Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92353
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光zh_TW
dc.contributor.advisorChih-Kung Leeen
dc.contributor.author裴翊頎zh_TW
dc.contributor.authorYi-Chi Peien
dc.date.accessioned2024-03-21T16:45:34Z-
dc.date.available2026-01-16-
dc.date.copyright2024-03-21-
dc.date.issued2024-
dc.date.submitted2024-01-16-
dc.identifier.citation[1] Technavio. "Haptics Market by Application, Component, and Geography - Forecast and Analysis 2023-2027." https://www.technavio.com/report/haptics-market-industry-analysis (accessed.
[2] B. TECHNOLOGIES. "觸覺技術的較量." https://www.boreas.ca/blogs/piezo-haptics/boreas-technologies-piezo-driver-ic-vs-linear-resonant-actuator-lra-haptic-technologies-showdown-part-2 (accessed.
[3] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. Siegelbaum, A. J. Hudspeth, and S. Mack, Principles of neural science. McGraw-hill New York, 2000, pp. 1077-1079.
[4] E. B. Goldstein and L. Cacciamani, Sensation and perception. Cengage Learning, 2021, pp. 329-332.
[5] B. Medical, "Medical gallery of blausen medical 2014," WikiJournal of Medicine, vol. 1, no. 2, pp. 1-79, 2014.
[6] Å. Vallbo and K.-E. Hagbarth, "Activity from skin mechanoreceptors recorded percutaneously in awake human subjects," Experimental neurology, vol. 21, no. 3, pp. 270-289, 1968.
[7] R. S. Johansson, U. Landstro, and R. Lundstro, "Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements," Brain research, vol. 244, no. 1, pp. 17-25, 1982.
[8] K. A. Kaczmarek, J. G. Webster, P. Bach-y-Rita, and W. J. Tompkins, "Electrotactile and vibrotactile displays for sensory substitution systems," IEEE transactions on biomedical engineering, vol. 38, no. 1, pp. 1-16, 1991.
[9] S. Bolanowski Jr and J. J. Zwislocki, "Intensity and frequency characteristics of Pacinian corpuscles. I. Action potentials," Journal of neurophysiology, vol. 51, no. 4, pp. 793-811, 1984.
[10] W. Dangxiao, G. Yuan, L. Shiyi, Y. Zhang, X. Weiliang, and X. Jing, "Haptic display for virtual reality: progress and challenges," Virtual Reality & Intelligent Hardware, vol. 1, no. 2, pp. 136-162, 2019.
[11] S.-C. Kim, A. Israr, and I. Poupyrev, "Tactile rendering of 3D features on touch surfaces," in Proceedings of the 26th annual ACM symposium on User interface software and technology, 2013, pp. 531-538.
[12] K. Yatani and K. N. Truong, "SemFeel: a user interface with semantic tactile feedback for mobile touch-screen devices," in Proceedings of the 22nd annual ACM symposium on User interface software and technology, 2009, pp. 111-120.
[13] G.-H. Yang, M.-s. Jin, Y. Jin, and S. Kang, "T-mobile: Vibrotactile display pad with spatial and directional information for hand-held device," in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010: IEEE, pp. 5245-5250.
[14] C.-H. Yeh et al., "Application of piezoelectric actuator to simplified haptic feedback system," Sensors and Actuators A: Physical, vol. 303, p. 111820, 2020.
[15] Y. Hashimoto, S. Nakata, and H. Kajimoto, "Novel tactile display for emotional tactile experience," in Proceedings of the International Conference on Advances in Computer Entertainment Technology, 2009, pp. 124-131.
[16] S.-H. Kim, K. Sekiyama, T. Fukuda, K. Tanaka, and K. Itoigawa, "Development of dynamically re-formable input device in tactile and visual interaction," in 2007 International Symposium on Micro-NanoMechatronics and Human Science, 2007: IEEE, pp. 544-549.
[17] C. Harrison and S. E. Hudson, "Providing dynamically changeable physical buttons on a visual display," in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2009, pp. 299-308.
[18] J. C. McClelland, R. J. Teather, and A. Girouard, "Haptobend: shape-changing passive haptic feedback in virtual reality," in Proceedings of the 5th Symposium on Spatial User Interaction, 2017, pp. 82-90.
[19] N. D. Marchuk, J. E. Colgate, and M. A. Peshkin, "Friction measurements on a large area TPaD," in 2010 IEEE Haptics Symposium, 2010: IEEE, pp. 317-320.
[20] O. Bau, I. Poupyrev, A. Israr, and C. Harrison, "TeslaTouch: electrovibration for touch surfaces," in Proceedings of the 23nd annual ACM symposium on User interface software and technology, 2010, pp. 283-292.
[21] D. Bokov et al., "Nanomaterial by sol-gel method: synthesis and application," Advances in Materials Science and Engineering, vol. 2021, pp. 1-21, 2021.
[22] M. Niederberger and N. Pinna, Metal oxide nanoparticles in organic solvents: synthesis, formation, assembly and application. Springer Science & Business Media, 2009.
[23] A. Baptista, F. Silva, J. Porteiro, J. Míguez, G. Pinto, and L. Fernandes, "On the physical vapour deposition (PVD): evolution of magnetron sputtering processes for industrial applications," Procedia Manufacturing, vol. 17, pp. 746-757, 2018.
[24] J. Pan, G. L. Tonkay, and A. Quintero, "Screen printing process design of experiments for fine line printing of thick film ceramic substrates," Journal of Electronics Manufacturing, vol. 9, no. 03, pp. 203-213, 1999.
[25] T. Morita, "Piezoelectric materials synthesized by the hydrothermal method and their applications," Materials, vol. 3, no. 12, pp. 5236-5245, 2010.
[26] D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, and R. Moos, "An overview of the aerosol deposition method: Process fundamentals and new trends in materials applications," J. Ceram. Sci. Technol, vol. 6, no. 3, pp. 147-182, 2015.
[27] C. He and W. Chen, "Fabrication and research and application of piezoelectric materials," J. Func. Mat, vol. 41, pp. 11-13, 2010.
[28] H. Jaffe, "Piezoelectric ceramics," Journal of the American Ceramic Society, vol. 41, no. 11, pp. 494-498, 1958.
[29] C. S. McGahey, "Harnessing nature''s timekeeper: a history of the piezoelectric quartz crystal technological community (1880-1959)," Georgia Institute of Technology, 2009.
[30] 吳朗, 電子陶瓷: 壓電陶瓷. 全欣, 1994.
[31] J. Yang, An introduction to the theory of piezoelectricity. Springer, 2005.
[32] A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, "IEEE Standard on Piezoelectricity “ANSI/IEEE Std 176–1987”," The Institute of Electrical and Electronics Engineers Inc, 1987.
[33] C.-K. Lee, "Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships," The Journal of the Acoustical Society of America, vol. 87, no. 3, pp. 1144-1158, 1990.
[34] A. W. Leissa, "Vibration of plates, NASA SP-160," National Aeronautics and Space Administration, Washington DC, 1969.
[35] G. Wang, N. M. Wereley, and D.-C. Chang, "Analysis of bending vibration of rectangular plates using two-dimensional plate modes," Journal of aircraft, vol. 42, no. 2, pp. 542-550, 2005.
[36] S.-C. Lin and W.-J. Wu, "Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method," Journal of Micromechanics and Microengineering, vol. 23, no. 12, p. 125028, 2013.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92353-
dc.description.abstract本研究之目標為開發輕薄、低功率及高性能之雙壓電觸覺回饋致動器,透過雙壓電致動器的設計以及開發製程技術,有效改善單壓電致動器之殘留應力所導致薄膜的彎曲問題,並使用觸覺驅動板結合壓力感測器產生觸覺回饋的驅動。本研究所開發的雙壓電觸覺回饋致動器製程技術是以不鏽鋼作為基材,並利用化學氣膠沉積法及微機電製程技術在不鏽鋼的上下兩面上製作觸覺回饋裝置致動源的壓電致動器元件,並以對稱層狀結構排除殘留應力所造成的結構彎曲問題。為驗證所開發的雙壓電觸覺回饋致動器的致動特性,本研究透過雷射測振儀實際量測振動單元及壓電致動器之振幅響應,驗證前者在驅動電壓為45V時,頻率 500Hz 時,最大位移量可以達到1μm,後者在驅動電壓為30V時,頻率500Hz時,最大位移量可達1.54μm,且在同一頻率下,發現隨著連接體長度的增加,振幅會明顯下降、隨著連接體厚度的增加,振幅則不太會有變化,驗證透過壓電致動器之結構變化可以使位移量大大提升。zh_TW
dc.description.abstractThis study aims to develop lightweight, low-power consumption, and highly efficient haptic actuator using a piezoelectric bimorph. By developing a new design and fabrication method, the warpage due to residual stress of the piezoelectric layer is successfully minimized. Integrating a touch sensor and the developed haptic feedback actuator, the haptic feedback is achieved by using a haptic feedback circuit. The developed haptic feedback actuator is constructed by depositing piezoelectric actuators symmetrically on two sizes of a stainless-steel plate using chemical aerosol deposition and microfabrication process. The symmetric design largely reduced the influence of the residual stress in the deposited piezoelectric layer. The performance of this haptic feedback actuator is verified using a Scanning Vibrometer. It verifies that the former can achieve a maximum displacement of 1μm at a driving voltage of 45V and a frequency of 500Hz. The latter can achieve a maximum displacement of 1.54μm at a driving voltage of 30V and a frequency of 500Hz. Furthermore, at the same frequency, it is found that the amplitude decreases significantly with an increase in the length of the connector, while the amplitude does not vary much with an increase in the thickness of the connector. This study demonstrates that the displacement of the haptic feedback actuator can be enhanced by controlling the actuator structure design.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-21T16:45:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-21T16:45:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目次 iv
圖次 viii
表次 xiv
第1章 緒論 1
1.1 觸覺技術市場趨勢 1
1.2 研究背景 2
1.3 研究動機 3
1.4 觸覺感知系統 4
1.4.1 人體皮膚觸覺感知 4
1.4.2 皮膚觸覺受器 5
1.5 觸覺裝置驅動原理之探討 8
1.5.1 機械振動 9
1.5.2 表面形狀變化 11
1.5.3 摩擦力調變 13
1.5.4 觸覺裝置之驅動原理比較 14
1.6 壓電薄膜製備技術 15
1.6.1 溶膠凝膠法(Sol-gel method) 15
1.6.2 濺鍍法(Sputtering method) 16
1.6.3 網版印刷法(Screen printing method) 17
1.6.4 水熱合成法(Hydrothermal method) 17
1.6.5 氣膠沉積法(Aerosol deposition method) 18
1.6.6 壓電膜製程技術比較 19
1.7 論文架構 20
第2章 壓電式觸覺致動器之結構設計 22
2.1 研究架構 22
2.2 壓電振動單元之設計 22
2.3 觸覺致動器之結構設計 24
第3章 壓電材料介紹與理論 27
3.1 壓電歷史 27
3.2 壓電效應 27
3.2.1 正壓電效應 28
3.2.2 逆壓電效應 28
3.3 壓電材料 29
3.4 理論推導 30
3.4.1 壓電組成律方程式 30
3.4.2 壓電薄板物性方程式 34
3.4.3 壓電致動器統御方程式推導 39
3.5 致動器振動單元之尺寸設計 49
3.5.1 PZT膜厚之設計 49
3.5.2 電極位置及長度之設計 50
第4章 有限元素模擬分析 53
4.1 有限元素模擬參數設定 53
4.1.1 壓電振動單元 54
4.1.2 壓電觸覺致動器 56
4.2 壓電振動單元 58
4.2.1 不同電極長度下之比較 58
4.2.2 不同驅動電壓下之比較 61
4.3 壓電致動器 65
4.3.1 連接體厚度之變化 65
4.3.1.1 三者之比較 67
4.3.2 連接體長度之變化 67
4.3.2.1 三者之比較 68
第5章 壓電觸覺致動器之元件製程 70
5.1 氣膠沉積法 70
5.2 金屬微機電製程 71
5.2.1 雙壓電觸覺致動器結構製程 71
5.3 壓電膜退火 74
5.4 壓電膜極化 75
5.5 單壓電及雙壓電製程結果比較 77
5.6 裝置組裝 77
5.7 量測振動輸出之實驗架設 78
5.8 裝置驅動之實驗方法 79
5.8.1 驅動板(PowerHapTM 5-channel driver board) 79
5.8.2 壓力傳感器(GD05-10N) 81
第6章 實驗結果與討論 83
6.1 壓電振動單元 84
6.1.1 固定頻率250Hz,不同驅動電壓下之比較 84
6.1.2 固定頻率300Hz,不同驅動電壓下之比較 87
6.1.3 固定頻率500Hz,不同驅動電壓下之比較 89
6.2 壓電致動器 92
6.2.1 連接體厚度之變化 92
6.2.1.1 固定頻率250Hz及連接體長度2mm 92
6.2.1.2 固定頻率300Hz及連接體長度2mm 94
6.2.1.3 固定頻率500Hz及連接體長度2mm 96
6.2.2 長度之變化 98
6.2.2.1 固定頻率250Hz及連接體厚度2mm 98
6.2.2.2 固定頻率300Hz及連接體厚度2mm 100
6.2.2.3 固定頻率500Hz及連接體厚度2mm 102
6.3 頻域分析 105
6.4 透過驅動板驅動之分析 106
第7章 結論與未來展望 107
7.1 結論 107
7.2 未來展望 108
REFERENCES 109
-
dc.language.isozh_TW-
dc.subject氣膠沉積法zh_TW
dc.subject致動器zh_TW
dc.subject壓電薄膜製程zh_TW
dc.subject觸覺回饋裝置zh_TW
dc.subject壓電材料zh_TW
dc.subjecthaptic feedback deviceen
dc.subjectaerosol depositionen
dc.subjectpiezoelectric materialen
dc.subjectactuatoren
dc.subjectfabrication of piezoelectric filmen
dc.title平板式雙壓電致動器應用於觸覺回饋裝置之開發zh_TW
dc.titleDevelopment of a Flat Bimorph Actuator for Haptic Feedback Deviceen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.coadvisor許聿翔zh_TW
dc.contributor.coadvisorYu-Hsiang Hsuen
dc.contributor.oralexamcommittee柯文清;謝志文;宋家驥zh_TW
dc.contributor.oralexamcommitteeWen-Ching Ko ;Chih-Wen Hsieh;Chia-Chi Sungen
dc.subject.keyword觸覺回饋裝置,氣膠沉積法,壓電材料,致動器,壓電薄膜製程,zh_TW
dc.subject.keywordhaptic feedback device,aerosol deposition,piezoelectric material,actuator,fabrication of piezoelectric film,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202400093-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-01-17-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2026-01-16-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved