
3.4.1平鎮系土壤………………………………………………………………………………………………………48
3.4.2太康系土壤………………………………………………………………………………………………………52
3.4.3將軍系土壤……………………………………………………………56
3.4.4關渡平原土壤-Gd1……………………………………………………60
3.4.5關渡平原土壤-Gd2 ……………………………………………………………………………………………… 62
3.4.6關渡平原土壤-Gd3……………………………………………………64
3.5土壤浸水42天後之土壤溶液相中砷濃度及其物種之分佈…………………………………………68
3.5.1未添加任何As(Ⅴ)之土壤浸水42天後,其土壤溶液中砷濃度
及物種分佈……………………………………………………………68
3.5.2各供試土壤浸水42天後,其土壤溶液中砷濃度及物種分佈…………71
3.6水稻幼苗毒性試驗……………………………………………………………73
3.6.1水稻幼苗生長情形……………………………………………………………73
3.6.2水稻植體乾重與土壤溶液中或NaH2PO4抽出之砷含量之關係……80
3.6.3水稻幼苗生長試驗之植體分析……………………………………………………………84
第四章 結論………………………………………………………………………………………………………………………………91
第五章 參考文獻…………………………………………………………………92
第六章 附錄………………………………………………………………………………………………………………………………………………102
dc.language.isozh-TW
dc.title土壤溶液中砷物種分佈及轉變與其對水稻之毒害zh_TW
dc.titleDistribution and transformation of As species in soil solutions and the toxicity of As to paddy riceen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何聖賓,廖秋榮,王尚禮,鍾仁賜
dc.subject.keyword土壤,As(Ⅲ),As(Ⅴ),HPLC/ICP/MS,水稻,zh_TW
dc.subject.keywordsoil,arsenite,arsenate,HPLC/ICP/MS,paddy rice,en
dc.relation.page102
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf1.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved