Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92452
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳健輝 zh_TW
dc.contributor.advisorGen-Huey Chenen
dc.contributor.author陳昱安zh_TW
dc.contributor.authorYu-An Chenen
dc.date.accessioned2024-03-22T16:34:23Z-
dc.date.available2024-03-23-
dc.date.copyright2024-03-22-
dc.date.issued2023-
dc.date.submitted2023-12-20-
dc.identifier.citation[1] V. Besnier, A. Bursuc, D. Picard, and A. Briot. Triggering failures: Out-of-distribution detection by learning from local adversarial attacks in semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15701–15710, 2021.
[2] R. Chan, K. Lis, S. Uhlemeyer, H. Blum, S. Honari, R. Siegwart, P. Fua, M. Salzmann, and M. Rottmann. Segmentmeifyoucan: A benchmark for anomaly segmentation. arXiv preprint arXiv:2104.14812, 2021.
[3] R. Chan, M. Rottmann, and H. Gottschalk. Entropy maximization and meta classification for out-of-distribution detection in semantic segmentation. In Proceedings of the ieee/cvf international conference on computer vision, pages 5128–5137, 2021.
[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848, 2017.
[5] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV), pages 801–818, 2018.
[6] M.Cordts, M.Omran, S.Ramos, T.Rehfeld, M.Enzweiler, R.Benenson, U.Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3213–3223, 2016.
[7] G. Di Biase, H. Blum, R. Siegwart, and C. Cadena. Pixel-wise anomaly detection in complex driving scenes. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 16918–16927, 2021.
[8] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.
[9] M. Grcic ́, P. Bevandic ́, Z. Kalafatic ́, and S. Sˇegvic ́. Dense anomaly detection by robust learning on synthetic negative data. arXiv preprint arXiv:2112.12833, 2021.
[10] M. Grcic ́, P. Bevandic ́, and S. Sˇegvic ́. Densehybrid: Hybrid anomaly detection for dense open-set recognition. In European Conference on Computer Vision, pages 500–517. Springer, 2022.
[11] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks. In International conference on machine learning, pages 1321–1330. PMLR, 2017.
[12] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.
[13] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015.
[14] A. Kendall, V. Badrinarayanan, and R. Cipolla. Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680, 2015.
[15] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in neural information processing systems, 30, 2017.
[16] K. Lee, K. Lee, H. Lee, and J. Shin. A simple unified framework for detecting out-of-distribution samples and adversarial attacks. Advances in neural information processing systems, 31, 2018.
[17] S.Liang, Y.Li, and R.Srikant.Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.
[18] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dolla ́r, and C. L. Zitnick. Microsoft coco: Common objects in context. In Computer Vision ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014.
[19] K. Lis, K. Nakka, P. Fua, and M. Salzmann. Detecting the unexpected via image resynthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2152–2161, 2019.
[20] W. Liu, X. Wang, J. Owens, and Y. Li. Energy-based out-of-distribution detection. Advances in neural information processing systems, 33:21464–21475, 2020.
[21] P. Pinggera, S. Ramos, S. Gehrig, U. Franke, C. Rother, and R. Mester. Lost and found: detecting small road hazards for self-driving vehicles. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1099–1106. IEEE, 2016.
[22] M. Rottmann, P. Colling, T. P. Hack, R. Chan, F. Hu ̈ger, P. Schlicht, and H. Gottschalk. Prediction error meta classification in semantic segmentation: Detection via aggregated dispersion measures of softmax probabilities. In 2020 International Joint Conference on Neural Networks (IJCNN), pages 1–9. IEEE, 2020.
[23] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 815–823, 2015.
[24] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[25] Y. Tian, Y. Liu, G. Pang, F. Liu, Y. Chen, and G. Carneiro. Pixel-wise energy-biased abstention learning for anomaly segmentation on complex urban driving scenes. In European Conference on Computer Vision, pages 246–263. Springer, 2022.
[26] T. Voj ́ıˇr and J. Matas. Image-consistent detection of road anomalies as unpredictable patches. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 5491–5500, 2023.
[27] T. Vojir, T. Sˇipka, R. Aljundi, N. Chumerin, D. O. Reino, and J. Matas. Road anomaly detection by partial image reconstruction with segmentation coupling. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15651–15660, 2021.
[28] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8798–8807, 2018.
[29] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, volume 2, pages 1398–1402. Ieee, 2003.
[30] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Free-form image inpainting with gated convolution. In Proceedings of the IEEE/CVF international conference on computer vision, pages 4471–4480, 2019.
[31] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2881–2890, 2017.
[32] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 633–641, 2017.
[33] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. Newsam, A. Tao, and B. Catanzaro. Improving semantic segmentation via video propagation and label relaxation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 8856–8865, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92452-
dc.description.abstract在這篇論文中,我們提出了一個新方法,能夠用於語意分割(semantic segmentation)中,像素層面的異常偵測(out-of-distribution detection)。這個問題在像自動駕駛(autonomous driving)這樣的安全敏感領域是一個具有挑戰性的任務。最近在異常分割(anomaly segmentation)研究領域中的一個最佳方法是訓練網絡使用熵(entropy)來區分內部數據(inliers)和外部數據(outliers)。然而,這種方法經常導致許多假陽性。為了解決這個缺點,我們提出了一種高效的方法,結合了一個高估圖(overestimated map)和一個輕量級耦合模組(coupling module)。首先,我們使用分佈範圍外(out-of-distribution)的樣本重新訓練分割網絡,以放大這些分佈範圍外樣本的熵。然後,我們使用這個重新的訓練網絡產生的輸出來計算高估圖,並將輸出、熵圖和高估圖輸入耦合模組進行處理。最後通過將耦合模組的輸出與熵圖相乘獲得最終的異常圖(final anomaly map)。我們的方法在 SegmentMeIfYouCan 數據集上進行了評估,該數據集包括 AnomalyTrack、ObstacleTrack 和 LostAndFound 子數據集。與作為基準(baseline)的最佳方法相比,只增加了最小的推理時間開銷,便能降低最多 50% 的假陽性。zh_TW
dc.description.abstractIn this paper, we propose a new method for detecting anomalies at the pixel level in semantic segmentation. This is a challenging task in safety-sensitive domains, such as autonomous driving. A prominent method of anomaly segmentation involves training the segmentation network to differentiate inliers and outliers on the basis of entropy. However, this approach often leads to many false positives. To address this drawback, we propose an efficient method that involves combining an overestimated map with a lightweight coupling module. Initially, we retrain the segmentation network with an OoD proxy to amplify softmax entropy for these OoD samples. We then calculate the overestimated map using logits generated by this retrained network and input logits, entropy map, and overestimated map into the coupling module for processing. The final anomaly map is obtained by multiplying the output of coupling module with the entropy map. On the SegmentMeIfYouCan benchmark, including AnomalyTrack, ObstacleTrack, and LostAndFound, the proposed approach achieved up to 50% fewer false positives than did a state-of-the-art method (the maximized entropy method) at the cost of only a slightly longer inference time.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-22T16:34:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-22T16:34:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vi
List of Tables vii
1 Introduction 1
2 Related Work 4
2.1 Out-of-Distribution Detection with Generative Network . . . . . . . . . . 4
2.2 Out-of-Distribution Detection with Autoencoder Network . . . . . . . . . 7
2.3 Out-of-Distribution Detection in Semantic Segmentation Network . . . . 9
3 Proposed Method 14
3.1 SegmentationNetwork ........................... 14
3.2 EntropyMap ................................ 15
3.3 OverestimatedMap............................. 16
3.4 CouplingModule .............................. 18
3.5 FinalAnomalyMap............................. 20
4 Experiments 22
4.1 Datasets................................... 22
4.2 EvaluationMetrics ............................. 23
4.3 ImplementationDetails........................... 23
4.4 Results.................................... 24
4.5 AblationStudies............................... 25
4.5.1 ComponentAnalysis........................ 25
4.5.2 EntropyRetrainingAnalysis.................... 26
5 Conclusion 29
Bibliography 30
-
dc.language.isoen-
dc.subject耦合模組(coupling module)zh_TW
dc.subject自動駕駛(autonomous driving)zh_TW
dc.subject熵(entropy)zh_TW
dc.subject異常分割(anomaly segmentation)zh_TW
dc.subject異常偵測(out-of-distribution detection)zh_TW
dc.subject語意分割(semantic segmentation)zh_TW
dc.subjectcoupling moduleen
dc.subjectout-of-distribution detectionen
dc.subjectanomaly segmentationen
dc.subjectsemantic segmentationen
dc.subjectautonomous drivingen
dc.subjectentropyen
dc.title以高估圖優化語義分割中的異常物偵測zh_TW
dc.titleOut-of-Distribution Detection in Semantic Segmentation with Overestimated Map Refinementen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳冠文;林奕成;王才沛zh_TW
dc.contributor.oralexamcommitteeKuan-Wen Chen;I-Chen Lin;Tsaipei Wangen
dc.subject.keyword異常偵測(out-of-distribution detection),異常分割(anomaly segmentation),語意分割(semantic segmentation),自動駕駛(autonomous driving),熵(entropy),耦合模組(coupling module),zh_TW
dc.subject.keywordout-of-distribution detection,anomaly segmentation,semantic segmentation,autonomous driving,entropy,coupling module,en
dc.relation.page34-
dc.identifier.doi10.6342/NTU202304375-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-12-21-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2024-12-31-
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-112-1.pdf
Access limited in NTU ip range
56.03 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved