Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 奈米工程與科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92812
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹zh_TW
dc.contributor.advisorRu-Shi Liuen
dc.contributor.author黃尚洋zh_TW
dc.contributor.authorShang-Yang Huangen
dc.date.accessioned2024-07-01T16:13:37Z-
dc.date.available2024-07-02-
dc.date.copyright2024-07-01-
dc.date.issued2024-
dc.date.submitted2024-06-25-
dc.identifier.citation[1]Yaqoob, L.; Noor, T.; Iqbal, N. An Overview of Metal–Air Batteries, Current Progress, and Future Perspectives. J. Energy Storage 2022, 56, 106075–106114.
[2]Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. A Critical Review of Li–Air Batteries. J. Electrochem. Soc. 2011, 159, R1–R31.
[3]Wang, Y. J.; Fang, B.; Zhang, D.; Li, A.; Wilkinson, D. P.; Ignaszak, A.; Zhang, L.; Zhang, J. A Review of Carbon-Composited Materials as Air-Electrode Bifunctional Electrocatalysts for Metal–Air Batteries. Electrochem. Energy Rev. 2018, 1, 1–34.
[4]Olabi, A. G.; Sayed, E. T.; Wilberforce, T.; Jamal, A.; Alami, A. H.; Elsaid, K.; Rahman, S. M. A.; Shah, S. K.; Abdelkareem, M. A. Metal–Air Batteries—a Review. Energies 2021, 14, 7373–7418.
[5]Li, J.; Hou, L.; Yu, M.; Li, Q.; Zhang, T.; Sun, H. Review and Recent Advances of Oxygen Transfer in Li–Air Batteries. ChemElectroChem 2021, 8, 3588–3603.
[6]Zhang, Y. L.; Goh, K.; Zhao, L.; Sui, X. L.; Gong, X. F.; Cai, J. J.; Zhou, Q. Y.; Zhang, H. D.; Li, L.; Kong, F. R. Advanced Non-Noble Materials in Bifunctional Catalysts for ORR and OER toward Aqueous Metal–Air Batteries. Nanoscale 2020, 12, 21534–21559.
[7]Wang, Y.; Sun, Y.; Ren, W.; Zhang, D.; Yang, Y.; Yang, J.; Wang, J.; Zeng, X.; NuLi, Y. Challenges and Prospects of Mg–Air Batteries. Energy Mater. 2022, 2, 200024–200052.
[8]Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in Understanding Mechanisms Underpinning Lithium–Air Batteries. Nat. Energy 2016, 1, 1–11.
[9]Abraham, K.; Jiang, Z. A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery. J. Electrochem. Soc. 1996, 143, 1–6.
[10]Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 Electrode for Lithium Batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.
[11]Black, R.; Oh, S. H.; Lee, J. H.; Yim, T.; Adams, B.; Nazar, L. F. Screening for Superoxide Reactivity in Li–O2 Batteries: Effect on Li2O2/LiOH Crystallization. J. Am. Chem. Soc. 2012, 134, 2902–2905.
[12]Rai, V.; Lee, K. P.; Safanama, D.; Adams, S.; Blackwood, D. J. Oxygen Reduction and Evolution Reaction (ORR and OER) Bifunctional Electrocatalyst Operating in a Wide pH Range for Cathodic Application in Li–Air Batteries. ACS Appl. Energy Mater. 2020, 3, 9417–9427.
[13]Yadegari, H.; Sun, Q.; Sun, X. Sodium–Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective. Adv. Mater. 2016, 28, 7065–7093.
[14]Lin, X.; Sun, Q.; Doyle Davis, K.; Li, R.; Sun, X. The Application of Carbon Materials in Nonaqueous Na–O2 Batteries. Carbon Energy 2019, 1, 141–164.
[15]Peled, E.; Golodnitsky, D.; Mazor, H.; Goor, M.; Avshalomov, S. Parameter Analysis of a Practical Lithium–and Sodium–Air Electric Vehicle Battery. J. Power Sources 2011, 196, 6835–6840.
[16]Bender, C. L.; Schröder, D.; Pinedo, R.; Adelhelm, P.; Janek, J. One‐or Two‐Electron Transfer? The Ambiguous Nature of the Discharge Products in Sodium–Oxygen Batteries. Angew. Chem. Int. Ed. 2016, 55, 4640–4649.
[17]Zhao, S.; Qin, B.; Chan, K. Y.; Li, C. Y. V.; Li, F. Recent Development of Aprotic Na−O2 Batteries. Batter. Supercaps 2019, 2, 725–742.
[18]Sun, B.; Pompe, C.; Dongmo, S.; Zhang, J.; Kretschmer, K.; Schröder, D.; Janek, J.; Wang, G. Challenges for Developing Rechargeable Room‐Temperature Sodium–Oxygen Batteries. Adv. Mater. Technol. 2018, 3, 1800110–1800127.
[19]Lin, X.; Sun, Q.; Yadegari, H.; Yang, X.; Zhao, Y.; Wang, C.; Liang, J.; Koo, A.; Li, R.; Sun, X. On the Cycling Performance of Na–O2 Cells: Revealing the Impact of the Superoxide Crossover toward the Metallic Na Electrode. Adv. Funct. Mater. 2018, 28, 1801904–1801915.
[20]Lutz, L.; Alves, D.; Tang, M.; Salager, E.; Deschamps, M.; Grimaud, A.; Johnson, L.; Bruce, P. G.; Tarascon, J.-M. Role of Electrolyte Anions in the Na–O2 Battery: Implications for NaO2 Solvation and the Stability of the Sodium Solid Electrolyte Interphase in Glyme Ethers. Chem. Mater. 2017, 29, 6066–6075.
[21]Dugas, R.; Ponrouch, A.; Gachot, G.; David, R.; Palacín, M. R.; Tarascon, J.-M. Na Reactivity toward Carbonate-Based Electrolytes: The Effect of FEC as Additive. J. Electrochem. Soc. 2016, 163, A2333–A2340.
[22]Zhao, C.; Lu, Y.; Yue, J.; Pan, D.; Qi, Y.; Hu, Y. S.; Chen, L. Advanced Na Metal Anodes. J. Energy Chem. 2018, 27, 1584–1596.
[23]Yang, H.; Sun, J.; Wang, H.; Liang, J.; Li, H. A Titanium Dioxide Nanoparticle Sandwiched Separator for Na–O2 Batteries with Suppressed Dendrites and Extended Cycle Life. Chem. Commun. 2018, 54, 4057–4060.
[24]Choudhury, S.; Wei, S.; Ozhabes, Y.; Gunceler, D.; Zachman, M.; Tu, Z.; Jung, H. S.; Nath, P.; Agrawal, A.; Kourkoutis, L.; Arias, T.; Archer, L. A. Designing Solid-Liquid Interphases for Sodium Batteries. Nat. Commun. 2017, 8, 898–907.
[25]Li, C. S.; Sun, Y.; Gebert, F.; Chou, S. L. Current Progress on Rechargeable Magnesium–Air Battery. Adv. Energy Mater. 2017, 7, 1700869–1700879.
[26]Zhang, T.; Tao, Z.; Chen, J. Magnesium–Air Batteries: From Principle to Application. Mater. Horiz. 2014, 1, 196–206.
[27]Yang, W.; Yang, S.; Sun, G.; Xin, Q. Development and Application of Magnesium Fuel Cell. J. Power Sources 2005, 29, 182–186.
[28]Vardar, G.; Nelson, E. G.; Smith, J. G.; Naruse, J.; Hiramatsu, H.; Bartlett, B. M.; Sleightholme, A. E.; Siegel, D. J.; Monroe, C. W. Identifying the Discharge Product and Reaction Pathway for a Secondary Mg–O2 Battery. Chem. Mater. 2015, 27, 7564–7568.
[29]Shiga, T.; Hase, Y.; Kato, Y.; Inoue, M.; Takechi, K. A Rechargeable Non-Aqueous Mg–O2 Battery. Chem. Commun. 2013, 49, 9152–9154.
[30]Smith, J. G.; Naruse, J.; Hiramatsu, H.; Siegel, D. J. Theoretical Limiting Potentials in Mg–O2 Batteries. Chem. Mater. 2016, 28, 1390–1401.
[31]Abanades, J. C.; Rubin, E. S.; Mazzotti, M.; Herzog, H. J. On the Climate Change Mitigation Potential of CO2 Conversion to Fuels. Energy Environ. Sci. 2017, 10, 2491–2499.
[32]Fetrow, C. J.; Carugati, C.; Zhou, X. D.; Wei, S. Electrochemistry of Metal–CO2 Batteries: Opportunities and Challenges. Energy Storage Mater. 2022, 45, 911–933.
[33]Xu, S.; Das, S. K.; Archer, L. A. The Li–CO2 Battery: A Novel Method for CO2 Capture and Utilization. RSC Adv. 2013, 3, 6656–6660.
[34]Liu, Y.; Wang, R.; Lyu, Y.; Li, H.; Chen, L. Rechargeable Li–CO2/O2 (2:1) Battery and Li–CO2 Battery. Energy Environ. Sci. 2014, 7, 677–681.
[35]Yang, S.; He, P.; Zhou, H. Exploring the Electrochemical Reaction Mechanism of Carbonate Oxidation in Li–Air/CO2 Battery through Tracing Missing Oxygen. Energy Environ. Sci. 2016, 9, 1650–1654.
[36]Hou, Y.; Wang, J.; Liu, L.; Liu, Y.; Chou, S.; Shi, D.; Liu, H.; Wu, Y.; Zhang, W.; Chen, J. Mo2C/CNT: An Efficient Catalyst for Rechargeable Li–CO2 Batteries. Adv. Funct. Mater. 2017, 27, 1700564–1700571.
[37]Qiao, Y.; Yi, J.; Wu, S.; Liu, Y.; Yang, S.; He, P.; Zhou, H. Li–CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage. Joule 2017, 1, 359–370.
[38]Zhang, S.; Sun, L.; Fan, Q.; Zhang, F.; Wang, Z.; Zou, J.; Zhao, S.; Mao, J.; Guo, Z. Challenges and Prospects of Lithium–CO2 Batteries. Nano Res. Energy 2022, 1, e9120001–e9120017.
[39]Liu, B.; Sun, Y.; Liu, L.; Chen, J.; Yang, B.; Xu, S.; Yan, X. Recent Advances in Understanding Li–CO2 Electrochemistry. Energy Environ. Sci. 2019, 12, 887–922.
[40]Das, S. K.; Xu, S.; Archer, L. A. Carbon Dioxide Assist for Non-Aqueous Sodium–Oxygen Batteries. Electrochem. Commun. 2013, 27, 59–62.
[41]Hu, X.; Sun, J.; Li, Z.; Zhao, Q.; Chen, C.; Chen, J. Rechargeable Room‐Temperature Na–CO2 Batteries. Angew. Chem. Int. Ed. 2016, 55, 6482–6486.
[42]Kim, J.; Seong, A.; Yang, Y.; Joo, S.; Kim, C.; Jeon, D. H.; Dai, L.; Kim, G. Indirect Surpassing CO2 Utilization in Membrane-Free CO2 Battery. Nano Energy 2021, 82, 105741–105751.
[43]Jayan, R.; Islam, M. M. Advancing Next-Generation Nonaqueous Mg–CO2 Batteries: Insights into Reaction Mechanisms and Catalyst Design. J. Mater. Chem. A 2023, 11, 15915–15923.
[44]Liu, W.; Wang, N.; Wu, Y.; Zhang, Q.; Chen, X.; Li, Y.; Xu, R. High‐Rate Nonaqueous Mg–CO2 Batteries Enabled by Mo2C‐Nanodot‐Embedded Carbon Nanofibers. Small 2024, 20, 2306576–2306586.
[45]Hoey, G.; Cohen, M. Corrosion of Anodically and Cathodically Polarized Magnesium in Aqueous Media. J. Electrochem. Soc. 1958, 105, 245–251.
[46]Song, G.; Atrens, A. Understanding Magnesium Corrosion—a Framework for Improved Alloy Performance. Adv. Eng. Mater. 2003, 5, 837–858.
[47]Li, W.; Li, C.; Zhou, C.; Ma, H.; Chen, J. Metallic Magnesium Nano/Mesoscale Structures: Their Shape‐Controlled Preparation and Mg–Air Battery Applications. Angew. Chem. Int. Ed. 2006, 45, 6009–6012.
[48]Richey, F. W.; McCloskey, B. D.; Luntz, A. C. Mg Anode Corrosion in Aqueous Electrolytes and Implications for Mg–Air Batteries. J. Electrochem. Soc. 2016, 163, A958–A964.
[49]Ng, K. L.; Shu, K.; Azimi, G. A Rechargeable Mg–O2 Battery. iScience 2022, 25, 104711–104724.
[50]Dong, Q.; Yao, X.; Luo, J.; Zhang, X.; Hwang, H.; Wang, D. Enabling Rechargeable Non-Aqueous Mg–O2 Battery Operations with Dual Redox Mediators. Chem. Commun. 2016, 52, 13753–13756.
[51]Sharon, D.; Hirshberg, D.; Afri, M.; Garsuch, A.; Frimer, A. A.; Aurbach, D. Lithium Oxygen Electrochemistry in Non‐Aqueous Solutions. Isr. J. Chem. 2015, 55, 508–520.
[52]Yi, J.; Liu, X.; Guo, S.; Zhu, K.; Xue, H.; Zhou, H. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li–Air Battery. ACS Appl. Mater. Interfaces 2015, 7, 23798–23804.
[53]Arya, A.; Sharma, A. Polymer Electrolytes for Lithium Ion Batteries: A Critical Study. Ionics 2017, 23, 497–540.
[54]Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A Review of Polymer Electrolytes: Fundamental, Approaches and Applications. Ionics 2016, 22, 1259–1279.
[55]Lu, J.; Jaumaux, P.; Wang, T.; Wang, C.; Wang, G. Recent Progress in Quasi-Solid and Solid Polymer Electrolytes for Multivalent Metal-Ion Batteries. J. Mater. Chem. A 2021, 9, 24175–24194.
[56]Liew, S. Y.; Juan, J. C.; Lai, C. W.; Pan, G. T.; Yang, T. C. K.; Lee, T. K. An Eco-Friendly Water-Soluble Graphene-Incorporated Agar Gel Electrolyte for Magnesium–Air Batteries. Ionics 2019, 25, 1291–1301.
[57]Li, L.; Chen, H.; He, E.; Wang, L.; Ye, T.; Lu, J.; Jiao, Y.; Wang, J.; Gao, R.; Peng, H. High‐Energy‐Density Magnesium–Air Battery Based on Dual‐Layer Gel Electrolyte. Angew. Chem. 2021, 133, 15445–15450.
[58]Zheng, Z.; Wu, C.; Gu, Q.; Konstantinov, K.; Wang, J. Research Progress and Future Perspectives on Rechargeable Na–O2 and Na–CO2 Batteries. Energy Environ. Mater. 2021, 4, 158–177.
[59]Shu, C.; Wang, E.; Jiang, L.; Sun, G. High Performance Cathode Based on Carbon Fiber Felt for Magnesium–Air Fuel Cells. Int. J. Hydrog. Energy 2013, 38, 5885–5893.
[60]Lai, L.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R. S. Exploration of the Active Center Structure of Nitrogen-Doped Graphene-Based Catalysts for Oxygen Reduction Reaction. Energy Environ. Sci. 2012, 5, 7936–7942.
[61]Vikkisk, M.; Kruusenberg, I.; Joost, U.; Shulga, E.; Kink, I.; Tammeveski, K. Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene in Alkaline Media. Appl. Catal.B: Environ. 2014, 147, 369–376.
[62]Liang, H. W.; Zhuang, X.; Brüller, S.; Feng, X.; Müllen, K. Hierarchically Porous Carbons with Optimized Nitrogen Doping as Highly Active Electrocatalysts for Oxygen Reduction. Nat. Commun. 2014, 5, 4973–4979.
[63]Xi, Z.; Han, J.; Jin, Z.; Hu, K.; Qiu, H. J.; Ito, Y. All‐Solid‐State Mg–Air Battery Enhanced with Free‐Standing N‐Doped 3D Nanoporous Graphene. Small 2023, 20, 2308045–2308052.
[64]Wu, Q.; Shu, K.; Zhao, L.; Zhang, J. Three-Dimensional Graphene-Polypyrrole Hydrogel as Cathode for a Bioelectric Mg–Air Battery. Mater. Lett. 2024, 357, 135701–135704.
[65]Cheng, F.; Chen, J. Metal–Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.
[66]Gao, J.; Zou, J.; Zeng, X.; Ding, W. Carbon Supported Nano Pt–Mo Alloy Catalysts for Oxygen Reduction in Magnesium–Air Batteries. RSC Adv. 2016, 6, 83025–83030.
[67]Zhao, Y.; Du, A.; Dong, S.; Jiang, F.; Guo, Z.; Ge, X.; Qu, X.; Zhou, X.; Cui, G. A Bismuth-Based Protective Layer for Magnesium Metal Anode in Noncorrosive Electrolytes. ACS Energy Lett. 2021, 6, 2594–2601.
[68]Gorlin, Y.; Jaramillo, T. F. A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.
[69]Cheng, F.; Shen, J.; Peng, B.; Pan, Y.; Tao, Z.; Chen, J. Rapid Room-Temperature Synthesis of Nanocrystalline Spinels as Oxygen Reduction and Evolution Electrocatalysts. Nat. Chem. 2011, 3, 79–84.
[70]Cheng, F.; Su, Y.; Liang, J.; Tao, Z.; Chen, J. MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media. Chem. Mater. 2010, 22, 898–905.
[71]Jiang, M.; He, H.; Huang, C.; Liu, B.; Yi, W. J.; Chao, Z. S. α-MnO2 Nanowires/Graphene Composites with High Electrocatalytic Activity for Mg–Air Fuel Cell. Electrochim. Acta 2016, 219, 492–501.
[72]Boukoureshtlieva, R.; Milusheva, Y.; Popov, I.; Trifonova, A.; Momchilov, A. Application of Pyrolyzed Cobalt (II) Tetramethoxyphenyl Porphyrin Based Catalyst in Metal–Air Systems and Enzyme Electrodes. Electrochim. Acta 2020, 353, 136472–136482.
[73]Liu, Y.; Zhou, G.; Zhang, Z.; Lei, H.; Yao, Z.; Li, J.; Lin, J.; Cao, R. Significantly Improved Electrocatalytic Oxygen Reduction by an Asymmetrical Pacman Dinuclear Cobalt (II) Porphyrin–Porphyrin Dyad. Chem. Sci. 2020, 11, 87–96.
[74]Huang, J.; Lu, Q.; Ma, X.; Yang, X. Bio-Inspired FeN5 Moieties Anchored on a Three-Dimensional Graphene Aerogel to Improve Oxygen Reduction Catalytic Performance. J. Mater. Chem. A 2018, 6, 18488–18497.
[75]Liu, H.; Song, C.; Tang, Y.; Zhang, J.; Zhang, J. High-Surface-Area CoTMPP/C Synthesized by Ultrasonic Spray Pyrolysis for Pem Fuel Cell Electrocatalysts. Electrochim. Acta 2007, 52, 4532–4538.
[76]Zhao, Y.; Huang, G.; Zhang, C.; Peng, C.; Pan, F. Effect of Phosphate and Vanadate as Electrolyte Additives on the Performance of Mg–Air Batteries. Mater. Chem. Phys. 2018, 218, 256–261.
[77]Li, Y.; Ma, J.; Wang, G.; Ren, F.; Zhu, Y.; Song, Y. Investigation of Sodium Phosphate and Sodium Dodecylbenzenesulfonate as Electrolyte Additives for AZ91 Magnesium–Air Battery. J. Electrochem. Soc. 2018, 165, A1713–A1718.
[78]Zhao, Y. C.; Huang, G. S.; Gong, G. l.; Han, T. Z.; Xia, D. B.; Pan, F. S. Improving the Intermittent Discharge Performance of Mg–Air Battery by Using Oxyanion Corrosion Inhibitor as Electrolyte Additive. Acta. Metall. Sin. 2016, 29, 1019–1024.
[79]Höche, D.; Lamaka, S. V.; Vaghefinazari, B.; Braun, T.; Petrauskas, R. P.; Fichtner, M.; Zheludkevich, M. L. Performance Boost for Primary Magnesium Cells Using Iron Complexing Agents as Electrolyte Additives. Sci. Rep. 2018, 8, 7578–7586.
[80]Dinesh, M. M.; Saminathan, K.; Selvam, M.; Srither, S.; Rajendran, V.; Kaler, K. V. Water Soluble Graphene as Electrolyte Additive in Magnesium–Air Battery System. J. Power Sources 2015, 276, 32–38.
[81]Snihirova, D.; Wang, L.; Lamaka, S. V.; Wang, C.; Deng, M.; Vaghefinazari, B.; Höche, D.; Zheludkevich, M. L. Synergistic Mixture of Electrolyte Additives: A Route to a High-Efficiency Mg–Air Battery. J. Phys. Chem. Lett. 2020, 11, 8790–8798.
[82]Ling, N.; Song, S.; Wang, C.; Fan, H.; Zhang, J.; Wang, L. Novel Dual-Function Electrolyte Additive for High-Power Aqueous Mg–Air Battery: Improvement of Both Discharge Potential and Utilization Efficiency. Chem. Eng. Sci. 2024, 285, 119624–119637.
[83]Ahmed, G.; Butt, F. A.; Raza, F.; Hashmi, S.; Kumar, G. G.; Christy, M. The Study of Different Redox Mediators for Competent Li–Air Batteries. J. Power Sources 2022, 538, 231379–231394.
[84]Chen, Y.; Gao, X.; Johnson, L. R.; Bruce, P. G. Kinetics of Lithium Peroxide Oxidation by Redox Mediators and Consequences for the Lithium–Oxygen Cell. Nat. Commun. 2018, 9, 767–772.
[85]Tamirat, A. G.; Guan, X.; Liu, J.; Luo, J.; Xia, Y. Redox Mediators as Charge Agents for Changing Electrochemical Reactions. Chem. Soc. Rev. 2020, 49, 7454–7478.
[86]Kwak, W. J.; Kim, H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. A Comparative Evaluation of Redox Mediators for Li–O2 Batteries: A Critical Review. J. Electrochem. Soc. 2018, 165, A2274–A2294.
[87]Shiga, T.; Hase, Y.; Yagi, Y.; Takahashi, N.; Takechi, K. Catalytic Cycle Employing a TEMPO–Anion Complex to Obtain a Secondary Mg–O2 Battery. J. Phys. Chem. Lett. 2014, 5, 1648–1652.
[88]Kim, H.; Kwak, W. J.; Jung, H. G.; Sun, Y. K. Verification for Trihalide Ions as Redox Mediators in Li–O2 Batteries. Energy Storage Mater. 2019, 19, 148–153.
[89]Pringle, J. M. Recent Progress in the Development and Use of Organic Ionic Plastic Crystal Electrolytes. Phys. Chem. Chem. Phys. 2013, 15, 1339–1351.
[90]Wilmer, D.; Funke, K.; Witschas, M.; Banhatti, R.; Jansen, M.; Korus, G.; Fitter, J.; Lechner, R. Anion Reorientation in an Ion Conducting Plastic Crystal–Coherent Quasielastic Neutron Scattering from Sodium Ortho-Phosphate. Phys. B: Condens. Matter 1999, 266, 60–68.
[91]MacFarlane, D. R.; Forsyth, M. Plastic Crystal Electrolyte Materials: New Perspectives on Solid State Ionics. Adv. Mater. 2001, 13, 957–966.
[92]Jansen, M. Volume Effect or Paddle‐Wheel Mechanism—Fast Alkali‐Metal Ionic Conduction in Solids with Rotationally Disordered Complex Anions. Angew. Chem. Int. Ed. 1991, 30, 1547–1558.
[93]Chen, B.; Huang, Z.; Chen, X.; Zhao, Y.; Xu, Q.; Long, P.; Chen, S.; Xu, X. A New Composite Solid Electrolyte PEO/Li10GeP2S12/SN for All-Solid-State Lithium Battery. Electrochim. Acta 2016, 210, 905–914.
[94]Sharma, J.; Hashmi, S. Magnesium Ion Transport in Poly (Ethylene Oxide)-Based Polymer Electrolyte Containing Plastic-Crystalline Succinonitrile. J. Solid State Electrochem. 2013, 17, 2283–2291.
[95]Seeber, A. J.; Forsyth, M.; Forsyth, C. M.; Forsyth, S. A.; Annat, G.; MacFarlane, D. R. Conductivity, NMR and Crystallographic Study of N, N, N, N-Tetramethylammonium Dicyanamide Plastic Crystal Phases: An Archetypal Ambient Temperature Plastic Electrolyte Material. Phys. Chem. Chem. Phys. 2003, 5, 2692–2698.
[96]Armel, V.; Velayutham, D.; Sun, J.; Howlett, P. C.; Forsyth, M.; MacFarlane, D. R.; Pringle, J. M. Ionic Liquids and Organic Ionic Plastic Crystals Utilizing Small Phosphonium Cations. J. Mater. Chem. 2011, 21, 7640–7650.
[97]Jin, L.; Nairn, K. M.; Forsyth, C. M.; Seeber, A. J.; MacFarlane, D. R.; Howlett, P. C.; Forsyth, M.; Pringle, J. M. Structure and Transport Properties of a Plastic Crystal Ion Conductor: Diethyl (Methyl)(Isobutyl) Phosphonium Hexafluorophosphate. J. Am. Chem. Soc. 2012, 134, 9688–9697.
[98]Halimah, P. N.; Rahardian, S.; Budiman, B. A. Battery Cells for Electric Vehicles. Int. J. Sustain. Transp. Technol. 2019, 2, 54–57.
[99]Wang, D.; Xiao, J.; Xu, W.; Zhang, J. G. High Capacity Pouch-Type Li–Air Batteries. J. Electrochem. Soc. 2010, 157, A760–A765.
[100]Lu, S. H.; Lu, H. C. Pouch-Type Hybrid Li–Air Battery Enabled by Flexible Composite Lithium-Ion Conducting Membrane. J. Power Sources 2021, 489, 229431–229439.
[101]Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhu, J.; Zhou, H. A Reversible Lithium–CO2 Battery with Ru Nanoparticles as a Cathode Catalyst. Energy Environ. Sci. 2017, 10, 972–978.
[102]Ali, A.; Chiang, Y. W.; Santos, R. M. X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 2022, 12, 205–229.
[103]Ermrich, M.; Opper, D. XRD for the Analyst: Getting Acquainted with the Principles; PANalytical: Almelo, EA, 2013.
[104]Bumbrah, G. S.; Sharma, R. M. Raman Spectroscopy–Basic Principle, Instrumentation and Selected Applications for the Characterization of Drugs of Abuse. Egypt. J. Foresic. Sci. 2016, 6, 209–215.
[105]Liu, K.; Zhao, Q.; Li, B.; Zhao, X. Raman Spectroscopy: A Novel Technology for Gastric Cancer Diagnosis. Front. Bioeng. Biotechnol. 2022, 10, 856591–856601.
[106]Mohamed, M. A.; Jaafar, J.; Ismail, A.; Othman, M.; Rahman, M. In Membrane Characterization, Nidal, H., Ahmad, F. I., Takeshi, M., Darren, O. R., Eds.; Elsevier: Amsterdam, 2017; Chapter 1, pp 3–29.
[107]De Blasio, C. Fundamentals of Biofuels Engineering and Technology; Springer: Berlin, 2019.
[108]Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization; Springer: Berlin, 2018.
[109]Kannan, M. A Textbook on Fundamentals and Applications of Nanotechnology; ResearchGate: Berlin, 2018.
[110]Friedbacher, G.; Bubert, H. Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications; John Wiley & Sons: Hoboken, NJ, 2011.
[111]Zimmermann, P.; Peredkov, S.; Abdala, P. M.; DeBeer, S.; Tromp, M.; Müller, C.; van Bokhoven, J. A. Modern X-Ray Spectroscopy: XAS and XES in the Laboratory. Coord. Chem. Rev. 2020, 423, 213466–213493.
[112]Fracchia, M.; Ghigna, P.; Vertova, A.; Rondinini, S.; Minguzzi, A. Time-Resolved X-Ray Absorption Spectroscopy in (Photo) Electrochemistry. Surfaces 2018, 1, 138–150.
[113]Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis; Cengage: Boston, MA, 2019.
[114]Nicholson, R. S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37, 1351–1355.
[115]Magar, H. S.; Hassan, R. Y.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578–6598.
[116]Czichos, H.; Saito, T.; Smith, L. Springer Handbook of Materials Measurement Methods; Springer: Berlin, 2006.
[117]Homann, G.; Stolz, L.; Nair, J.; Laskovic, I. C.; Winter, M.; Kasnatscheew, J. Poly (Ethylene Oxide)-Based Electrolyte for Solid-State-Lithium-Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure. Sci. Rep. 2020, 10, 4390–4398.
[118]Maheshwaran, C.; Kanchan, D.; Mishra, K.; Kumar, D.; Gohel, K. Flexible Magnesium-Ion Conducting Polymer Electrolyte Membranes: Mechanical, Structural, Thermal, and Electrochemical Impedance Spectroscopic Properties. J. Mater. Sci.: Mater. Electron. 2020, 31, 15013–15027.
[119]Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical Measurement of Transference Numbers in Polymer Electrolytes. Polymer 1987, 28, 2324–2328.
[120]Kumari, P.; Parveen, S.; Hashmi, S. Diglyme-Based “Solvate Ionic Liquid” Gelled in Poly (Vinylidine Fluoride-Co-Hexafluoropropylene): A Flexible Electrolyte for High-Performance Magnesium-Ion Batteries. ACS Appl. Energy Mater. 2023, 6, 12468–12481.
[121]Kumar, Y.; Hashmi, S.; Pandey, G. Ionic Liquid Mediated Magnesium Ion Conduction in Poly (Ethylene Oxide) Based Polymer Electrolyte. Electrochim. Acta 2011, 56, 3864–3873.
[122]Zhang, N.; He, J.; Han, W.; Wang, Y. Composite Solid Electrolyte PEO/SN/LiAlO2 for a Solid-State Lithium Battery. J. Mater. Sci. 2019, 54, 9603–9612.
[123]Xu, S.; Sun, Z.; Sun, C.; Li, F.; Chen, K.; Zhang, Z.; Hou, G.; Cheng, H. M.; Li, F. Homogeneous and Fast Ion Conduction of PEO‐Based Solid‐State Electrolyte at Low Temperature. Adv. Funct. Mater. 2020, 30, 2007172–2007180.
[124]Appel, A. M.; Helm, M. L. Determining the Overpotential for a Molecular Electrocatalyst. ACS Catal. 2014, 4, 630–633.
[125]Attias, R.; Salama, M.; Hirsch, B.; Goffer, Y.; Aurbach, D. Anode-Electrolyte Interfaces in Secondary Magnesium Batteries. Joule 2019, 3, 27–52.
[126]Tutusaus, O.; Mohtadi, R.; Singh, N.; Arthur, T. S.; Mizuno, F. Study of Electrochemical Phenomena Observed at the Mg Metal/Electrolyte Interface. ACS Energy Lett. 2017, 2, 224–229.
[127]Shen, X.; Liu, H.; Cheng, X.-B.; Yan, C.; Huang, J.-Q. Beyond Lithium Ion Batteries: Higher Energy Density Battery Systems Based on Lithium Metal Anodes. Energy Storage Mater. 2018, 12, 161–175.
[128]Wan, Y.; Samundsett, C.; Bullock, J.; Hettick, M.; Allen, T.; Yan, D.; Peng, J.; Wu, Y.; Cui, J.; Javey, A. Conductive and Stable Magnesium Oxide Electron‐Selective Contacts for Efficient Silicon Solar Cells. Adv. Energy Mater. 2017, 7, 1601863–1601869.
[129]Yang, Z.; Yang, M.; Hahn, N. T.; Connell, J.; Bloom, I.; Liao, C.; Ingram, B. J.; Trahey, L. Toward Practical Issues: Identification and Mitigation of the Impurity Effect in Glyme Solvents on the Reversibility of Mg Plating/Stripping in Mg Batteries. Front. Chem. 2022, 10, 966332–966345.
[130]Rheinheimer, V.; Unluer, C.; Liu, J.; Ruan, S.; Pan, J.; Monteiro, P. J. XPS Study on the Stability and Transformation of Hydrate and Carbonate Phases within MgO Systems. Materials 2017, 10, 75–90.
[131]Qiao, R.; Chuang, Y.; Yan, S.; Yang, W. Soft X-Ray Irradiation Effects of Li2O2, Li2CO3 and Li2O Revealed by Absorption Spectroscopy. PloS one 2012, 7, 49182–49187.
[132]Xu, Z.; Liu, Z.; Gu, Z.; Zhao, X.; Guo, D.; Yao, X. Polyimide-Based Solid-State Gel Polymer Electrolyte for Lithium–Oxygen Batteries with a Long-Cycling Life. ACS Appl. Mater. Interfaces 2023, 15, 7014–7022.
[133]Ge, X.; Song, F.; Du, A.; Sun, G.; Zhang, S.; Zhao, J.; Zhang, Q.; Zhou, X.; Zhang, B.; Cui, G. Stable Anion-Rectifying Poly (Alkoxide Magnesium) Electrolytes for Reversible Magnesium Metal Batteries. ACS Energy Lett. 2023, 8, 3685–3692.
[134]Lim, H.; Kwak, W.; Chae, S.; Wi, S.; Li, L.; Hu, J.; Tao, J.; Wang, C.; Xu, W.; Zhang, J. Stable Solid Electrolyte Interphase Layer Formed by Electrochemical Pretreatment of Gel Polymer Coating on Li Metal Anode for Lithium–Oxygen Batteries. ACS Energy Lett. 2021, 6, 3321–3331.
[135]Liu, M.; Zhang, Q.; Zhang, X.; Fan, H.; Gao, J.; Jing, Z.; Wang, M.; Wang, Z.; Wang, E. A Novel Rechargeable Magnesium–Air Battery Using “All in One” Mg Anode with High Reversibility. J. Chem. Eng. 2023, 472, 145154–145164.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92812-
dc.description.abstract溫室氣體之排放控制為眾人所關注之熱門議題,為減少運輸業造成之廢氣汙染,電動車、無人機等使用電能之新型載具成為近年眾人積極研究開發之項目。當中具高能量密度與高理論開路電壓優勢之可充電鎂氧氣(Mg–O2)電池作為有望替代鋰離子電池以運用於電動載具之新穎技術。
本研究首先合成可運用於Mg–O2電池之聚合物固態電解質並進行分析。藉添加丁二腈(succinonitrile; SN)可達最佳3.9 × 10–5 S cm–1之室溫離子電導率,並藉各式分析儀器揭示SN於聚合物電解質特性之影響,以探討SN與離子電導率之關聯性。其次將合成之聚合物電解質延伸組裝為鈕扣型準固態Mg–O2電池,其可具25000 mAh g–1之最大放電電容量、50圈穩定充放電循環壽命及0.99 V電池過電位等優異之電性表現。若將其組裝為軟包型準固態Mg–O2電池,則可具4.1 mAh cm–2之最大放電電容量,並藉點亮紅光LED展示其應用性。隨後藉各式分析儀器進行陰極界面之成分鑑定,探討準固態Mg–O2電池之反應機制,可得知氧化鎂(MgO)與過氧化鎂(MgO2)皆為主要之放電產物。同時藉各式分析儀器鑑定陽極界面之穩定性,可得知陽極表面不僅無副產物生成,更減少裂縫等缺陷發生,證明聚合物電解質具陽極保護之效果。
本研究之新穎性為使用SN提升聚合物固態電解質之離子電導率,並藉此電解質延伸配製為準固態聚合物型電解質以組裝出可充電Mg–O2電池,使其可具50圈穩定充放電循環壽命表現,並將其組裝為軟包型電池,測試其於環境大氣下運作之電性表現,改善過往鈕扣型金屬空氣電池之缺點以提升其商業實用性。
zh_TW
dc.description.abstractThe control of greenhouse gas emissions grabbed worldwide attention due to global warming. To reduce the exhaust pollution caused by transportation, electric vehicles and drones have been the focus in recent years. Rechargeable batteries with high energy density, such as magnesium–oxygen (Mg–O2) batteries are being explored as an alternative to lithium-ion batteries for electric vehicles.
This study synthesized a polymer electrolyte suitable for Mg–O2 batteries. By adding succinonitrile (SN), the ionic conductivity could be optimally enhanced to 3.9 × 10–5 S cm–1 under room temperature. The effect of SN on the properties of the polymer electrolyte was characterized. Subsequently, the polymer electrolyte was assembled into a coin-type quasi-solid-state Mg–O2 battery, exhibiting a maximum discharge capacity of 25000 mAh g–1, stable cycle life of 50 cycles, and an overpotential of 0.99 V. When assembled into a pouch-type Mg–O2 battery, its applicability was demonstrated by lighting up a red LED. Moreover, the cathode interface was characterized to explore the reaction mechanism, revealing that magnesium oxide (MgO) and magnesium peroxide (MgO2) are the main discharge products. Simultaneously, the stability of the anode interface was confirmed, which demonstrated the anode protection effect of the polymer electrolyte.
The novelty of this study is the introduction of SN to enhance the ion conductivity of polymer electrolytes, which enables the quasi-solid-state Mg–O2 battery to have a stable cycle life of 50 cycles. Additionally, the pouch-type Mg–O2 batteries were assembled and tested in ambient atmospheric conditions, which provide the possibility for large-scale commercial production.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-01T16:13:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-01T16:13:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
目次 V
圖次 IX
表次 XIII
第一章 緒論 1
1.1金屬空氣電池之發展與介紹 1
1.1.1金屬氧氣電池 2
1.1.1.1鋰氧氣電池 3
1.1.1.2鈉氧氣電池 6
1.1.1.3鎂氧氣電池 10
1.1.2金屬二氧化碳電池 15
1.1.2.1鋰二氧化碳電池 16
1.1.2.2鈉二氧化碳電池 18
1.1.2.3鎂二氧化碳電池 20
1.2常用於鎂氧氣電池之電解質 21
1.2.1水系電解質 22
1.2.2有機溶劑電解質 23
1.2.3聚合物型固態電解質 25
1.3常用於鎂氧氣電池之陰極材料與觸媒 26
1.3.1碳材料 27
1.3.2貴金屬 28
1.3.3過渡金屬氧化物 30
1.3.4含氮金屬大環化合物 31
1.4常用於鎂電解質之添加劑 32
1.4.1緩蝕劑 32
1.4.2氧化還原介質 34
1.4.3塑化晶體 36
1.5 軟包電池 38
1.6研究動機與目的 40
第二章 實驗步驟與儀器分析原理 43
2.1 化學藥品 43
2.2 實驗步驟 45
2.2.1聚合物電解質之合成 45
2.2.2釕金屬修飾之奈米碳管之合成 46
2.2.3陰極漿料之混合與塗佈 47
2.2.4鈕扣型準固態鎂氧氣電池之組裝 48
2.2.5軟包型準固態鎂氧氣電池之組裝 49
2.3 分析儀器與其原理 50
2.3.1 X光繞射儀(X-ray diffractometer; XRD) 50
2.3.2拉曼光譜儀(Raman spectroscopy) 52
2.3.3傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy; FTIR) 54
2.3.4熱重量與差熱分析儀(thermogravimetric analysis and differential thermal analysis; TGA and DTA) 56
2.3.5掃描式電子顯微鏡(scanning electron microscope; SEM) 57
2.3.6穿透式電子顯微鏡(transmission electron microscopy; TEM) 58
2.3.7 X光光電子能譜儀(X-ray photoelectron spectroscopy; XPS) 59
2.3.8 X光吸收光譜(X-ray absorption spectroscopy; XAS) 61
2.3.9線性掃描伏安法與循環伏安法(linear sweep voltammetry and cyclic voltammetry; LSV and CV) 63
2.3.10電化學阻抗頻譜(electrical impedance spectroscopy; EIS) 65
2.3.11拉伸試驗機(tensile testing machine) 67
2.3.12充放電量測儀(cycling machine) 67
第三章 結果與討論 69
3.1聚合物固態電解質之分析與比較 69
3.1.1交流阻抗量測 69
3.1.1.1定溫下離子電導率隨丁二腈添加比例變化之趨勢 69
3.1.1.2阻抗隨溫度變化之趨勢 71
3.1.1.3鎂離子遷移數量測 72
3.1.2聚合物電解質之成分與結晶度鑑定 73
3.1.2.1 X光繞射鑑定 73
3.1.2.2傅立葉轉換紅外光譜分析 75
3.1.2.3差熱分析量測 76
3.1.3熱重量分析量測 77
3.1.4 電化學勢窗口穩定度量測 78
3.1.5拉伸試驗 79
3.1.6表面與橫截面顯微形貌分析 80
3.2 準固態鎂氧氣電池之電化學性能表現 81
3.2.1鈕扣型準固態鎂氧氣電池 81
3.2.1.1最大放電測試 81
3.2.1.2循環充放電測試 82
3.2.1.3 循環伏安法量測 83
3.2.2 軟包型準固態鎂氧氣電池 84
3.2.2.1最大放電測試 85
3.2.2.2 LED應用與發光測試 86
3.3 陰極放電產物之鑑定 84
3.3.1 X光繞射鑑定 87
3.3.2拉曼光譜鑑定 88
3.3.3 X光光電子能譜鑑定 90
3.3.4 X光吸收光譜鑑定 92
3.3.5表面顯微形貌與元素分析 94
3.4陽極界面穩定性鑑定 97
3.4.1陽極界面副產物之鑑定 98
3.4.2陽極表面顯微形貌分析 99
第四章 結論 101
參考文獻 102
-
dc.language.isozh_TW-
dc.subjectPEO聚合物電解質zh_TW
dc.subjectSN添加劑zh_TW
dc.subject可充電Mg–O2電池zh_TW
dc.subject軟包型Mg–O2電池zh_TW
dc.subjectMg–O2電池反應機制zh_TW
dc.subjectMg–O2 battery reaction mechanismsen
dc.subjectPEO-based polymer electrolytesen
dc.subjectSN additivesen
dc.subjectrechargeable Mg–O2 batteriesen
dc.subjectpouch-type Mg–O2 batteriesen
dc.title應用聚合物電解質之準固態鎂氧氣電池與其相關研究zh_TW
dc.titleQuasi-Solid-State Magnesium Oxygen Battery with Polymer Electrolytesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳致融;魏大華;關肇正;劉佳兒zh_TW
dc.contributor.oralexamcommitteeChih-Jung Chen;Da-Hua Wei;Chao-Cheng Kaun;Chia-Erh Liuen
dc.subject.keywordPEO聚合物電解質,SN添加劑,可充電Mg–O2電池,軟包型Mg–O2電池,Mg–O2電池反應機制,zh_TW
dc.subject.keywordPEO-based polymer electrolytes,SN additives,rechargeable Mg–O2 batteries,pouch-type Mg–O2 batteries,Mg–O2 battery reaction mechanisms,en
dc.relation.page117-
dc.identifier.doi10.6342/NTU202401340-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-26-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept奈米工程與科學學位學程-
顯示於系所單位:奈米工程與科學學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved