Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92230
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳亮嘉zh_TW
dc.contributor.advisorLiang-Chia Chenen
dc.contributor.author曹原輔zh_TW
dc.contributor.authorYuan-Fu Tsaoen
dc.date.accessioned2024-03-17T16:15:39Z-
dc.date.available2024-03-18-
dc.date.copyright2024-03-16-
dc.date.issued2024-
dc.date.submitted2024-02-19-
dc.identifier.citation[1] K. B. Smith and Y. F. Zheng. Accuracy Analysis of Point Laser Triangulation Probes Using Simulation. Journal of Manufacturing Science and Engineering, 120(4):736–745, 11 1998. ISSN 1087-1357. doi: 10.1115/1.2830214.
[2] F. Xi, Y. Liu, and H. Y. Feng. Error compensation for three-dimensional line laser scanning data. The International Journal of Advanced Manufacturing Technology, 18, 2001. ISSN 1433-3015. doi: https://doi.org/10.1007/s001700170076.
[3] S. V. Mikhlyaev. Influence of a tilt of mirror surface on the measurement accuracy of laser triangulation rangefinder. Journal of Physics: Conference Series, 48(1):739, oct 2006. doi: 10.1088/1742-6596/48/1/140.
[4] N. Vukašinović, M. Korošec, and J. Duhovnik. The influence of surface topology on the accuracy of laser triangulation scanning results. Strojniški vestnik - Journal of Mechanical Engineering, 56(1):23–30, 2010. ISSN 0039-2480.
[5] S. Li, Y. Yang, X. Jia, and M. Chen. The impact and compensation of tilt factors upon the surface measurement error. Optik, 127(18):7367–7373, 2016. ISSN 0030-4026. doi: https://doi.org/10.1016/j.ijleo.2016.05.004.
[6] Mitutoyo Corporation. CMM CRYSTA-Apex V. https://www.mitutoyo.com.tw/uploads/product/tw/cmm.png, 2023. Accessed: 2023-10-15.
[7] S. Van der Jeught and J. Dirckx. Real-time structured light profilometry: a review. Optics and Lasers in Engineering, 87:18–31, 2016. ISSN 0143-8166. doi: https://doi.org/10.1016/j.optlaseng.2016.01.011. Digital optical and Imaging methods instructural mechanics.
[8] C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. Optics and Lasers in Engineering, 85:84–103, 2016. ISSN 0143-8166. doi: https://doi.org/10.1016/j.optlaseng.2016.04.022.
[9] C. E. Towers, D. P. Towers, and J. D. C. Jones. Optimum frequency selection in multifrequency interferometry. Opt. Lett., 28(11):887–889, Jun 2003. doi: 10.1364/OL.28.000887.
[10] P. Jia, J. Kofman, and C. English. Comparison of linear and nonlinear calibration methods for phase-measuring profilometry. Optical Engineering - OPT ENG, 46, 04 2007. doi: 10.1117/1.2721025.
[11] M. Takeda and K. Mutoh. Fourier transform profilometry for the automatic measurement of 3-d object shapes. Appl. Opt., 22(24):3977–3982, Dec 1983. doi:10.1364/AO.22.003977.
[12] G. E. Spoorthi, S. Gorthi, and R. K. Gorthi. Phasenet: A deep convolutional neural network for two-dimensional phase unwrapping. IEEE Signal Processing Letters, 26(1):54–58, 2019. doi: 10.1109/LSP.2018.2879184.
[13] W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A.Asundi, and C. Zuo. Temporal phase unwrapping using deep learning, 2019.
[14] Z. Zhang, J. Qian, Y. Wang, and X. Yang. Phase unwrapping via deep learning based region segmentation. In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, pages 397–400, 2020. doi: 10.1109/IGARSS39084.2020.9323569.
[15] C. A. Wiley. Synthetic aperture radars. IEEE Transactions on Aerospace and Electronic Systems, AES-21(3):440–443, 1985. doi: 10.1109/TAES.1985.310578.
[16] 邱亮學. 多頻率相移法絕對形貌量測術之不確定度分析與優化研究. Master’s thesis, 國立臺灣大學, 01 2020.
[17] A. Donges and R. Noll. Laser Triangulation, pages 247–278. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015. doi: 10.1007/978-3-662-43634-9_10. ISBN 978-3-662-43634-9.
[18] W. H. Stevenson. Use of laser triangulation probes in coordinate measuring machines for part tolerance inspection and reverse engineering. In Other Conferences, 1993.
[19] T. Giesko, A. Zbrowski, and P. Czajka. Laser profilometers for surface inspection and profile measurement. Problemy Eksploatacji/Maintenance Problems, 1, 01 2007.
[20] Teledyne e2v CMOS Image Sensors. Laser Triangulation - How Does Laser Triangulation Work? https://imaging.teledyne-e2v.com/content/uploads/2021/05/3D-Sensor-illustrations-02-scaled.jpg, 2023. Accessed: 2023-10-17.
[21] R. Woodham. Photometric method for determining surface orientation from multiple images. Optical Engineering, 19, 01 1992. doi: 10.1117/12.7972479.
[22] Meekohi. Explanatory diagram of photometric stereo. Multiple images of an object under different lighting are analyzed to produce an estimated normal direction at each pixel. https://upload.wikimedia.org/wikipedia/commons/b/b5/Photometric_stereo.png, 2015. Accessed: 2023-10-15.
[23] X. Wang, D. F. Fouhey, and A. Gupta. Designing deep networks for surface normal estimation. CoRR, abs/1411.4958, 2014.
[24] J. E. Lenssen, C. Osendorfer, and J. Masci. Differentiable iterative surface normal estimation. CoRR, abs/1904.07172, 2019.
[25] M. W. van Veen. Normal map prediction from light field data through deep learning, February 2020.
[26] L. da Vinci. First published picture of camera obscura in Gemma Frisius’ 1545 book De Radio Astronomica et Geometrica.
[27] DF Malan. Euler Angles x-convention. https://en.wikipedia.org/wiki/File:EulerX.png, 2004. Accessed: 2023-10-15.
[28] DF Malan. Euler Angles, general convention. https://en.wikipedia.org/wiki/File:EulerG.png, 2004. Accessed: 2023-10-15.
[29] L. Brits. Euler angles, vector of File:Euler.png. https://commons.wikimedia.org/wiki/File:Eulerangles.svg, 2008. Accessed: 2023-10-15.
[30] B. H. Huang, Y. F. Tsao, F. S. Yang, and L. C. Chen. High-speed multi-line structured-light 3-d scanning system for accurate surface profilometry. In 9th International Conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN2022), pages 738–742, 2022. doi: 10.3850/978-981-18-6021-8_OR-15-0111.
[31] X. Chen, Y. Chen, B. Chen, Z. He, Y. Ma, D. Zhang, and H. Najjaran. A camera intrinsic matrix-free calibration method for laser triangulation sensor. Sensors, 21 (2), 2021. ISSN 1424-8220. doi:10.3390/s21020559.
[32] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000. doi: 10.1109/34.888718.
[33] A. Nordmann. Definition of full width at half maximum bandwidth for a resonance curve. https://commons.wikimedia.org/wiki/File:FWHM.svg, 2007. Accessed: 2024-1-4.
[34] C. Boucher. The Bivariate Normal Distribution. http://demonstrations.wolfram.com/TheBivariateNormalDistribution/, 2011. Accessed: 2024-1-16.
[35] Nexcis. Visualizazion of the method of Lagrange multipliers in 2D. https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg, 2008. Accessed: 2024-1-14.
[36] Rotation Stages. https://www.onset-eo.com/drawing/CR04D.pdf, 2024. Accessed: 2024-1-22.
[37] PING LINKIN Factory P300+. https://en.ping3dp.com/single-material-desktop-3d-printer-p300, 2024. Accessed: 2024-1-22.
[38] Thomas G. Beckwith. Mechanincal Measurements, chapter 3. Pearson, 2008.
[39] Karl Strubecker. VORLESUNGEN ÜBER DARSTELLENDE GEOMETRIE, chapter II. Vandenhoeck and Ruprecht, Göttingen, 1967.
[40] Rossmann K. Point spread-function, line spread-function, and modulation transfer function. tools for the study of imaging systems. Radiology, 93(2):257–272, 1969. doi: 10.1148/93.2.257.
[41] Jack Hogan. 2D PSF solid and its projected intensity profile in 1D, the LSF. https://www.dpreview.com/forums/post/58273826?image=0, 2016. Accessed: 2024-1-14.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92230-
dc.description.abstract本研究提出了一種適用於線掃描三角架構的測量物體表面傾斜的方法。此方法引用了計算機圖學和投影幾何學的概念,建立表面傾斜角度與其他物理量之間的關係。核心概念是分析相機拍攝到的線條紋之線寬與光強度的變化,再透過設計適當的正向模型來解釋傾斜角和特徵變化之間的關係,進而得知表面傾斜的大小。利用三角函數和微積分的概念即可建立傾斜角度對線寬的影響的模型。傾斜角度對光強響應的模型則是引用蘭柏特餘弦定律來建立。在量測場景中,傾斜角為逆問題的解。反向模型可被重新表述為有約束條件的優化問題,因此傾斜角可以透過尋找目標函數的最小值來獲得。驗證過程分為兩大部分,正向模型與反向模型的驗證。經由驗證結果得知,線寬正向模型與實驗觀測值匹配,$R^2$統計量約為0.644。與三次元量床的量測數據相比,本研究提出的量測方法在關鍵尺寸的量測上仍然有次毫米等級的量測誤差。其誤差來源推測是三維點座標重建演算法的缺陷,以及實際觀測之光條紋與理論假設產生背離所致。zh_TW
dc.description.abstractIn this research, a methodology for measuring surface tilting angle of an object from a triangulation line scanner is proposed. The method implemented concepts from computer graphics and projective geometry. The idea is to detect the changes of linewidth and intensity in the line pattern, the surface tilting angle and the position of the surface can be reconstructed. Appropriate mathematical model explaining the relationship between tilting angles and the features are designed. The rationale behind the concept is also proven theoretically. The model for tilting angle to linewidth can be established using trigonometry and calculus, while the model for tilting angle to intensity is modeled by Lambert''s cosine law. In measuring scenario, the tilting angles are the solution to the inverse problem. A reformulation of the inverse problem yields a more convenient way for finding the solution. Finding the tilting angles are thought of as a constrained optimization problem. The validation of the methodology is separated into two parts, one is the validation of forward models and the second is the validation of the inverse problem, i.e. the overall performance. It is found that the linewidth forward model matches observation with R-squared value around 0.644. The validation of overall methodology shows that there are still rooms for improvements. It is speculated that sub-millimeter bias is caused by geometrical constraint of the measuring system, failure of presumed condition and inappropriate reconstruction algorithm for the 3D coordinates.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-17T16:15:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-17T16:15:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
誌謝 ii
摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xiv
Nomenclature xv
Chapter 1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and purpose of this research . . . . . . . . . . . . . . . . 2
1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2 Literature Review 7
2.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Reconstruction of 3D coordinates . . . . . . . . . . . . . . . . . . . 8
2.3 Reconstruction of surface normals . . . . . . . . . . . . . . . . . . . 12
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 3 Theoretical Background 15
3.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Pin-hole camera model . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Camera matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Coordinate transformation and rotation in 3D Euclidean space . . . . 21
Chapter 4 System Setup and Methodology 27
4.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 System setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Measurement of 3D coordinates . . . . . . . . . . . . . . . . . . . . 29
4.3.1 Calibration of camera . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Calibration of LED light plane . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Profile reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Measurement of surface tilting angles theta and phi . . . . . . . . . . . . . 40
4.4.1 Linewidth as a function of tilting angles . . . . . . . . . . . . . . . 41
4.4.2 Intensity as a function of tilting angles . . . . . . . . . . . . . . . . 44
4.4.3 Tilting angle reconstruction . . . . . . . . . . . . . . . . . . . . . . 47
Chapter 5 Experiments and Discussions 53
5.1 Apparatus and procedure . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Extraction of size and intensity . . . . . . . . . . . . . . . . . . . . . 57
5.3 Validation and analysis . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Validation of forward models . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Validation of overall methodology . . . . . . . . . . . . . . . . . . 65
Chapter 6 Conclusions and Future Works 75
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
References 78
Appendix A — Detailed Derivation of Model for Lateral Spot Size as a Function of Surface Tilting Angles 84
A.1 Preface and assumptions . . . . . . . . . . . . . . . . . . . . . . . . 84
A.2 De La Hire’s ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.3 Extreme points of the ellipse . . . . . . . . . . . . . . . . . . . . . . 90
Appendix B — Theoretical Rationale for Leveraging the Characteristics of Light Spots in Line Patterns 99
B.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.2 Relationship between lateral spot size and the contour of half maximum 100
B.3 Extension from light spots to line patterns . . . . . . . . . . . . . . . 104
-
dc.language.isoen-
dc.subject三角法zh_TW
dc.subject投影幾何zh_TW
dc.subject計算機圖學zh_TW
dc.subject相機校正zh_TW
dc.subject形貌量測術zh_TW
dc.subject表面傾斜zh_TW
dc.subjectProfilometryen
dc.subjectSurface Orientationen
dc.subjectTriangulationen
dc.subjectProjective Geometryen
dc.subjectComputer Graphicsen
dc.subjectCamera Calibrationen
dc.title應用線掃描結構光重建表面傾斜與三維形貌之研究zh_TW
dc.titleResearch on Accurate 3D Profile Reconstruction with Surface Orientation Using Line-scan Structured Lighten
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee章明;劉正良;葉勝利zh_TW
dc.contributor.oralexamcommitteeMing Chang;Cheng-Liang Liu;Sheng-Lih Yehen
dc.subject.keyword三角法,投影幾何,計算機圖學,相機校正,形貌量測術,表面傾斜,zh_TW
dc.subject.keywordTriangulation,Projective Geometry,Computer Graphics,Camera Calibration,Profilometry,Surface Orientation,en
dc.relation.page108-
dc.identifier.doi10.6342/NTU202400740-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-02-19-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf22.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved