Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92452
標題: 以高估圖優化語義分割中的異常物偵測
Out-of-Distribution Detection in Semantic Segmentation with Overestimated Map Refinement
作者: 陳昱安
Yu-An Chen
指導教授: 陳健輝 
Gen-Huey Chen
關鍵字: 異常偵測(out-of-distribution detection),異常分割(anomaly segmentation),語意分割(semantic segmentation),自動駕駛(autonomous driving),熵(entropy),耦合模組(coupling module),
out-of-distribution detection,anomaly segmentation,semantic segmentation,autonomous driving,entropy,coupling module,
出版年 : 2023
學位: 碩士
摘要: 在這篇論文中,我們提出了一個新方法,能夠用於語意分割(semantic segmentation)中,像素層面的異常偵測(out-of-distribution detection)。這個問題在像自動駕駛(autonomous driving)這樣的安全敏感領域是一個具有挑戰性的任務。最近在異常分割(anomaly segmentation)研究領域中的一個最佳方法是訓練網絡使用熵(entropy)來區分內部數據(inliers)和外部數據(outliers)。然而,這種方法經常導致許多假陽性。為了解決這個缺點,我們提出了一種高效的方法,結合了一個高估圖(overestimated map)和一個輕量級耦合模組(coupling module)。首先,我們使用分佈範圍外(out-of-distribution)的樣本重新訓練分割網絡,以放大這些分佈範圍外樣本的熵。然後,我們使用這個重新的訓練網絡產生的輸出來計算高估圖,並將輸出、熵圖和高估圖輸入耦合模組進行處理。最後通過將耦合模組的輸出與熵圖相乘獲得最終的異常圖(final anomaly map)。我們的方法在 SegmentMeIfYouCan 數據集上進行了評估,該數據集包括 AnomalyTrack、ObstacleTrack 和 LostAndFound 子數據集。與作為基準(baseline)的最佳方法相比,只增加了最小的推理時間開銷,便能降低最多 50% 的假陽性。
In this paper, we propose a new method for detecting anomalies at the pixel level in semantic segmentation. This is a challenging task in safety-sensitive domains, such as autonomous driving. A prominent method of anomaly segmentation involves training the segmentation network to differentiate inliers and outliers on the basis of entropy. However, this approach often leads to many false positives. To address this drawback, we propose an efficient method that involves combining an overestimated map with a lightweight coupling module. Initially, we retrain the segmentation network with an OoD proxy to amplify softmax entropy for these OoD samples. We then calculate the overestimated map using logits generated by this retrained network and input logits, entropy map, and overestimated map into the coupling module for processing. The final anomaly map is obtained by multiplying the output of coupling module with the entropy map. On the SegmentMeIfYouCan benchmark, including AnomalyTrack, ObstacleTrack, and LostAndFound, the proposed approach achieved up to 50% fewer false positives than did a state-of-the-art method (the maximized entropy method) at the cost of only a slightly longer inference time.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92452
DOI: 10.6342/NTU202304375
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2024-12-31
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
56.03 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved