Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92820
Title: 不同財務資訊對每股盈餘預測和套利報酬之比較- 機器學習模型應用
Comparison of Different Financial Information for Earnings per Share Prediction and Arbitrage Return - Application of Machine Learning Models
Authors: 張祐誠
Yu-Cheng Chang
Advisor: 蔡彥卿
Yann-Ching Tsai
Co-Advisor: 劉心才
Hsin-Tsai Liu
Keyword: 每股盈餘預測,財務比率,財務報表,機器學習,深度學習,套利,
Earnings per Share Prediction,Financial Ratios,Financial Statements,Machine Learning,Deep Learning,Arbitrage,
Publication Year : 2024
Degree: 碩士
Abstract: 本論文使用財務報表及財務比率建立三種訓練集,並透過隨機森林、梯度提升、極限梯度提升及深度神經網路四種演算法預測調整每股盈餘及調整稀釋每股盈餘,利用預測之調整每股盈餘及調整稀釋每股盈餘計算套利因子並建立投資組合,藉此驗證使用財務比率是否較使用財務報表有較佳之預測和套利能力。
結果發現隨機森林和梯度提升兩種演算法在預測調整每股盈餘及調整稀釋每股盈餘之能力較佳,且相較於使用財務報表,使用財務比率有較佳之預測能力。三種訓練集透過四種演算法所預測之調整每股盈餘及調整稀釋每股盈餘皆能建立具套利空間之投資組合,財務比率僅在應變數為調整每股盈餘,且利用隨機森林和梯度提升演算法進行預測時比使用財務報表有更佳之表現,這顯示出每股盈餘及調整稀釋每股盈餘之能力和套利報酬並非呈現完全正相關。另外,透過深度神經網路所建立之投資組合較其他演算法有較高之套利報酬。
This thesis uses financial statements and financial ratios to establish three types of training sets and employs four algorithms—Random Forest, Gradient Boosting, Extreme Gradient Boosting, and Deep Neural Networks—to predict adjusted earnings per share (EPS) and adjusted diluted EPS. The predicted adjusted EPS and adjusted diluted EPS are then used to calculate arbitrage factors and create investment portfolios. This thesis aims to verify whether using financial ratios provides better predictive and arbitrage capabilities compared to using financial statements.
The results indicate that the Random Forest and Gradient Boosting algorithms have superior predictive power for adjusted EPS and adjusted diluted EPS. Additionally, using financial ratios offers better predictive power than using financial statements. All three training sets with the four algorithms to predict adjusted EPS and adjusted diluted EPS can establish investment portfolios with arbitrage opportunities. Financial ratios demonstrate better performance than financial statements only when the dependent variable is adjusted EPS and predictions are made using the Random Forest and Gradient Boosting algorithms. This indicates that the capability to predict EPS and adjusted diluted EPS and the arbitrage returns are not perfectly positively correlated. Moreover, investment portfolios created through Deep Neural Networks exhibit higher arbitrage returns compared to those created by other algorithms.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92820
DOI: 10.6342/NTU202401176
Fulltext Rights: 未授權
Appears in Collections:會計學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
2.58 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved