請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92519完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱致遠 | zh_TW |
| dc.contributor.advisor | James C. Chu | en |
| dc.contributor.author | 傅安 | zh_TW |
| dc.contributor.author | AN FU | en |
| dc.date.accessioned | 2024-03-26T16:25:53Z | - |
| dc.date.available | 2024-03-27 | - |
| dc.date.copyright | 2024-03-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-17 | - |
| dc.identifier.citation | Joana Cavadas, Gonçalo Homem de Almeida Correia, and Joao Gouveia. A mip model for locating slow-charging stations for electric vehicles in urban areas accounting for driver tours. Transportation Research Part E: Logistics and Transportation Review, 75: 188–201, 2015.
Sung Hoon Chung and Changhyun Kwon. Multi-period planning for electric car charging station locations: A case of korean expressways. European Journal of Operational Research, 242(6):677–687, 2015. Mark S Daskin, Collette R Coullard, and Zuo-Jun Max Shen. An inventory-location model: Formulation, solution algorithm and computational results. Annals of operations research, 110(1-4):83–106, 2002. Sreten Davidov and Miloš Pantoš. Planning of electric vehicle infrastructure based on charging reliability and quality of service. Energy, 118:1156–1167, 2017. U.S. DOE. 2021 all-electric vehicles had a median driving range about 60% that of gasoline powered vehicles:https://www.energy.gov/eere/vehicles/articles/fotw-1221-january-17-2022-model-year-2021-all-electric-vehicles-had-median, 2021. Yi He, Ziqi Song, and Zhaocai Liu. Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustainable Cities and Society, 48:101530, 2019. Meysam Hosseini and SA MirHassani. Selecting optimal location for electric recharging stations with queue. KSCE Journal of Civil Engineering, 19(7):2271, 2015. Yongxi Huang, Shengyin Li, and Zhen Sean Qian. Optimal deployment of alternative fueling stations on transportation networks considering deviation paths. Networks and Spatial Economics, 15:183–204, 2015. Ahmed Abdelmoumene Kadri, Romain Perrouault, Mouna Kchaou Boujelben, and Céline Gicquel. A multi-stage stochastic integer programming approach for locating electric vehicle charging stations. Computers & Operations Research, 117:104888, 2020. Andreas Klose and Andreas Drexl. Facility location models for distribution system design. European journal of operational research, 162(1):4–29, 2005. Michael Kuby and Seow Lim. The flow-refueling location problem for alternative-fuel vehicles. Socio-Economic Planning Sciences, 39(10):125–145, 2005. Yong-Gwan Lee, Hyo-Seung Kim, Seung-Young Kho, and Chungwon Lee. User equilibrium–based location model of rapid charging stations for electric vehicles with batteries that have different states of charge. Transportation research record, 2454(1): 97–106, 2014. Shengyin Li, Yongxi Huang, and Scott J Mason. A multi-period optimization model for the deployment of public electric vehicle charging stations on network. Transportation Research Part C: Emerging Technologies, 65:128–143, 2016. Yushan Li, Fengming Cui, and Lefei Li. An integrated optimization model for the location of hydrogen refueling stations. International Journal of Hydrogen Energy, 43(42): 19636–19649, 2018. Yuping Lin, Kai Zhang, Zuo-Jun Max Shen, Bin Ye, and Lixin Miao. Multistage largescale charging station planning for electric buses considering transportation network and power grid. Transportation Research Part C: Emerging Technologies, 107(2):423–443, 2019. Joan M Ogden. Developing an infrastructure for hydrogen vehicles: a southern california case study. International Journal of Hydrogen Energy, 24(11):709–730, 1999. Christopher Upchurch, Michael Kuby, and Seow Lim. A model for location of capacitated alternative-fuel stations. Geographical Analysis, 41(9):85–106, 2009. Ying-Wei Wang and Chuah-Chih Lin. Locating multiple types of recharging stations for battery-powered electric vehicle transport. Transportation Research Part E: Logistics and Transportation Review, 58(8):76–87, 2013. Fei Xie, Changzheng Liu, Shengyin Li, Zhenhong Lin, and Yongxi Huang. Long-term strategic planning of inter-city fast charging infrastructure for battery electric vehicles. Transportation Research Part E: Logistics and Transportation Review, 109(3):261–276, 2018. Min Xu and Qiang Meng. Optimal deployment of charging stations considering path deviation and nonlinear elastic demand. Transportation Research Part B: Methodological, 135:120–142, 2020. Woosuk Yang. A user-choice model for locating congested fast charging stations. Transportation Research Part E: Logistics and Transportation Review, 110:189–213, 2018. Zhonghao Zhao, Carman KM Lee, and Jiage Huo. Ev charging station deployment on coupled transportation and power distribution networks via reinforcement learning. Energy, 267:126555, 2023. 交通部. 臺灣2050 淨零轉型「運具電動化及無碳化」關鍵戰略行動計畫, 2023. 交通部高速公路局. 國道高速公路計程電子收費階段交通資料蒐集支援系統(traffic data collection system,tdcs) 使用手冊(v3.0), 2015. 交通部高速公路局. 各旅次路徑原始資料(m06a):https://data.gov.tw/dataset/37760, 2016. 交通部高速公路局. 國道加油站設施數量統計表:https://data.gov.tw/dataset/88625, 2023. 公路總局. 公共充電樁設置及區域充電需求評估計畫, 2022. 史惠慈& 吳玉瑩. 國際電動車產業政策對臺灣的啟示. 經濟前瞻, (198):116–122, 2021. 國家發展委員會et al. 臺灣2050 淨零排放路徑及策略總說明, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92519 | - |
| dc.description.abstract | 本研究探討國道加油站轉換充電站之多期佈設最佳化,方法採用建立混合整數規劃模型,模式中包含考量電池效率、補充燃料設施組合、多種類充電樁、充電樁建設成本、總預算以及補充燃料設施容量等重要因素,並同時考慮電動運具及非電動運具,使兩種不同燃料之運具能夠被模型捕捉最大總流量。本研究建立之多期充電站佈設最佳化模型之結果在於產生不同國道服務區之不同種類及佈設方式的充電樁數量,並顯示各期之不同運具服務流量及服務率,本研究也透過進行敏感度分析,探討各變量改變後對結果產生之影響,並針對上述考慮之因素給予策略及建議。 | zh_TW |
| dc.description.abstract | This study investigates the multi-period optimal deployment of converting gas stations at highway service area into charging stations. The method utilizes a mixed-integer programming model that considers important factors such as battery efficiency, fueling facility composition, multiple types of charging piles, charging pile construction costs, total budget, and fueling facility capacity. It also takes into account both electric and non-electric vehicles, allowing the model to capture the maximum total flow of the two different types of fuel. The results of the multi-period charging station deployment optimization model generated different quantities of charging piles, with different types and deployment methods, for various service areas along the national highways. The results also show the service flow and service rate of different vehicle types in each period. Sensitivity analysis was conducted to explore the impact of changes in various variables on the results, and strategies and recommendations were provided based on the factors mentioned above. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-26T16:25:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-26T16:25:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書i
摘要ii Abstract iii 目次iv 圖次vi 表次vii 第一章緒論1 1.1 研究背景與動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究目的與內容. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究範圍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 研究流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 第二章文獻探討4 2.1 充電站佈設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 流量捕捉相關. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 多期佈設相關. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 容量相關. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 文獻探討小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 第三章研究方法8 3.1 問題定義與系統描述. . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 模式假設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.1 與需求相關. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.2 與加油及充電站相關. . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.3 汽車與電動車相關. . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 數學模型建構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3.1 數學符號. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3.1.1 集合(Set) . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3.1.2 參數(Parameter) . . . . . . . . . . . . . . . . . . . . 10 3.3.1.3 變數(Variable) . . . . . . . . . . . . . . . . . . . . . 11 3.3.2 目標式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3.3 路網與補充燃料設施組合設置. . . . . . . . . . . . . . . . . . . 12 3.3.3.1 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.4 限制式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 第四章案例測試與分析21 4.1 案例說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.1 國道資料前處理. . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.2 測試結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 敏感度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.1 電池容量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.2 補充燃料設施容量. . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.2.1 快速充電樁容量. . . . . . . . . . . . . . . . . . . . 32 4.2.2.2 一般充電樁容量. . . . . . . . . . . . . . . . . . . . 35 4.2.3 預算相關. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.3.1 總預算. . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.3.2 快速充電樁建造成本. . . . . . . . . . . . . . . . . . 44 4.2.3.3 一般充電樁建造成本. . . . . . . . . . . . . . . . . . 48 4.2.4 設施相關. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2.4.1 起始油槍數量. . . . . . . . . . . . . . . . . . . . . . 51 4.3 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 第五章結論與建議57 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2 建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 參考文獻60 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | 多期佈設 | zh_TW |
| dc.subject | 充電容量 | zh_TW |
| dc.subject | Multi-period | en |
| dc.subject | Capaciated | en |
| dc.subject | Optimization | en |
| dc.title | 考量容量之國道加油站轉換充電站之多期佈設最佳化 | zh_TW |
| dc.title | A multi-period optimization model for the deployment of capacitated charging station at highway service area | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳俊穎;水敬心 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Ying Chen;Chin-Sum Shui | en |
| dc.subject.keyword | 多期佈設,充電容量,最佳化, | zh_TW |
| dc.subject.keyword | Multi-period,Capaciated,Optimization, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202400275 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 3.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
