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摘要

本研究提出了一種適用於線掃描三角架構的測量物體表面傾斜的方法。此方

法引用了計算機圖學和投影幾何學的概念，建立表面傾斜角度與其他物理量之間

的關係。核心概念是分析相機拍攝到的線條紋之線寬與光強度的變化，再透過設

計適當的正向模型來解釋傾斜角和特徵變化之間的關係，進而得知表面傾斜的大

小。利用三角函數和微積分的概念即可建立傾斜角度對線寬的影響的模型。傾斜

角度對光強響應的模型則是引用蘭柏特餘弦定律來建立。在量測場景中，傾斜角

為逆問題的解。反向模型可被重新表述為有約束條件的優化問題，因此傾斜角可

以透過尋找目標函數的最小值來獲得。驗證過程分為兩大部分，正向模型與反向

模型的驗證。經由驗證結果得知，線寬正向模型與實驗觀測值匹配，R2統計量約

為 0.644。與三次元量床的量測數據相比，本研究提出的量測方法在關鍵尺寸的量

測上仍然有次毫米等級的量測誤差。其誤差來源推測是三維點座標重建演算法的

缺陷，以及實際觀測之光條紋與理論假設產生背離所致。

關鍵字：三角法，投影幾何，計算機圖學，相機校正，形貌量測術，表面傾斜
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Abstract

In this research, a methodology for measuring surface tilting angle of an object from

a triangulation line scanner is proposed. The method implemented concepts from com-

puter graphics and projective geometry. The idea is to detect the changes of linewidth and

intensity in the line pattern, the surface tilting angle and the position of the surface can be

reconstructed. Appropriate mathematical model explaining the relationship between tilt-

ing angles and the features are designed. The rationale behind the concept is also proven

theoretically. The model for tilting angle to linewidth can be established using trigonom-

etry and calculus, while the model for tilting angle to intensity is modeled by Lambert’s

cosine law. In measuring scenario, the tilting angles are the solution to the inverse prob-

lem. A reformulation of the inverse problem yields a more convenient way for finding

the solution. Finding the tilting angles are thought of as a constrained optimization prob-

lem. The validation of the methodology is separated into two parts, one is the validation

of forward models and the second is the validation of the inverse problem, i.e. the over-
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all performance. It is found that the linewidth forward model matches observation with

R2 value around 0.644. The validation of overall methodology shows that there are still

rooms for improvements. It is speculated that sub-millimeter bias is caused by geomet-

rical constraint of the measuring system, failure of presumed condition and inappropriate

reconstruction algorithm for the 3D coordinates.

Keywords: Triangulation, Projective Geometry, Computer Graphics, Camera Calibra-

tion, Profilometry, Surface Orientation
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Chapter 1 Introduction

1.1 Background

In the manufacturing industry, ensuring product quality is of paramount importance.

One critical aspect that determines the quality of a product is its shape and dimensions. To

create intricate shapes and components that precisely fit together, mechanical engineers

employ a system known as geometric dimensioning and tolerancing (GD&T). GD&T

serves as a precise language for specifying the shapes of components and defining allow-

able deviations in dimensions. This technique finds applications in various areas, from

the rotating parts in machine tools to the airfoils on aircraft. Without proper control of the

product’s geometry, components may not fit together correctly, leading to system mal-

functions.

To ensure the product adhere to specification, the manufacturing industry often em-

ploys statistical quality control (SQC) or statistical process control (SPC) methodologies.

The approaches are instrumental in monitoring and enhancing the production line’s yield.

However, the effectiveness of these methods depends on the accuracy, reliability, and

efficiency of the monitoring system. This is where automatic optical inspection (AOI)

becomes crucial in ensuring that the quality control process is thorough and effective.

1



doi:10.6342/NTU202400740

The simplest form of an automatic optical inspection (AOI) system only requires a

light source and a camera. There are several advantages to using such a basic AOI system

for quality control.

Firstly, it employs optical methods, which means that during the measurement pro-

cess, the measuring device does not physically touch the product. This reduces the risk of

product damage, which is a significant advantage.

Secondly, AOI systems are highly efficient. In these systems, each pixel on the cam-

era sensor can function as a measuring point. This is in contrast to most tactile-measuring

systems, which measure objects point by point. AOI systems have the capability to mea-

sure multiple points simultaneously, greatly improving efficiency and contributing to in-

creased yield in manufacturing processes. Therefore, implementing an AOI system can

significantly enhance the quality of manufactured products.

1.2 Motivation and purpose of this research

Fundamentally, AOI systems consist of two main components: an illuminating sub-

system and an imaging subsystem. The imaging subsystem is relatively straightforward,

typically involving the use of a camera equipped with either a charge-coupled device

(CCD) or complementary metal–oxide–semiconductor (CMOS) sensor. However, the

illuminating subsystem can vary significantly depending on its intended purpose, and the

techniques for extracting valuable information can also differ.

For instance, when measuring the 3D profile of an object, the illuminating subsystem

often employs a digital micromirror device (DMD) in conjunction with LED lights as the

light source. In some cases, laser projectors are utilized as the light source, with diffractive

2
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optical elements (DOE) serving as devices to generate patterned light. On the other hand,

when measuring the surface normal of an object, the illuminating subsystem may require

multiple sets of light sources, projecting from various angles to capture the necessary data

accurately.

There is currently no established method for simultaneously measuring a 3D profile

(3D point cloud) and surface normals within a single system. While it is possible to use

post-processing techniques to derive surface normals from the 3D point cloud, the accu-

racy of these normals is inherently linked to the precision of the acquired points.

(a) Surface normal reconstructed from
neighboring points is marked in red.

(b) One of the points deviated from its
original position

Figure 1.1 Changes in the orientation of surface normal when points are deviated.

Furthermore, the relationship between the 3D point cloud and surface normals is

inter-dependent. The precision of the measured 3D point cloud can be influenced by fac-

tors such as the tilt angle of the object’s surface [1–5]. Therefore, it is essential that the

measurement of 3D shape and surface normals remain independent of each other. This

independence is crucial to prevent the introduction of measurement uncertainty when cal-

culating surface normals from the 3D point cloud.

Indeed, the simultaneous measurement of a 3D profile and surface normals presents

3
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a valuable avenue for research. By combining these data, it is possible to construct a com-

prehensive 5-dimensional map of an object. This means that following the measurement,

not only are the x, y, and z coordinates of each point known, but also the orientation or

surface normal at that specific point can be determined without the need for additional

post-processing.

This advancement has the potential to greatly benefit various fields and applications,

including manufacturing, quality control, robotics, and computer vision. It allows for

a more detailed and complete understanding of object geometry, making it a promising

area for further exploration and development in the realm of measurement and imaging

technologies.

1.3 Problem statement

As previouslymentioned, the primary objective of this research is to develop amethod-

ology for accurately measuring the surface normal for each point within a 3D point cloud.

The representation of the object’s profile involves a 5D array (xi, yi, zi, θi, ϕi), where each

element in this array corresponds to the x-coordinate, y-coordinate, z-coordinate, azimuth

angle of the surface normal, and zenith angle of the surface normal for the i-th point in the

point cloud.

In essence, the challenge at hand is to establish a mapping that takes into account ”a

2D raw image of the measured object, illuminated with an appropriate light source” and

”system parameters,” and transforms this input into the desired 5D array (xi, yi, zi, θi, ϕi).

While there have been numerous approaches proposed by various researchers for

reconstructing the x, y, and z coordinates from captured images, the methods for simul-

4
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Figure 1.2 Surface normal vector and 3D coordinates are simultaneously obtained without
post-processing.

taneously extracting the azimuth and zenith angles (θ and ϕ) from the same raw image

have not been as extensively explored. Consequently, this research aims to propose a

novel method capable of reconstructing 3D coordinates as well as the tilting angles (sur-

face normals) of the measured object’s profile, thereby advancing the field in a previously

underexplored direction.

1.4 Structure of this thesis

This thesis comprises 6 chapters and 2 appendices for theoretical rationale, structured

as follows:

• Chapter 1 outlines the motivation and problem statement.

• Chapter 2 presents an overview of the literature, discussing commonly used tech-

niques in addressing the problem and highlighting the limitations of conventional

methods.

• Chapter 3 provides a concise review of the preliminary knowledge necessary for the

development of the proposed model.

5
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• Chapter 4 offers a comprehensive explanation of the proposed model, which con-

sists of two distinct forward models detailed in separate sections. This chapter also

discusses the integration of these models and introduces an inverse model. The

theoretical foundation for the model presented in Chapter 4 is further elucidated in

appendices A and B.

• Chapter 5 describes the experimental setup and procedure used to validate the sig-

nificance of the proposed model.

• Chapter 6 concludes with final remarks and a summary of findings.

6
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Chapter 2 Literature Review

2.1 Preface

Surface profilometry techniques can be broadly categorized into two main groups:

contact and non-contact methods. Contact methods involve the physical interaction of a

stylus with the object’s surface, with displacement data recorded as the stylus moves along

the surface. Prominent examples include CoordinateMeasuringMachines (CMMs). Typi-

cal CMM can reach micrometer scale precision. While these methods offer high precision,

they also come with drawbacks such as the potential risk of damaging sensitive surfaces

and relatively slower measuring efficiency, particularly for complex or large objects.

In contrast, non-contact methods provide significant advantages, including enhanced

measuring efficiency and a reduced risk of harm to the object being measured. These tech-

Figure 2.1 A coordinate measuring machine produced by Mitutoyo [6].

7
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niques employ various technologies to capture surface information without direct contact.

Non-contact methods encompass a range of approaches such as interferometry, structured

light projection, and focus variation. Notably, the effectiveness of these techniques varies

with the measurement scale. For instance, interferometry excels at capturing nanometer-

scale details, while structured light methods are particularly well-suited for millimeter-

scale applications.

In this literature review, we emphasize various non-contact 3D profiling methods that

are specifically applied at the millimeter scale. In the subsequent section of the review,

we delve into current techniques utilized for the measurement and estimation of surface

normals.

2.2 Reconstruction of 3D coordinates

To reconstruct 3D coordinates at the millimeter scale, several common techniques

are employed, including structured light, time-of-flight, and stereo vision methods. In

this review, we will place a particular emphasis on the structured light method, given

its widespread use in commercial 3D scanners. The structured light technique involves

projecting a distinct light pattern onto the object’s surface to facilitate the reconstruction

of 3D information. The concept behind 3D reconstruction can be visualized as follows.

The interaction of the projected light patternwith the object’s surface results in pattern

variations, with different topographical features yielding unique patterns. These variations

allow us to observe and subsequently measure the object’s profile.

It’s essential to note that actual measurements cannot be obtained until we calculate

the 3D coordinates of each point. Consider fringe pattern profilometry as an example: The

8
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Figure 2.2 Structured light is projected
onto the surface. The pattern is distorted
by the surface topography [7].

Figure 2.3 The triangulation scheme of
a typical structured light projecting sys-
tem.

extraction of 3D coordinates can be divided into two main steps. The first step involves

determining the height value (phase difference relative to the reference) at each point,

while the second step entails placing the 3D points into a proper coordinate system.

Multiple approaches exist for height value determination. One such method employs

multi-frequency temporal phase unwrapping [8, 9]. This approach projects a series of

phase-shifting fringe patterns onto the object, enabling the calculation of the phase value

at each camera pixel. Subsequently, by comparing the resulting phase map with the phase

map obtained from a reference plane, the height value at each point can be determined

using a specific formula [10]

h =
H

1 +
2πd

p0∆P

(2.1)

where h is the object height at point P1, p0 is the period of the fringe pattern on refer-

ence plane and ∆P is the difference of unwrapped phase between point P2 and point P3

(Fig. 2.3).

Another technique for calculating 3D coordinates from distorted fringe patterns is

Fourier Transform Profilometry (FTP) [11]. This method requires just one image of the

object with a fringe pattern projected onto its surface. Additionally, a recent approach

called deep-learning-based phase unwrapping (DLPU) has garnered attention [12–14],

9
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aligning with the increasing trend of artificial intelligence and the widespread application

of phase unwrapping techniques, including interferometric measurements and synthetic

aperture radar (SAR) [15].

It’s crucial to emphasize that these approaches rely heavily on accurate phase-to-

height transformations to achieve precise height values at each point [16]. Consequently,

the accuracy of the reconstructed 3D coordinates is contingent on the precision of phase

value determination. The phase value within each pixel constitutes one of the contributing

factors to potential errors in the calculated 3D coordinates.

Laser triangulation offers a straightforward alternative for calculating 3D coordinates

from structured light [17, 18]. The simplest form of laser triangulation finds widespread

use in laser displacement sensors, which are essential for distance measurement. The

fundamental principle behind laser displacement sensors lies in the lateral movement of

the laser spot on the camera sensor as the object’s height changes.

Figure 2.4 Schematic of 1D laser trian-
gulation sensor, i.e. laser displacement
sensor [19].

Figure 2.5 Schematic of 2D laser trian-
gulation sensor [20].

The operation of a laser displacement sensor is grounded in the following concept: by

calculating the lateral displacement of the laser spot on the sensor, it becomes possible to

measure the distance between the object and the sensor. This measurement is carried out

10
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Figure 2.6 Height values are obtained from the position of the light spot on the camera
sensor.

using a specific formula [18], with the key requirement being the precise determination of

the center position of the laser spot on the camera sensor. The formula used is as follows:

∆h =
d1∆x

∆x cos θ + d2 sin θ
(2.2)

Notably, unlike fringe pattern profilometry, laser triangulation obviates the need for phase

value determination. Instead, it directly calculates the positional difference of the laser

light pattern relative to the reference. Consequently, the accuracy of the reconstructed 3D

coordinate hinges on the precision of determining the center position of the laser spot.

In summary, structured light-based methods offer a potent means of capturing 3D

coordinates at the millimeter scale, employing various techniques and approaches to op-

timize accuracy and efficiency.

11
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2.3 Reconstruction of surface normals

Surface normal reconstruction is often accomplished using a technique known as

photometric stereo [21]. In this method, a stationary camera captures an object while light

sources project illumination from various directions. By analyzing the shading distribu-

tion in multiple images, the surface normal can be calculated. However, a drawback of

this approach is its reliance on capturing multiple images, each under distinct lighting con-

ditions. This can significantly reduce efficiency in practical applications, particularly in

the context of Automatic Optical Inspection (AOI).

Figure 2.7 Surface normal can be reconstructed by photometric stereo method, but it re-
quires multiple pictures of different shading [22].

An alternative method for surface normal reconstruction involves leveraging deep

learning techniques [23–25]. Specifically, this technique employs a convolutional neu-

ral network-based surface normal estimator. It operates by analyzing a single image of

the scene and predicting the corresponding surface normal map. However, it’s important

to note that deep learning methods are essentially black box models, meaning that the

underlying relationship between image features and surface normals remains unknown.

12
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Figure 2.8 An overview of estimating surface normal using deep learning models (VP:
vanishing points) [23].

Consequently, the applicability of such models in a generalized context can be some-

what uncertain. The effectiveness of the model relies heavily on the relationship between

the testing data and the training data, limiting its performance when applied to objects

substantially different from those in the training dataset. Furthermore, the creation of a

genuinely useful deep learning model requires a large and representative dataset for the

training process.

2.4 Summary

Table 2.1 Summary table of current techniques for 3D coordinate and surface normal re-
construction.

Techniques Objective Characteristic feature Remark

Multi-frequency phase-
shifting profilometry

3D coordinate Phase, intensity of the
fringe patterns

-

Fourier transform pro-
filometry

3D coordinate Frequencies of the fringe
patterns

-

Deep learning based pro-
filometry

3D coordinate Overall fringe pattern Data-driven method

Laser triangulation 3D coordinate Position of the light -
Photometric stereo surface normal Distribution of the

shadow
-

Deep learning based sur-
face normal estimation

surface normal Edges and planes in the
image

Data-driven method

After a thorough review of existing methods for 3D coordinate reconstruction and

13
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surface normal reconstruction, it becomes evident that there is a notable absence of empha-

sis on simultaneously reconstructing both aspects using a single integrated system. One

of the primary impediments to this integration lies in the fact that surface normal recon-

struction typically necessitates light projection from various angles. Such a system setup

typically involves multiple light sources, potentially resulting in a larger system compared

to those used exclusively for 3D coordinate reconstruction. Moreover, due to hardware

disparities, the images used for 3D coordinate reconstruction differ from those employed

for surface normal reconstruction. Merging these two functionalities directly into a sin-

gle system, without altering the reconstruction approach, not only leads to unnecessary

system size but also incurs a substantial increase in reconstruction time.

Efficient integration holds the promise of more streamlined measurements. Addi-

tionally, it’s crucial to recognize that the accuracy of 3D coordinate reconstruction can

be influenced by the tilting angle of the object’s surface [1–5]. Achieving precise 3D co-

ordinates relies on obtaining accurate surface normals. Consequently, the determination

of surface normals is just as pivotal as the determination of 3D coordinates in the overall

measurement process.

14
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Chapter 3 Theoretical Background

3.1 Preface

In this research, a single-line pattern laser triangulation scanner is employed due to its

simplicity in setup and the availability of well-established 3D reconstruction algorithms.

As mentioned in previous chapter, various methods exist for reconstructing 3D coordi-

nates from 2D images, but they generally share a common procedure: applying projective

transformation, also known as homography, to map 2D images back to the 3D world co-

ordinate system (WCS). This concept is fundamental not only in this research but also in

fields like computer graphics and photogrammetry.

To gain a solid understanding of how 3D reconstruction works and how it can be

extended to surface normal reconstruction, it is essential to grasp the fundamentals first.

This chapter is divided into three sections to achieve this:

1. The Pin-Hole Model: The first section introduces the prerequisite for projective

transformation, which is the pin-hole model. It forms the geometrical basis for mapping

the object plane to the image plane.

2. Camera Matrix: The second section explains how the camera matrix can be estab-

lished based on the pin-hole model. The camera matrix is a key element in the transfor-
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mation process and plays a central role in accurate 3D reconstruction.

3. Coordinate Transformation and Rotation in 3D Euclidean Space: To fully grasp

how to reconstruct 3D points in the WCS, the third section introduces the concept of the

coordinate transformation, which is the underlying concept of extrinsic matrix in camera

matrix. Additionally, it briefly delves into the concept of the rotation and Euler angles.

These fundamental concepts laid out in this chapter not only aid in understanding the

inner workings of 3D reconstruction but also provide a solid foundation for the develop-

ment of models discussed in the subsequent chapter. This highlights the generality and

significance of these foundational ideas across various applications.

16
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3.2 Pin-hole camera model

Figure 3.1 An illustration of camera obscura [26].

Figure 3.2 Geometrical relationship between image size and object size can be viewed as
similarity triangles.

Pin-hole model is originated from camera obscura, a latin word for dark chamber.

It is a image-capturing method consist of a dark room and a small hole on a wall. The

image of the object world is projected onto the wall through the pin-hole. The geometrical

relationship between the image and real world is given by the similarity triangles. The

ratio of the image size to the real object size (dI/dO) is identical to the ratio of the distance

between pin-hole and the wall to the distance between pin-hole and the real object (fI/fO).

I.e. the image szie is in propoertion to the object size. This model is fundamental to

camera photogrammetry, since the real object size can be reconstructed from image size

using simple formula (3.1).

dI =
fI
fO

dO (3.1)
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3.3 Camera matrix

Pin-hole camera model plays an essential role in camera matrix. It’s assumed that

the camera works similar to a camera obscura. Based on the geometrical relationship in

Eq. (3.1), slightly more complex geometrical-relation between object and image can be

established, and the camera coordinate system (CCS) can be defined. In the context of

this model:

1. Camera center is the pin-hole: The pin-hole represents the camera center. It’s

the point where all light rays pass through. In reality, the exact position of camera center

is typically unknown or even non-existent. However, there are some spots such as center

of entrance pupil where all light rays approximately intersect can be viewed as a pin-hole.

In the CCS, it serves as the origin (0,0,0).

2. Camera sensor is the image plane: The camera sensor is composed of a 2 di-

mensional array of photo-detectors. The x-axis and y-axis of the image plane is usually

denoted as u and v axes. u-axis (horizontal axis) is pointing toward the right edge of the

image, and v-axis (vertical axis) is pointing toward the bottom edge of the image. This

is the conventional notation for image coordinate system. For CCS, the x and y axes are

parallel to the u and v axes respectively, with origin being the camera center.

3. Optical axis is defined by the light ray passes through the pin-hole and per-

pendicular to image plane: Given the fact that pin-hole is the origin, the line that passes

through the origin and perpendicular to the xy-plane (i.e. perpendicular to the image plane)

is z-axis. Thus, the optical axis is also the z-axis of the CCS.

Understanding these premises is fundamental for comprehending the physical mean-
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Figure 3.3 Illustration of CCS and the image-formulation scheme.

ing behind camera matrix, which is the essential principle behind how 2D images are

generated from 3D scenes. According to (add reference), the transformation from 3D

coordinates to 2D coordinates is done by a 3-by-4 matrix

uv
1

 = P3×4


x
y
z
1

 (3.2)

where 2D coordinates, more specifically image coordinates, [u v 1]⊺, and 3D coordinates

[x y z 1]⊺ are represented in homogeneous coordinates. The camera matrix, a.k.a. trans-

formation matrix P3×4, is composed of camera intrinsic parameters and camera extrinsic

parameters. In a complete form, P3×4 can be decomposed into

P3×4 = KR
[
I
∣∣− T⃗

]
(3.3)

where matrix K is the camera intrinsic matrix, matrix R and vector T⃗ are the rotation

matrix and translation vector respectively. The elements in matrix R and vector T⃗ are

called camera extrinsic parameters. The transformation can then be written in a more
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explicit manner. uv
1

 = K

xc

yc
zc

 = KR
[
I
∣∣− T⃗

]
xw

yw
zw
1

 (3.4)

[xc yc zc]
⊺ and [xw yw zw 1]⊺ represent object points in camera coordinates and homoge-

neous world coordinates respectively. The camera intrinsic matrix is defined as follows

K =

 fx s ox

0 fy oy

0 0 1

 (3.5)

where fx and fy represent focal length in x-direction and focal length in y-direction respec-

tively. s represent skew factor of the camera pixels. s is 0 if the camera pixels are arranged

orthogonally without skewness. The offset values, denoted as ox in the x-direction and

oy in the y-direction, represent the deviation of the origin of the image coordinate system

from the z-axis of the CCS. These offset values are used to describe the translation or

displacement of the image’s origin, the top-left corner of the image, from the camera’s

optical axis.

It’s essential to ensure that all units in this matrixK, except for the skew factor s, are

consistent. In particular, when dealing with the focal length and offset in a camera system,

they should be expressed in the same units to maintain consistency. For instance, if the

focal length is specified in millimeters, the offset should also be provided in millimeters

to ensure that all measurements are in the same unit. To facilitate this, it’s necessary to

know the pixel size of the camera. Knowing the pixel size allows you to convert the offset

from pixel coordinates to a physical unit, such as millimeters.
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3.4 Coordinate transformation and rotation in 3DEuclidean

space

Asmentioned in Eq. (3.3) in previous section, the projection from 3DWCS to 2D im-

age coordinate system is related to camera intrinsic and extrinsic parameters. The intrinsic

parameters are

1. focal length: fx, fy

2. offset of image center: ox, oy

3. skew factor: s

These parameters directly affect how 3D objects are projected onto the 2D plane, and they

are dependent to the camera specifications. On the other hand, the extrinsic parameters

are the parameters regarding the transformation from WCS to CCS and can be decom-

posed into rotation and translation. This portion of camera matrix do nothing more than

describing where the object is located and how it is oriented relative to the camera center

and camera sensor. Particularly, the extrinsic parameters are

1. Rotated angles: α, β, γ

2. Translated distances: lx, ly, lz

In essence, the extrinsic parameters dictate how the resulting image would appear

when the object is positioned or oriented differently, as if the camera were capturing the

same object from varied angles. Importantly, the extrinsic parameters are independent of
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the camera’s technical specifications. Instead, they are tied to the definition of the x, y,

and z axes in the WCS.

The definition of translation vector in the camera matrix is straight-forward. It is the

vector pointing from the origin of WCS to the origin of the CCS. The translation vector

T⃗ is expressed as [lx, ly, lz]⊺, where the components are the translated distances on each

axes in WCS. The latter part of Eq. (3.4) can be rewritten as

[
I
∣∣− T⃗

]
xw

yw
zw
1

 =

1 0 0 −lx
0 1 0 −ly
0 0 1 −lz



xw

yw
zw
1

 =

xw − lx
yw − ly
zw − lz

 (3.6)

This calculation can be interpreted as moving the point from homogeneous WCS to an-

other coordinate system with the same origin as the CCS.

(a) Before translation, a point in the WCS has
a different coordinates when represented in
CCS.

(b) After translation, points are represented in
CCS with correct rotation matrix applied.

Figure 3.4 Interpretation of the calculation in (3.6).

As for rotated angles, it is not so straight-forward when dealing with consecutive

rotations w.r.t. different axis. Every rotation is performed w.r.t. an axis, and the position

of the axis changes when intrinsic rotation is considered (See Fig. 3.5b). There are many

ways to define rotated angles. One of the most common way is by the convention of Euler
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(a) Illustration of extrinsic rotation. The rota-
tion axex are not on the object.

(b) Illustration of intrinsic rotation. The rota-
tion axes move with the object.

Figure 3.5 Differences between extrinsic rotation and intrinsic rotation [27, 28].

Figure 3.6 Classic Euler angles geometrical definition (z-x′-z′′ convention, intrinsic rota-
tion) [29].

angles. As illustrated in Fig. 3.6, the rotated angles α, β and γ are defined by the rotation

w.r.t. z-axis, x′-axis and z′′-axis respectively. x′-axis is the new x-axis after the first

rotation, and z′′-axis is the new z-axis after the second rotation. The overall transformation

after 3 consecutive rotations following z-x′-z′′ convention can be represented by a rotation

matrix R.

R = Rzx′z′′ =


cαcγ − cβsαsγ −cαsγ − cβcγsα sαsβ

cγsα + cαcβsγ cαcβcγ − sαsγ −cαsβ

sβsγ cγsβ cβ

 (3.7)

The matrix in Eq. (3.7) can be used to describe any orientation in 3D Euclidean space.

The elements are written in simplified form, where c indicates cosine and s indicates sine
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(e.g. cα = cosα). The minimum range of cover for Euler angles are defined in Table 3.1.

Table 3.1 Ranges of Euler angles defined in z-x′-z′′ convention.

Euler angle Range
α [0, 2π)
β [0, π]
γ [0, 2π)

After defining the matrix operation for rotation in 3D Euclidean space, definition of

surface tilting can be established using similar manner. Tilting of a surface can be viewed

as the orientation of the local surface w.r.t. WCS. The default position of the surface is

laying on the xwyw plane, and the normal vector is aligned with zw-axis, the z-axis of

WCS. To distinguish from the z-x′-z′′ convention used for describing camera extrinsic

parameters, the z-y′-z′′ convention is used for describing tilting angles. The orientation

of the normal vector w.r.t. WCS can then be defined by Euler angles α and β. Since the

rotated object is planar, the orientation remains the same for any γ angle. Therefore, the

Euler angle γ is omitted when describing surface tilting.

Figure 3.7 Default position of the local surface. The surface normal is aligned with zw-
axis.
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Figure 3.8 The surface is rotated w.r.t.
the z axis of WCS.

Figure 3.9 The surface is rotated w.r.t.
the y axis of the coordinate system after
first rotation, i.e. y′ axis.

Figure 3.10 Illustration of azimuth angle and zenith angle of a tilted surface.
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To avoid confusion between Euler angles used for camera extrinsic parameters and

Euler angles used for surface tilting angle, the surface tilting angles are denoted by θ and

ϕ, where α and β are replaced by θ and ϕ respectively.

Table 3.2 Ranges of surface tilting angles.

Tilting angle Alias Range
θ Azimuth angle [0, 2π)
ϕ Zenith angle [0, π/2]

In fact, the surface tilting angle ϕ has a shorter range, ϕ ∈ [0, π/2], because tilting

angle ϕ in (π/2, π] implies that the surface normal is pointing downward, which means

the surface is facing to the ground. Based on typical triangulation setups, the light source

and the camera are typically placed above the object, i.e. where zw > 0, so the downward-

facing surfaces are not observable.

Tilting angles θ, ϕ can also be interpreted in another sense. Solar altitude angles,

azimuth and zenith angles, are used to describe the relative angles between the earth’s

horizon and the sun. This idea can be used to describe the rotation of surface normal vector.

The WCS has to be considered in the definition of azimuth angle and zenith angle. The

azimuth angle of the surface normal vector is the angle between xw axis and the projection

of normal vector on xwyw plane. The zenith angle is the angle between zw axis and the

normal vector. In this way, θ and ϕ are equivalent to azimuth and zenith angle respectively.

The concept is also similar to the azimuthal angle and polar angle in spherical coordinate

systems.
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Chapter 4 System Setup and

Methodology

4.1 Preface

In this chapter, the setup of the measuring system is introduced, followed by a thor-

ough description of the principle behind the reconstruction algorithm. The purpose of

bringing up the hardware description is to provide readers with an understanding of the

types of measuring instruments which this algorithm can be applied to. It is crucial to un-

derstand some system specifications and properties in order to develop a general solution.

The algorithm is not necessarily restricted to this particular hardware; instead, the algo-

rithm can be generalized to any triangulation line scanner that projects a line light pattern

and captures images from an angle.

4.2 System setup

The system is basically a LED line light scanner based on triangulation. The system

setup in this research consists of one light-projecting module and one imaging module,

and it is based on previous work by Huang [30]. The imaging module is composed of a
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camera and an objective lens, while the light-projecting module projects a single line pat-

tern into the field of view of the camera. The scanning mechanism is achieved by placing

a galvanometer mirror in-between two f -θ lenses. The line light pattern is generated by

the light passing through the lenticular lens.

Figure 4.1 Schematic diagram of the system setup.

The methodology proposed in the following section can be applied to other systems

using similar setup. As long as the system utilizes triangulation and projects line-patterned

light, the methodology can be applied.
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4.3 Measurement of 3D coordinates

In this section, we present a 3D reconstruction method inspired by the work outlined

in the paper by Chen [31]. The referenced paper proposes an algorithm to reconstruct the

3D coordinates from a laser triangulation system without the need of camera calibration.

However, the system in this research is required to have the ability to measure tilting angle

of a surface. The proposed model for tilting angle measurement relies on precise intrinsic

parameters, making a conventional camera calibration procedure still necessary.

The concept behind the 3D coordinate reconstruction can be visually explained by

the graph below.

Figure 4.2 The intersection of the reprojection light ray and the light sheet is the position
of the object.

When considering the reprojection of a point from a 2D image to 3D world, there are

infinitely many points of possible outcome. Since a point in a 2D image represent a ray of

light in a 3D coordinate, any point on the same light ray will be captured by the camera on

the same position of camera sensor. On the other hand, the projected light plane from the

light source acts a constraint. For any objects, only the segment that is intersected with

29



doi:10.6342/NTU202400740

the light plane is illuminated. Any other part that is out of the light plane would be dark.

Hence, the reprojection of a point only has one outcome in this setup.

4.3.1 Calibration of camera

The calibration of the system in section 4.2 only consists of 2 main steps, first the

calibration of the camera and second the calibration of the light plane in the camera coordi-

nate system. In this research, the conventional Zhang’s method [32] is used for calibrating

the camera. The procedure of camera calibration is briefly introduced here. Before per-

forming Zhang’s calibration, adjustment of the measuring system should be done, so that

the calibrated result matches actual measuring scenario. First, the working distance of the

system should be specified, and place a flat object at the working distance from the light

projector module. Next, zero the galvanometer mirror, so the light sheet is projected from

the center of the f -θ lens. Fix the camera in place, and adjust the viewing angle such that

the line pattern on the flat object appears to be in the middle of the FOV. Next, adjust the

focal length of the objective lens so that it is focusing on the line pattern. Finally, the aper-

ture of the lens, ISO, gain and shutter speed should be adjusted so that the noise is minimal

and the light patterns are not over-exposed nor under-exposed with the background being

dark.

At this point, Zhang’s calibration can be carried out. The tool involved is a flat plate

with checkerboard pattern (see Fig. 4.3). The arrangement of grid points is 7×7, with grid

size 3 mm×3 mm. First, illuminate the field of view with white light source. Next, place

the checkerboard, the calibrating object, at the middle of the FOV while all the grids are

not only visible, but also sharp and clear. Capture and save the first image. Next, move

the checkerboard around inside the FOV and capture the images until there are 20 to 30
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Figure 4.3 Checkerboard is used as a medium for camera calibration.

captured images of checkerboard.

The grid points of the checkerboard serve as the reference points for calibration.

Using OpenCV open source, one can extract the position of the grids automatically. In

fact, there is a developed function in OpenCV to perform the Zhang’s calibration. Users

need to provide the captured images of checkerboard and the actual dimension of the

grid. The function would calculate the intrinsic parameters of the camera. Details of the

algorithm is not a content to be discussed here. In essence, one just need to know that the

function is essentially a fitting process. It takes the actual distance between grid points

provided by user as ground truth, and takes the pixel position of the grid points from every

image to fit the camera matrix through least square method.

4.3.2 Calibration of LED light plane

After camera calibration is done, one needs to calibrate the light sheet. The goal of

this procedure is to extract the position of the light sheet in the camera coordinate system.

Namely, by calibrating the light sheet, the planar equation of the light sheet in CCS can

be obtained.
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The procedure to obtain planar equation is similar to themethod proposed byChen [31].

However, since there is a scanning mechanism in the setup (section 4.2), the procedure

is slightly different from the one proposed in the original paper. There are totally 250

images in the scanning sequence. For each scanning position, the planar equation for the

light sheet has to be calibrated in order to reconstruct the accurate scanning profile. Al-

though the calibration of 250 light sheets is doable, it is not a practical method. Given the

property of the scan lens (f -θ lens in Fig. 4.4) and the control scheme of the galvanometer

mirror (moving at a constant angular velocity, i.e. identical rotated angle each step), it

is known that the light sheet moves forward a fixed distance in every consecutive image.

Hence, the calibration of 250 light sheets can be reformulated as a calibration of a single

light sheet and the moving distance of the light sheet in one step.

It is assumed that the telecentric error of the f -θ lens is neglectable, s.t. the light

planes at every position are parallel to each other.

Figure 4.4 The f -θ lens projects the light beam on fθ unit away from the optical axis when
the galvanometer mirror is rotated at θ radian angle.

The calibrating target is a 3D printed strip as shown in Fig. 4.5. At the center of

the strip, there is a hole with diameter 2 mm. The curved edges of the strip are actually

two sections of a larger circle with diameter 30 mm. When calibrating, it is required that

the light sheet creates a line pattern on the strip while the line pattern crosses both of the

curved edges and the hole at the center. This way, three feature points are created, the edge
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points and the middle point. The ground truth distance between 2 edge points is 30 mm,

and the distance between middle point to any one of the edge points is 15 mm.

Figure 4.5 The calibration object for light sheet.

Figure 4.6 Calibration target intersected
with light sheet. Figure 4.7 Each image of calibration tar-

get has 3 feature points to be extracted.

Given these referencing dimension and the observed distances in pixel coordinates,

the actual position of these feature points can be calculated and represented in CCS (refer

to [31] for explicit formulae). These feature points serve as sampling points of the light

sheet. Totally 24 sampling points are obtained by capturing the images of the calibrating

strips at different positions in the light plane. Planar equation of the light sheet in the CCS

can be obtained by performing a plane fitting on the sampling points.

The procedure described previously can be applied to calibration of fixed light sheet.

However, there is a scanning motion of the light sheet in the setup of this research. Step

size of the light sheet also needs to be calibrated. To obtain the step size of the light sheet,

the light sheet is moved to the initial position, middle position and the final position. There
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Figure 4.8 Positions of the calibrating feature points (initial plane) in CCS shown in point
cloud format.

are 24 sampling points for the light sheet in each position, that is 72 sampling points in

total for calibrating the step size.

A modified linear regression is applied on these 72 sampling points to extract the

step size. Similar to the case for single light sheet, 3 light sheets, 1 for each position, are

fitted simultaneously. Different from ordinary linear fitting technique, a dummy variable

is introduced here to represent the position of the sampling point. This method is widely

used in regression analysis for categorical data.

In ordinary plane fitting, the following linear model is used

Y = β0 + β1X1 + β2X2 (4.1)

the ultimate goal is to find the planar equation representing the light sheet in CCS, which

is

Axc +Byc + Czc +D = 0 (4.2)
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By re-scaling the equation, one variable can be reduced, so (4.2) becomes

A

C
xc +

B

C
yc + zc +

D

C
= 0 (4.3)

axc + byc + zc + c = 0 (4.4)

Re-arranging (4.4) we get

−zc = c+ axc + byc (4.5)

which has the same form as the linear regression model stated in (4.1). By assigning the

3D coordinates of the sampling points in CCS, the values of a, b and c can be fitted. Thus,

the planar equation can be obtained.

To extract step size of the light sheet, the following linear model is used

Y = β0 + β1X1 + β2X2 + β3X3 (4.6)

−zc = c+ axc + byc + λδc (4.7)

Eq. (4.7) is the modified version of Eq. (4.5), where the third variable δc is a dummy

variable. It is assigned -1 for sampling points in initial light plane, assigned 0 for sampling

points in middle plane, and assigned 1 for sampling points in final plane. This way, the

sampling points are shifted fixed distance λ in zc-direction, so that all the sampling points

are one the same plane as the light plane in middle position. After fitting all the points, not

only can the planar coefficients, a b and c, be known, but also the distance in zc-direction

between middle plane and initial plane, λ, can be obtained. Since there are 250 images

in the sequence, dividing the fitted value of λ by 125, the step size of the light plane in

zc-direction can be obtained.

After computing the planar equation, defining the WCS becomes straightforward.

35



doi:10.6342/NTU202400740

Figure 4.9 Spatial relationship between CCS and WCS. Blue dots are the intercepts of the
plane on the axes.

Instead of referencing the calibration checkerboard, the light plane serves as the reference

for the WCS. The light plane is set at the central position within the scanning range, i.e.

δc = 0. As illustrated in Fig. 4.9, the zc-intercept is designated as the origin of the WCS.

The line connecting the zc and xc intercepts of the light plane forms the zw-axis. Sub-

sequently, yw-axis is defined to be the axis crossing zc-intercept, parallel to yc-axis and

perpendicular to zw-axis. xw-axis can be defined accordingly, and it is laying on xc-zc

plane.

It can be observed from the relative position of WCS and CCS that there is a right

triangle formed by zw-axis, zc-axis and xc-axis. The sharp angle between zw-axis and

zc-axis is ω′

ω′ = arctan
1

a
(4.8)

The derivation for this equation is given in later chapter. Given this information, the

rotation matrix and the translational vector can be calculated. As stated in chapter 3, the
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Figure 4.10 The geometric relationship between WCS and CCS. Blue vector indicates the
translational vector T⃗.

rotation matrix can be calculated using (3.7) by plugging the corresponding Euler angles.

The Euler angles α, β and γ are calculated as below. The illustrative explanation are

provided in Fig. 4.11 to Fig. 4.14.

α = π/2 (4.9)

β = π + ω′ = π + arctan
1

a
(4.10)

γ = π/2 (4.11)

The translational vector from the origin ofWCS to the origin of CCS can be calculated

using fundamental trigonometry. FromFig. 4.10 above, the translation vector can be easily

calculated

T⃗ =

[
c sinω′ 0 −c cosω′

]⊺
=

[
c sin(arctan

1

a
) 0 −c cos(arctan

1

a
)

]⊺
(4.12)
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Figure 4.11 The initial orientation of
WCS and CCS are mismatched. Ro-
tate WCS w.r.t. zw-axis at π/2 radian to
get Fig. 4.12.

Figure 4.12 Rotate WCS w.r.t. xw-axis
at π + ω′ radian to get Fig. 4.13.

Figure 4.13 Rotate WCS w.r.t. zw-axis
at π/2 radian to get Fig. 4.14.

Figure 4.14 WCS and CCS are now
aligned.
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4.3.3 Profile reconstruction

In practice, the light sheet is not an ideal plane. The light sheet possesses finite

thickness, causing the ambiguity of determining the precise position of the plane. When

projected onto a surface, it forms a line pattern with non-infinitesimal width. This makes

the precise determination of intersection between the light plane and the surface become

complicated. This inherent characteristic constitutes a fundamental source of uncertainty

in 3D coordinate reconstruction.

Given a grayscale image of the line pattern, the intersection of the light plane and the

object can be determined/estimated using ridge detection, e.g. gray-gravitymethod, Steger

algorithm. The fundamental concept behind ridge detection is to find the zero-crossing

point in the first-derivative of the intensity profile, which corresponds to the peak of the

original intensity profile. However, the first-derivative can be heavily influenced by the

noise existing in the raw image. Therefore, pre-processing techniques such as Gaussian

blurring is often applied to smoothen the intensity profile, and reducing the effect from

high frequency noise.

In this research, row-wise Gaussian fitting is utilized for determining the intersection

line. In comparison with ridge detection, this method does not require any pre-porcessing

on the raw image. Instead, one-dimensional Gaussian profile is fitted on every row in the

raw image. The mean of the Gaussian distribution is then taken to be the intersection of

the light plane and the object.
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4.4 Measurement of surface tilting angles θ and ϕ

This section proposes a novel method of reconstructing surface tilting angle using

single raw image of line-patterned light in a triangulation system. The principle behind

the model of tilting angle reconstruction stems from the observation of the line patterns

at different surface tilting. As can be seen in the example pictures below (Fig. 4.15),

the width and the intensity of the line changes as the surface tilting angle changes. The

changes in appearance of the pattern show that changes of tilting angles can be observed.

Thus, these 2 features can be the key indicators of the orientation of the surface. As

mentioned in chapter 3, tilting angles can be represented in 2 variables, azimuth angle θ,

and zenith angle ϕ. The azimuth and zenith angles simultaneously affect the appearance of

the pattern. In order to reconstruct tilting angles from single image of line-patterned light,

theoretical relationship between tilting angles, width and intensity should be elaborated.

The upcoming sections present two forward models: one mapping tilting angles to

linewidth and the other mapping tilting angles to intensity. The concluding section in-

troduces the solution for the inverse of these 2 models. Reconstruction of tilting angles

from the outputs of two forward models can be seen as an inverse problem. The inverse

model takes the linewidth and intensity as inputs and infers corresponding tilting angles

as outputs. Note that linewidth and intensity of the line patterns are the only observable

information in a given image, and these features exactly conveys the information about

the tilting angle of the local surface.
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4.4.1 Linewidth as a function of tilting angles

Figure 4.15 The shape and the brightness
of projected line pattern changes accord-
ing to different tilting angles at the local
area.

Figure 4.16 3D CAD model of the
scanned object in Fig. 4.15.

As evident from the images acquired by the system (refer to section 4.2 for the system

setup), the linewidth of the line pattern varies with alterations in the surface tilting angle.

To accurately describe these changes, it is crucial to provide a clear definition of linewidth.

Given the absence of distinct boundaries in actual images, the linewidth is defined as the

full width at half maximum (FWHM) of the row-wise intensity profile.

Figure 4.17 Cross-sectional intensity profile (yellow curve) can be fitted by a Gaussian
distribution. The curve is plotted through ImageJ.

Furthermore, the intensity profile is modeled by a Gaussian distribution. Note that

41



doi:10.6342/NTU202400740

the FWHM of a Gaussian distribution is given by the equation below

FWHM = 2
√
2 ln 2σ (4.13)

where σ is the standard deviation of the Gaussian distribution. Hence, the linewidth of the

light pattern is expressed in terms of the standard deviation of the intensity distribution.

Figure 4.18 Illustration of full width at half maximum (FWHM) of a curve [33].

The relationship between FWHM of the line pattern and the tilting angles can be

expressed by the formula below

FWHM = |u(t1)− u(t2)| (4.14)

where t1 and t2 are defined as

t1 = δ + 0.5 arccos(
2D2

E2
− 1) + π (4.15)

t2 = δ − 0.5 arccos(
2D2

E2
− 1) + π (4.16)

Note that δ,D andE are all functions of surface tilting angles (ϕ and θ), along with camera

intrinsic parameters and extrinsic parameters. The function u is the parametric form of the

u coordinate of the ellipse representing the light spot. The details for the explicit form of

these symbols are covered in Appendix A.

The derivation details are omitted in this chapter; however, the idea can be briefly
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described as follows: To explore the correlation between tilting angles and linewidth,

we conceptualize line patterns as an aggregation of individual light spots, and the spots

are modeled by bivariate Gaussian distribution (see Fig. 4.19 for illustration). Also, the

surface tilting is assumed to be uniform with in a small neighborhood of the light spot.

This reformulation enables us to examine the relationship between tilting angles and

the lateral spot size, which is defined as the distance between the leftmost and rightmost

edges of a light spot.

Figure 4.19 Illustration of a bivariate Gaussian distribution. Left: 3D surface; Right:
color-coded map [34].

Figure 4.20 An image of a light spot. The red ellipse shows the contour of half maximum
of the fitted bivariate Gaussian distribution.

The consideration of the lateral spot size is crucial as, when these light spots overlap,

the information related to themajor andminor axes becomes indistinguishable. Illustrative

explanation is shown in Fig. 4.21. Focusing on the lateral size ensures that key information
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is retained even in cases of spot overlap.

Figure 4.21 A line pattern can be seen as superposition of neighboring spots. The axes
(blue lines) of original spots would be undetectable when these spots overlap.

It can also be rigorously demonstrated that the lateral spot size is precisely equivalent

to the FWHM of the Gaussian cross-sectional intensity profile when the spot is modeled

by a bivariate Gaussian distribution. Further details regarding this rationale are covered

in Appendix B.

This concludes the brief introduction of the linewidth model as a function of tilt-

ing angles. The intent of this chapter is to offer a comprehensive overview of the entire

methodology; hence, the rigorous proofs of the concept will be delayed to the appendix.

4.4.2 Intensity as a function of tilting angles

At different surface tilting angles, not only the shape but also the brightness of the

projected pattern would change. Therefore, the second key feature need to be observed is

the intensity of the pattern. By assuming the surface of the object is diffused, the relation-

ship between the intensity of the reflected light and the tilting angles can be modeled by

Lambert’s cosine law.
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Figure 4.22 Illustration of Lambert’s cosine law.

The Lambert’s cosine law states that the radiant intensity is proportional to the cosine

angle ω between the observer’s line of sight and the surface normal vector, and it can be

expressed as the formula below

I = I0 cosω (4.17)

where I0 is the intensity perceived on the surface normal vector. Or the normalized form,

I

I0
= cosω (4.18)

The value ranges from 0 to 1. To deduce the appropriate formula for the system setup,

some modification must be made on the equation above. First, the normalized Lambert’s

cosine law can be viewed as the inner product of the surface normal vector (a unit vector)

and the vector representing the observer’s line of sight (also a unit vector).

With surface tilting angle already known, the surface normal vector is given by

n⃗ = [sinϕ cos θ, sinϕ sin θ, cosϕ]T (4.19)
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Figure 4.23 Illustrative relationship between tilting angles and surface normal vector.

Figure 4.24 The viewing angle ω′ can be calculated from the intercepts (blue dots) of the
light plane on the CCS axes.

To obtain the vector of observer’s line of sight, the relationship between the light

plane and the optical axis of the camera must be analyzed. Recall the definition of WCS

in subsection 4.3.2, the zw-axis is the line between the zc-intercept and xc-intercept of the

light plane. Also, recall the equation of the light sheet at middle position of the scanning

range (δc = 0)

−zc = c+ axc + byc (4.20)
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the intercept on zc-axis can be calculated by plugging in xc = yc = 0, and the intercept

on xc-axis can be calculated by plugging in zc = yc = 0, Thus, the viewing angle ω′ as

shown in Fig. 4.24 can be calculated by arctangent of xc-intercept over zc-intercept

ω′ = arctan
−c/a

−c
= arctan

1

a
(4.21)

Thus, the vector representing the line of sight can be written in terms of the coefficients

of the planar equation of the light sheet

n⃗ = [sin(arctan
1

a
), 0, cos(arctan

1

a
)]T (4.22)

where a is the coefficient of xc in (4.5). Thus, the normalized intensity In can be calculated

as

In = sinϕ cos θ sin(arctan
1

a
) + cosϕ cos(arctan

1

a
) (4.23)

4.4.3 Tilting angle reconstruction

Currently, both forward models have been established (Equation 4.14 and Equa-

tion 4.23). In measuring scenario, the inverse model is what we need to solve, i.e. given

linewidth and intensity, reconstruct the tilting angles.

Mathematically speaking, the inverse problem can be described as below: ”Given

2 functions f1(θ, ϕ) linewidth model, f2(θ, ϕ) intensity model, and the output values

from each function L0 and I0 respectively, find the underlying tilting angles θ0, ϕ0 s.t.

f1(θ0, ϕ0) = L0 and f2(θ0, ϕ0) = I0.” The inverse model can be roughly thought of as a

function

f3 : (L, I) → (θ, ϕ) (4.24)
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To solve this, one can resort to modern methods such as deep learning models. It

requires one to prepare ample amount of training dataset. The training process will even-

tually find the mapping from linewidth and intensity data to accurate tilting angles. How-

ever, given that we have already established the forward models explaining the direct re-

lationship between tilting angles and linewidth/intensity, there’s no need for a black-box

model. The unexplainability is one of the reasons why we don’t use deep learning method

in the first place.

To overcome this, deeper analysis on these two forward models should be done. One

can first analyze whether the inverse problem is an ill-posed problem or not. Is f3 well-

defined? One could start by analyzing the uniqueness of the range of f3. Below are some

preliminary simulated results of the forward models.

Figure 4.25 Linewidth model in color-
coded map.

Figure 4.26 Intensity model in color-
coded map.

Figure 4.27 Linewidth model in contour
map.

Figure 4.28 Intensity model in contour
map.
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Figure 4.29 Linewidth model in 3D to-
pographic map.

Figure 4.30 Intensity model in 3D topo-
graphic map.

The 3D topographic maps and contour maps of the forward models are plotted. They

show how the values of linewidth and intensity change while the tilting angles are vary-

ing. When considering these 2 models simultaneously, one can overlap the contour maps

together by matching the tilting angles and observe the pattern it creates (Fig. 4.31). Note

that all the possible pairs of tilting angles on the same contour line map to the same value.

Therefore, the intersection points between contour line of linewidth and contour line of

normalized intensity indicate the solutions to the inverse problem. In other words, given

linewidth and normalized intensity, the position of the intersection tells us what is the cor-

responding surface tilting angles. Hence, the inverse problem can be viewed as finding

the coordinate of the intersection point of the contours.

One thing to note here is that there is actually ambiguity in the solution to the inverse

problem, i.e. the inverse model does not have unique output. As can be seen in the figure,

there are 2 intersecting points between the contours.

To further resolve this issue, the reconstructed 3D profile of the measured object

has to be utilized. Note that the 3D profile is reconstructed row-by-row in an image, the

tilting angle is also done the same way simultaneously. The ambiguity can be resolved by
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Figure 4.31 By overlapping contour maps, a grid-like pattern is produced. The coordinates
of the intersection points is the answer to the inverse problem. (Red contour: intensity
model; Black contour: linewidth model).

comparing the 3D coordinate of the points reconstructed from previous row and current

row. The local slope tells us the approximate tilting orientation. However, the ambiguity

of the tilting angle in first row cannot be resolved by this method.

Finding the coordinate of the intersection is not an computationally easy task. The

problem lies in the nonlinearity of the contour lines. In this research, the proposed solu-

tion to this problem utilizes constrained optimization. Constrained optimization problems

(COP) are the problems for which an objective function f(x) is to be minimized or max-

imized subject to constraints g(x). The constraints can be any combination of arbitrarily

many equality constraints, g(x) = 0, and inequality constraints, g(x) > 0. One simple

solution to COP for equality constraint is through the method of Lagrange multiplier.

To reformulate the inverse model as constrained optimization problem, we can write

the objective function as the squared difference between the observed value of intensity

I0 and the output of the intensity forward model f2(θ, ϕ)

f(θ, ϕ) = (I0 − f2(θ, ϕ))
2 (4.25)
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Figure 4.32 COP is a problem where the optimized value of the objective function (blue
contours) must be found along the constraint (red curve) [35].

The equality constraint is the difference between the observed value of linewidth L0

and the output of linewidth forward model f1(θ, ϕ)

g(θ, ϕ) = L0 − f1(θ, ϕ) = 0 (4.26)

In other words, the minimal value of the objective function occurs when f2(θ, ϕ) = I0 and

f1(θ, ϕ) = L0. The corresponding values of tilting angles (θ∗ and ϕ∗) indicate the exact

value that yields the linewidth L0 and intensity I0.

[θ∗, ϕ∗]⊺ = arg min
[θ,ϕ]⊺

(I0 − f2(θ, ϕ))
2, L0 − f1(θ

∗, ϕ∗) = 0 (4.27)

By interpreting inverse problem as constraint optimization problem, the tilting an-

gles can be solved computationally. In practice, we implemented sequential least squares

programming (SLSQP) in scipy to solve this problem. One just need to provide initial

guesses for θ, ϕ and the forward models f1(θ, ϕ) and f2(θ, ϕ). Optionally, one can also
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Figure 4.33 The 3D topography of the objective function resembles a terrain, with the
minimum value situated in the valley of this landscape.

Figure 4.34 The 3D topography of the objective function with the constraint plotted in
dots, showing the possible solution to the COP.

provide the first derivatives of the objective function and constraint, i.e.
∂f

∂θ
,
∂f

∂ϕ
,
∂g

∂θ
and

∂g

∂ϕ
, s.t. the gradient at each evaluated step can be known and increase the efficiency of

solving COPs.
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Chapter 5 Experiments and

Discussions

This research encompasses two primary experiments: the validation of the forward

model and the validation of the overall methodology. To assess the appropriateness of

the forward models, an experiment must be devised. This experiment is done by taking

sampling points in (θ, ϕ). The corresponding light intensity and spot size are measured

and recorded. The obtained results are then compared with the 3D topography predicted

by the forward models.

In demonstrating the overall effectiveness of the methodology, 3D printed objects

are scanned, presenting the results in a point cloud. For quantitative results, angle blocks

are scanned to compare predicted tilting angles with the ground truth, allowing for error

evaluation.

5.1 Apparatus and procedure

The experiment validating the forward models involves measuring the linewidth and

intensity of the light spot on objects at different tilting angles. To ensure the experiment’s

rigor, angle standard blocks are created and affixed to a rotational stage. These blocks fea-
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ture slanted faces resembling the cross-section of a cylinder and are produced through 3D

printing. To eliminate layer lines on the slanted surface, the initial layer is printed on the

slanted face, and the entire block is printed diagonally as shown in Fig. 5.1. Subsequently,

the slanted face is sanded with 100-grit sandpaper to achieve a matte surface, aligning it

more closely with the assumed conditions for Lambert’s cosine law.

(a) original printing scheme.
(b) The slanted face is set as initial
layer.

Figure 5.1 The surface of the slanted face becomes smoother using printing scheme (b).

Figure 5.2 3D printed standard blocks.

Different angle standard blocks represent different zenith angles. Only the angles

which are multiple of 5◦ are considered. Maximum zenith angle is 65◦. In total, there are

13 distinct standard blocks, and a 0◦ cylindrical block. Subsequently, these angle standard

blocks are securely mounted on a rotary stage, governing the azimuth angle of their slanted

faces. The azimuth angle is adjusted in increments of 5 degrees, ranging from 0◦ to 360◦.

For each tilting angle, an image is captured, featuring a light spot projected from the

projecting subsystem. Originally designed for projecting line patterns, the subsystem is
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Figure 5.3 A 25◦ standard block mounted on the rotary stage.

adapted to project a light spot by covering the slit with opaque tape, leaving only the central

portion exposed. A total of 937 images (13 × 72 + 1 = 937) are captured, representing

937 sampled data points on the (θ, ϕ) space. These images are instrumental in verifying

the accuracy of the forward models f1(θ, ϕ) and f2(θ, ϕ).

Figure 5.4 CAD drawing of the rotary stage [36].

The angular dimension tolerance is determined by the printing quality of the 3D

printer. The 3D printer used to print the standard block is PING linkin Factory P300+.
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The main source of form error is caused by layer shifting, which is an error resulted from

positional error of the nozzle. According to the specification provided in [37], the accu-

racy of the 3D printer is 0.05 mm. The printing layer height was chosen to be 0.4 mm.

The angular dimension tolerance can be computed by considering the possible tilting of

the 3D printed rod when the rod is fixed in the rotary stage Fig. 5.5. The red dashed line

shows the limit position of the centerline caused by the printing error in worst case sce-

nario. Note that the printing error is assumed independent for each layer, so there is no

accumulated error.

Figure 5.5 Illustrative plot for calculating angular tolerance of ϕ.

Note that the standard block is fixed inside the hole at the center of rotary stage. Thus,

the orientation of the slanted surface can be affected by fitness between the standard block

and the ring. As shown in the CAD plot Fig. 5.4, the depth of the hole is 16 mm. The

accuracy of 3D printed rod is 0.05 mm. Thus, the tolerance is calculated as

τ = arctan
0.05

16
≈ 0.0031 (rad) ≈ 0.18 (deg) (5.1)

The value computed above only explains the tolerance of zenith angle. The tolerance of
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azimuth angle is larger since the minimum scale of the rotary stage is 1◦. The tolerances

for azimuth angle and zenith angle are provided in table below.

Table 5.1 Angular dimension tolerances.

Zenith (ϕ) Azimuth (θ)

Tolerance ±0.18 (deg) ±1 (deg)

5.2 Extraction of size and intensity

As discussed in chapter 4, the light spots are characterized by a bivariate normal

distribution. Within a brief time interval, the incident photon flux reaching the camera

sensor approximately follows bivariate normal distribution. This characteristic can be

confirmed through the χ2 goodness-of-fit test applied to each image. Consequently, a

bivariate normal model is employed for fitting on each image to discern and extract both

the size and intensity of the light spot.

In practice, to fit bivariate normal distribution onto the grayscale image, some mod-

ification on the distribution function should be done. The actual function being fitted is

below:

f(x, y) = Ibg +
Iamp

2πσxσy

√
1− ρ2

e
−

z

2(1− ρ2) (5.2)

where z is defined as below

z ≡ (x− µx)
2

σ2
x

− 2ρ(x− µx)(y − µy)

σxσy

+
(y − µy)

2

σ2
y

(5.3)

Ibg is the background intensity or offset value of the distribution, and Iamp is the amplitude

or the scale factor of the distribution. This way the value for f(x, y) does not restricted in

[0, 1].

57



doi:10.6342/NTU202400740

This is a parametric model with seven parameters that can be fitted to grayscale im-

ages using an optimization algorithm. Specifically, a non-linear least squares method is

employed within a defined trusted-region in this research.

The optimal parameters (Ibg, Iamp, µx, µy, σx, σy, ρ) extracted for each image encap-

sulate the characteristics of the light spot. The size of the light (L) spot can be determined

from σx, where the horizontal standard deviation σx serves as an indicator of lateral size.

Plugging σx into the FWHM formula (refer to (4.13) in chapter 4) allows us to extract the

linewidth at that specific tilting angle.

L = 2
√
2 ln 2σx (5.4)

On the other hand, the intensity of the light spot (I) is represented by the intensity value

at (µx, µy), corresponding to the peak value of the function. It can be directly computed

by the following formula

I = Ibg +
Iamp

2πσxσy

√
1− ρ2

(5.5)

The following images demonstrate some of the fitting results. These images are

cropped since only the area around the light spot is considered. As can be seen in the

fitted results, the contours of the bivariate normal function align with intensity distribu-

tion pretty well.

After bivariate normal function is fitted on every single image (937 images in total),

the intensity and linewidth can be extracted for every tilting angle. The extracted linewidth

and intensity results are visually presented below, following a similar format as depicted

in Fig. 4.25 and Fig. 4.26. It is essential to note that for large zenith tilting angles, occlusion

effects may arise, rendering the light spot unobservable. Consequently, the corresponding
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(a) Original image. (b) Contours of fitted bivariate normal.

Figure 5.6 Light spot image and the fitted contours at (θ, ϕ) = (280◦, 45◦).

(a) Original image. (b) Contours of fitted bivariate normal.

Figure 5.7 Light spot image and the fitted contours at (θ, ϕ) = (335◦, 55◦).

data points for such instances are intentionally left blank in the visual representation.

As for images captured in scanning sequences, the linewidth and intensity are ex-

tracted in similar manner. However, since the images contains line patterns instead of

spots, 1 dimensional Gaussian function is fitted on every row. The linewidth and inten-

sity at every point on the line pattern are extracted by fitting a parametric model on the

row-wise grayscale value. The Gaussian function being fitted is described below:

f(x) = Ibg +
Iamp√
2πσx

e
−
(x− µx)

2

2σ2
x (5.6)

59



doi:10.6342/NTU202400740

Figure 5.8 Extracted linewidth in color-
coded map.

Figure 5.9 Extracted intensity in color-
coded map.

The linewidth is again calculated by the formula

L = 2
√
2 ln 2σx (5.7)

and the intensity is calculated by

I = Ibg +
Iamp√
2πσx

(5.8)

Note that the value of µx here is also taken to be the position of the intersecting

point of the projected light sheet and the object. Here are some fitted result for images of

line pattern. Fig. 5.10 illustrates that the intensity profile within a row can be effectively

represented by a normal distribution.

5.3 Validation and analysis

The experiments can be categorized into two main aspects. Firstly, the validation

of forward models involves verifying the validity of assumptions made in the theoreti-

cal model. A thorough examination of every detail in the model is essential to draw the

most reasonable and reliable conclusions. Statistical methods are employed to analyze the
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Figure 5.10 Fitting result of the grayscale value of a single row extracted from the line-
pattern image. The symbols in the legend:a) amplitude Iamp, b) mean µx and c) standard
deviation σx.

Figure 5.11 Fitting result of the grayscale value of every row in the line-pattern image.
Red dots: position of the mean; Yellow dots: position of half maximum.

experimental data acquired in this phase.

The second experiment is centered around the validation of the overall methodology

by means of scanning 3D printed objects. The analysis in this phase is more qualitative

than quantitative; nonetheless, the error of the estimated tilting angles is evaluated.
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5.3.1 Validation of forward models

The derivation of the theoretical model relies on a fundamental assumption: ”the

light spot follows a bivariate normal distribution.” To empirically verify if the captured

image of a light spot adheres to a bivariate normal distribution, a χ2 goodness-of-fit test

is employed on the grayscale image. The statement, ”the light spot follows a bivariate

normal”, is the null hypothesis. The χ2 statistics is calculated as follows [38]:

χ2 =
N∑
i=1

(Oi − Ei)
2

Ei

(5.9)

Here, Oi represents the observed count for bin i, corresponding to the grayscale value of

the i-th pixel in the rearranged 1D array of the original image. Ei is the expected grayscale

value at the i-th pixel.

The image size is originally 2048×2048, which is too large for data fitting. Therefore,

only the area around the light spot is taken to be the region of interest (ROI). The ROI is

200×200 in size. The pixels are rearranged that such that the original image is transformed

into a 1D array. Recall that degree of freedom (DoF) for this test is calculated by the total

number of bins minus the number of estimated parameters. The total number of pixels

within the ROI minus 7 is the degree of freedom (DoF) for this test given that there are 7

parameters (Ibg, Iamp, µx, µy, σx, σy, ρ) to be determined.

DoF = 2002 − 7 = 39993 (5.10)

By plugging in the degree of freedom and the predetermined p-value into a calculator

such as Excel, the critical value for the test can be computed. The p-value is chosen to be
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Figure 5.12 χ2 goodness-of-fit test, rejected sample data. Null hypothesis is rejected in
blue regions.

0.05.

χ2
1−0.05,39993 ≈ 40459.3284 (5.11)

If the χ2 value is higher than this critical value, it can be concluded that the light spot

does not follow bivariate normal distribution well, and the null hypothesis is rejected.

In Fig. 5.12, each of the 937 light spots is subjected to the χ2 goodness-of-fit test, where

the critical value of the test is 40459.3284. The outcomes of these tests reveal whether the

light spots conform to the assumed distribution, namely, a bivariate normal distribution.

The blue regions highlight instances where the null hypothesis is rejected, signifying that

the light spot at a particular tilting angle deviates from the bivariate normal distribution

assumption. This results in approximately 96.13% of the data being considered reliable.

The result presented in Fig. 5.8 and Fig. 5.9 demonstrate noticeable similarities be-

tween the observations and the model. The overall trends in the distributions align closely.

However, for a more quantitative assessment of the agreement between the results and the

model, statistical indicators should be employed.
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For both forward models, the R2 statistics is utilized as an indicator of goodness-of-

fit. The sampled data points for each selected (θ, ϕ) pair are utilized as bins. Recall that

R2 is calculated as below

R2 = 1− SSres

SStot
(5.12)

where SSres is called residual sum of squares, and SStot is called total sum of squares

SSres =
n∑

i=1

(yi − ŷi)
2 (5.13)

SStot =
n∑

i=1

(yi − ȳ)2 (5.14)

ȳ =
1

n

n∑
i=1

yi (5.15)

Here yi represents observed light spot size or intensity. ŷi is the output value of the forward

model at the corresponding position. In ANOVA and regression analysis, total sum of

squares and residual sum of squares are related by the following eqaution

SStot = SSres + SSreg (5.16)

where SSreg is called regression sum of squares or explained sum of squares. Since sum of

squares must be larger than 0, SSres < SStot. Thus,R2 statistics can only be a real number

between 0 and 1. For R2 implying that the model is perfectly fitted with the data points.

However, it can also imply that the model is overfitted with the data. The R2 statistics for

the linewidth model and intensity model are provided in the table below.

Table 5.2 R2 statistics of forward models.

Linewidth forward model Intensity forward model
R2 0.644 0.016

TheR2 analysis indicates a robust performance of the linewidth forward model, cap-
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turing a significant portion of the data variation, despite some residual errors. Conversely,

the intensity model exhibits a lower R2 value, suggesting a less accurate alignment with

the observed data variation. The value of R2 being in the proximity of 0 implies that the

intensity model performs only marginally better than predicting the sample mean value.

5.3.2 Validation of overall methodology

Figure 5.13 Sample object (Material: SUS304).

This section shows the overall result of the methodology. It can be divided into

measurement of 3D coordinates and measurements of tilting angles. Point cloud of the

scanning results are shown below. The position of the points indicates their relative lo-

cation in CCS. The result of tilting angle measurement is also provided in the format of

point cloud but with a different color scheme.

The result of tilting angles measurement are also provided in the figure below. The

sample in this scanning sequence is the angle standard block (θ, ϕ) = (140◦, 20◦)

To quantitatively analyze the performance of angle reconstruction, cosine similarity

is introduced here. The cosine similarity (sim) is a metric that evaluates the difference
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Figure 5.14 Scanned point cloud
of Fig. 5.13, color-coded by zc value.

Figure 5.15 Scanned point cloud
of Fig. 5.13, color-coded by tilting
angle.

between 2 vectors, n1 and n2. In fact, it calculates the angle η between 2 vectors, n1 and

n2. It can be calculated by the formula below.

sim = cos η =
n1 · n2

||n1|| ||n2||
(5.17)

Notice that the value for cosine similarity is the range of cos(·), which is [−1, 1]. If the

predicted surface normal vector is perfectly aligned with ground truth normal vector, and

the vectors are pointing the same direction, the cosine similarity would be 1.

The angles of the standard block are viewed as ground truth. Using (4.19), the normal

vector of the slanted surface can be calculated. There are about 65k points in the point

cloud of the slanted surface in Fig. 5.17. Each point carries information about the tilting

angle. To evaluate the accuracy of the point cloud, cosine similarity is implemented. The

evaluation is shown in the table below.

Table 5.3 Cosine similarity between measured and ground truth surface normals.

Maximum Average
sim 0.533 0.345
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Figure 5.16 Scanned point cloud of θ =
140◦, ϕ = 20◦ standard block, color-
coded by zc value.

Figure 5.17 Scanned point cloud of θ =
140◦, ϕ = 20◦ standard block, color-
coded by tilting angle.

The findings suggest that there is potential for enhancement in the precision of angle

measurements. The most accurate match for the surface normal demonstrates a cosine

similarity of 0.533, indicating that the normal vector is approximately 60 degrees divergent

from the ground truth.

It is speculated that the substantial deviation may stem from the limited accuracy

of the forward model. The R2 value for the intensity forward model indicates that the

observed light spots deviate significantly from Lambert’s cosine law. To enhance the ac-

curacy of angle measurements, adjustments to the intensity forward model are anticipated.

By refining the model to achieve an R2 comparable to that of the linewidth model, im-

provements in angle measurement accuracy are expected.

The 3D coordinate measurement is further validated by scanning the spheres on the

standard block as shown in the Fig. 5.18. The coordinates of the center of the balls are

the points of interests. There are 10 spheres in total, and they are labeled from 1 to 10 as

shown.
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Figure 5.18 The standard block with balls attached on the surface.

The standard block is placed on the rotation stage and scanned by the system. Scanned

profiles are obtained when the zenith tilting angle are 0 degree and 20 degree. The point

cloud of the scanning results are shown in Fig. 5.20. As can be seen, the surface of each

step of the standard block are shown in different color, indicating that the proposed sys-

tem can distinguish the height difference between the surfaces. Moreover, the balls on the

surface can also be identified.

The center coordinate and the radius of the balls are obtained through random sam-

pling consensus which is robust to outliers, in comparison with least square methods. To

find the center coordinates and the radius, the point clouds are manually extracted from

the original point cloud and the random sampling operation is performed. The remaining

point cloud is shown in Fig. 5.21 and Fig. 5.22. The color of the points represents the zc

value of the coordinates. The final results are compared with the measurement results of

CMM.

The standard block is placed onto the platform of CMM for measurement as shown

in Fig. 5.23. CMM takes 5 sample points for each sphere. All 10 spheres are measured 10

times. The user interface in Fig. 5.24 illustrates the relative positions of each ball on the

standard block. CMM takes 5 sample points for each sphere. The coordinates of the center

and the radius are obtained through least square circle. The measurement data obtained

through CMM is taken as ground truth. The bias of the proposed system are calculated by
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Figure 5.19 The standard block is placed on a rotation stage to control the zenith tilting
angle.

Figure 5.20 Scanned profile of the standard block.
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Figure 5.21 Extracted point cloud of the
balls at ϕ = 0◦.

Figure 5.22 Extracted point cloud of the
balls at ϕ = 20◦.

comparing with ground truth. Since the CMM defines the coordinate system differently,

the critical dimension of the standard block must be considered. The critical dimensions

are defined by the distance between each ball and the angle formed by 3 consecutive

balls. Only relative positions of the centers are considered. The angle between formed by

3 consecutive ball centers is also invariant under rotation. The angles are also measured

and compared with the ground truth obtained by CMM.

Figure 5.23 Actual image of the standard block on the CMM.
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Figure 5.24 User interface of the Mitutoyo CMM.

The bias between the measurement from our system and measurement from CMM

is shown in Table 5.4. For precision metrology, this amount of bias is abnormal. One of

causes to this phenomenon is the erroneous 3D coordinates of reconstructed point cloud

of the spheres (Fig. 5.25, and Fig. 5.26). As can be seen, the reconstructed surface appears

to be dented while the actual ball does not have this property. Also, the point cloud near

the bottom of the sphere is also distorted, the points flare outwards. Further discussion on

this will be provided later.

Figure 5.25 Close-up surface profile of
ball 6 at ϕ = 20◦.

Figure 5.26 Close-up surface profile of
ball 7 at ϕ = 20◦.
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Table 5.4 Diameter of the balls (unit: mm)

Proposed system Bias
Index CMM ϕ = 0◦ ϕ = 20◦ ϕ = 0◦ ϕ = 20◦

Ball 1 4.11702 3.85142 4.03654 -0.26560 -0.08048
Ball 2 4.06867 3.99988 3.88054 -0.06879 -0.18813
Ball 3 4.06757 3.89474 3.94118 -0.17283 -0.12639
Ball 4 4.07665 3.83500 3.96388 -0.24165 -0.11277
Ball 5 4.11645 3.93296 3.98374 -0.18349 -0.13271
Ball 6 4.10049 3.93310 4.65872 -0.16739 0.55823
Ball 7 4.05760 3.93164 5.31860 -0.12596 1.26100
Ball 8 4.10278 3.8629 3.93122 -0.23988 -0.17156
Ball 9 4.06148 4.51498 3.98330 0.45350 -0.07818
Ball 10 4.12159 3.97236 4.24750 -0.14923 0.12591

The measurement results of critical dimensions of the standard block are provided

below. The distance between 2 consecutive balls are calculated by computing the differ-

ences of the coordinates in CCS. This value is compared with the ground truth measured

from CMM. The results are shown in Table 5.6.

The angular critical dimension is computed by considering 3 consecutive balls and

computing the vectors between the centers, i.e. the coordinate differences. The vectors are

listed in Table 5.5. They are directly calculated from the fitted coordinates of the center.

The cosine angle between 2 vectors can be computed as dividing the inner product by the

product of the vector lengths.

Table 5.5 Coordinate differences between consecutive balls (unit: mm)

ϕ = 0◦ ϕ = 20◦

Vector index ∆xc ∆yc ∆zc ∆xc ∆yc ∆zc

Ball 1 to Ball 2 0.39237 -8.24680 8.08201 -2.33754 -8.15230 7.44418
Ball 2 to Ball 3 -0.12439 -8.05813 1.81446 -0.79569 -8.07763 1.79597
Ball 3 to Ball 4 -0.16642 -8.06607 -0.25126 -0.264580 -8.03949 -0.23180
Ball 4 to Ball 5 -0.95914 -7.75186 -10.84132 2.62056 -7.7667 -10.23818
Ball 6 to Ball 7 0.31024 7.98721 2.1534 -0.41680 8.00715 2.45329
Ball 7 to Ball 8 0.29131 7.96409 2.35641 -0.20391 7.92605 1.61162
Ball 8 to Ball 9 0.26439 7.95119 2.72730 -0.71337 7.99195 2.28675
Ball 9 to Ball 10 0.12429 8.22343 -6.02839 2.21915 8.10937 -5.28185
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Table 5.6 Critical dimensions between consecutive balls (unit: mm)

Proposed system Bias
Dimension CMM ϕ = 0◦ ϕ = 20◦ ϕ = 0◦ ϕ = 20◦

Ball 1 to Ball 2 11.14189 11.55346 11.28450 0.41158 0.14261
Ball 2 to Ball 3 8.24881 8.26082 8.31305 0.01202 0.06424
Ball 3 to Ball 4 7.99317 8.07170 8.04718 0.07853 0.05401
Ball 4 to Ball 5 12.82434 13.36209 13.11523 0.53776 0.29089
Ball 6 to Ball 7 8.26571 8.27822 8.38491 0.01251 0.11920
Ball 7 to Ball 8 8.24693 8.31049 8.09081 0.06357 -0.15612
Ball 8 to Ball 9 8.25294 8.41008 8.34322 0.15714 0.09028
Ball 9 to Ball 10 9.98384 10.19714 9.92897 0.21331 -0.05487

Table 5.7 The angles formed by the centers of the balls (unit: deg)

Proposed system Bias
Angle index CMM ϕ = 0◦ ϕ = 20◦ ϕ = 0◦ ϕ = 20◦

1-2-3 30.00813 31.85152 30.19469 1.84339 0.18656
2-3-4 13.63815 14.47510 14.60748 0.83695 0.96933
3-4-5 52.05317 52.66532 52.58816 0.61215 0.53499
6-7-8 2.27829 1.39986 5.71247 -0.87843 3.43418
7-8-9 0.67265 2.45724 5.65042 1.78459 4.97777
8-9-10 51.24396 55.17236 51.87071 3.92840 0.62676

Figure 5.27 A bright light spot on the spherical surface of ball 6 can be observed.

As mentioned earlier the radius of the balls have large bias. Also, the critical di-

mensions have large error, too. The possible cause for these is bad reconstruction of 3D

coordinate points. These anomalies likely stem from the algorithm used to extract center-

lines from reflected line patterns. The original image (Fig. 5.27) reveals that the reflected

light on the top of the sphere exhibits abnormal shapes in specific regions. This inconsis-

tency contradicts with the assumption that ”row-wise grayscale values follow a Gaussian
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distribution.”

Furthermore, the point cloud flaring outwards is probably due to the geometrical

constraint of the system. The figures below (Fig. 5.28 and Fig. 5.29) illustrate the fact that

the light pattern can be obstructed by the geometry of the surface. The actual center line

of the light pattern does not exist on the visible side of the ball. In fact, the center line is

occluded by the topography of the object itself. The center line extraction algorithm cannot

detect the line pattern lying on the other side of the ball. Still, the algorithm reconstructs

the center line from the visible light pattern. Therefore, false coordinates of the points are

reconstructed, causing large measuring bias of the ball radius and critical dimension.

Figure 5.28 235-th image of the scan-
ning sequence of ball 7.

Figure 5.29 239-th image of the scan-
ning sequence of ball 7.
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Chapter 6 Conclusions and Future

Works

6.1 Conclusions

Surface tilting is an issue in reconstructing the profile of an object. Conventionally,

people use neighboring points to estimate the tilting angle at that local area. However, this

method would make tilting angle measurement dependent on coordinate measurement.

This implies that the measurement error can propagate to tilting angle from coordinate

error. Therefore, a novel method is proposed in this research to decouple the relationship

between surface tilting and surface profile.

The methodology separates the measurement of tilting angle from measurement of

3D coordinates by designing a new mathematical model explaining the relationship be-

tween tilting angle and other physical quantities. The model is derived through rigorous

theoretical deduction, and validated through experiments. There are two forward models

to be specific. The first one is the linewidth as a function of tilting angles and the second

is the intensity as a function of tilting angles.

These two models are combined together and further analyzed. It is found that every
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tilting angles corresponds to a specific pair of linewidth and intensity. Therefore, given the

linewidth and intensity of the light patterns, one can find its corresponding tilting angles,

and the inverse problem arises. The solutions to the inverse problem are the tilting angles

corresponding to the given linewidth and intensity. The inverse problem is reformulated

as constrained optimization problem (COP). By performing optimization algorithm with

observed linewidth and intensity values as constraints, the underlying tilting angles can

be deduced. Although the intensity forward model still needs some modification in the

future, the overall performance of this inverse model reaches 0.533 cosine similarity with

the ground truth for angular measurement. This methodology can be applied to similar

hardware. As long as the system consists of a line light projector and an imaging system,

this method can utilized.

After validating through experiments, it has been found out that there is still room for

improvements for this methodology. Scanned point cloud of a standard block is analyzed

and the critical dimensions are extracted. The results are compared with the ground truth

measured from CMM. The bias is as large as 0.5 mm in length measurement. The cause

to this bias is discussed. It is concluded that the algorithm of center line extraction is

incapable of reconstructing true position of the center line. Also, the light patterns on the

measured object do not always follow the presumed condition, i.e. Gaussian distribution,

thereby inducing bad reconstructed results.

6.2 Future works

In the future, there are some points that can be tackled with to enhance the perfor-

mance of the tilting angle measurement. First, consider more parameters in the imaging
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system. The lack of fitness in intensity forward model is highly likely caused by the

gamma value of the camera, since gamma can affect the grayscale response of the image.

Second, the calibration results should not be taken as parameters for forward models. As

can be seen in the R2 statistics, the models using calibrated parameters does not fit well.

On the other hand, one can try use the forward model as a training model, and take the

937 images as training dataset. This way the best fitted model can be obtained, thereby

raise the R2 statistics. Hardware-wise, improvements can be made by consider follow-

ing points. Although these are minor issues, they still worth mentioning. First, consider

telecentric error in f -θ lens and the aberration in objective lens. Small deviation in these

physical object can affect alot in theory. If the telecentric error is not negligible, the light

sheets can not be considered as parallel in each image. If the distortion of the objective

lens is not negligible, the light sheet in each image cannot be seen as a flat plane. Last

but not least, the linewidth of the line projector can be shrunken by implementing Powell

lens. This way, the accuracy of the profile reconstruction can be improved.
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Appendix A — Detailed Derivation of

Model for Lateral Spot Size as a

Function of Surface Tilting Angles

A.1 Preface and assumptions

The lateral spot size is just one of the information a light pattern entails about the

surface tilting angle. As the surface tilting angle changes, the lateral spot size also changes.

In this section, a step-by-step derivation for the lateral spot size is carried out. The lateral

spot size at any surface tilting angle under a certain camera specification and viewing angle

can be established. Before deriving the numerical relationship between surface tilting

angle and the spot size, there are some crucial assumptions to be made for the ease of

mathematical derivation as well as the generalizability of the final model.

First, the light source is assumed to be a point, creating a collimated light beam. The

light beam can be seen as an infinite long cylinder with diameter d, and the center of the

cylinder is aligning with zw axis (Fig. A.2). Second, the local surface is placed at the

origin of WCS. Thus, the intersection of the light beam and the local surface would create

an elliptical light pattern. The tilting angle of the local area is at (θ, ϕ).
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Last but not least, the camera is assumed to be placed in the WCS at (lx, ly, lz). With-

out loss of generality, the optical axis of CCS, i.e. positive zc direction, is pointing towards

the origin of WCS. This means that the object is placed right in the middle of the FOV of

the camera. Next, the explanation starts with the mathematical description of a light spot

on a tilted surface.

Figure A.1 Illustration of WCS, CCS and tilted local surface at origin of WCS

A.2 De La Hire’s ellipse

The light beam is assumed to be a cylinder lying on zw-axis. Let the beam diameter

to be d. Thus, the radius of the cylinder is d/2. When a tilted surface is placed under the

light beam, a cross-section is formed. The shape of the cross-section is the true shape of

the light pattern. The shape of the cross-section is determined by the tilting angle of the

normal vector with respect to zw-axis. The shape would be a circle if there’s no tilting, i.e.

the tilting angle equals to zero, otherwise the shape would be an ellipse. Beam diameter
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controls the radius of the circle pattern, r, as well as the semi-minor axis of the ellipse, b.

b = d/2 (A.1)

The semi-major axis, a, is determined by the tilting angle w.r.t. zw-axis. Assume the angle

between zw-axis and the normal vector of the local surface is ϕ. Using trigonometry, we

can calculate that

a =
d

2
secϕ (A.2)

Figure A.2 The length of minor axis of
every ellipses in the cylinder are all iden-
tical to the beam diameter d

Figure A.3 The length of the semi-major
axis can bewritten as a function of zenith
angle and beam diameter

When the angle ϕ is 0, i.e. no tilting, semi-major axis and the semi-minor axis are

the same length. The ellipse become a circle.

a = b =
d

2
(A.3)
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Figure A.4 The geometry of a light spot is determined by the cross-section of the local
surface and the light beam

Figure A.5 Construction of de La Hire’s ellipse is based on 2 concentric circles. The red
circle has radius of length a, and the blue circle has radius of length b.
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To describe every point on the border of the ellipse, one can use de La Hire’s con-

struction of ellipse [39]. Coordinates of each point on the border of the light spot can

be described using a parameter t, semi-major axis, a, and semi-minor axis, b. The de La

Hire’s ellipse on 2D space (plotted on xwyw plane) is expressed as

[
x
y

]
=

[
a cos(t)
b sin(t)

]
(A.4)

In 3D WCS, extra coordinate is extended, so the expression becomes

xy
z

 =

a cos(t)b sin(t)
0

 (A.5)

Let there be a surface tilting on the local area. The azimuth angle is θ, and the zenith

angle is ϕ. Therefore, the semi-major and semi-minor axes can be determined. To describe

the actual curve that traces the border of the light spot in WCS, the curve is laid flat on

the xwyw plane initially. Next, the curve is rotated in 3D space as a rigid body according

to surface tilting angle. To match the surface tilting angle (azimuth angle), the major-axis

of the ellipse coincides with the xw-axis. The center of the ellipse lies on the origin of the

WCS. The coordinate of each point on the border becomes

xy
z

 =

a cos(t)b sin(t)
0

 =

d
2
sec(ϕ) cos(t)

d
2
sin(t)
0

 , t ∈ [0, 2π) (A.6)

The parameter t is a value between 0 and 2π. Each value of t corresponds to a distinct

point on the border of the light spot. The shape of the light spot is now explicitly described,

and each point on the border is clearly defined. However, the orientation of this ellipse in

the 3 dimensional Cartesian space (WCS) is still not aligned with the actual light spot. In

order to match the curve to the light spot on the tilted surface, rotating operator must be
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applied. For simplicity, extrinsic rotation with respect to Cartesian axes is adopted during

the process of model derivation.

The ellipse is rotated w.r.t. yw-axis at ϕ angle, which is also the zenith angle. This

operation is denoted by Ry(ϕ). Next, the rotated shape is further rotated w.r.t. zw-axis at

θ angle, which is also the azimuth angle. This operation is denoted by Rz(θ). Therefore,

the actual position of the perimeter of the light spot induced by the tilted surface can be

calculated as below.

xy
z

 = Rz(θ)Ry(ϕ)

d
2
sec(ϕ) cos(t)

d
2
sin(t)
0


=

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

 cos(ϕ) 0 sin(ϕ)
0 1 0

− sin(ϕ) 0 cos(ϕ)

d
2
sec(ϕ) cos(t)

d
2
sin(t)
0


=

d
2
cos(t) cos(θ)− d

2
sin(t) sin(θ)

d
2
cos(t) sin(θ) + d

2
sin(t) cos(θ)

−d
2
tan(ϕ) cos(t)

 =
d

2

cos(t) cos(θ)− sin(t) sin(θ)
cos(t) sin(θ) + sin(t) cos(θ)

− tan(ϕ) cos(t)

 (A.7)

Again, the parameter t is a value between 0 and 2π. Eq. (A.7) describes the true shape of

the light spot through its perimeter in three-dimensional Cartesian space, i.e. in the WCS.

Figure A.6 Steps to rotate the ellipse to correct orientation (Order: left to right)
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A.3 Extreme points of the ellipse

Actual shape and actual size of the light spot are determined by the tilting angles of

local surface. However, from different observing angle, perceived shape and size can still

be different. Thus, the coordinate of the border of the light spot should be projected onto

image plane for explicit relationship between perceived size of light spot and the tilting

angles. Projection of the light spot to image plane involves 2 coordinate transformations:

1. Transform the coordinates from WCS to CCS

2. Transform camera coordinate to image coordinate

The projection of the light spot to image plane is actually done by camera matrix,

which is introduced in Chapter 3. The first step is to perform a translation and rotation

of the coordinate system, and the second step is to project 3D object in CCS to 2D plane.

Without loss of generality, the translational vector T⃗ is set to be

T⃗ = [lx, ly, lz]
⊺ (A.8)

and the rotation matrix R is set to be

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (A.9)

uv
1

 = KR
[
I| − T⃗

] 
x
y
z
1

 = KR

1 0 0 −lx
0 1 0 −ly
0 0 1 −lz



x
y
z
1


= K

R11 R12 R13

R21 R22 R23

R31 R32 R33

x− lx
y − ly
z − lz

 (A.10)
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Let 

x′ = x− lx

y′ = y − ly

z′ = z − lz

(A.11)

The skew factor, s in the camera intrinsic matrix is assumed to be 0, then Eq. (A.10)

becomes

uv
1

 =

fx 0 ox
0 fy oy
0 0 1

R11x
′ +R12y

′ +R13z
′

R21x
′ +R22y

′ +R23z
′

R31x
′ +R32y

′ +R33z
′

 (A.12)

=

fx(R11x
′ +R12y

′ +R13z
′)+ ox

(
R31x

′ +R32y
′ +R33z

′)
fy
(
R21x

′ +R22y
′ +R23z

′)+ oy
(
R31x

′ +R32y
′ +R33z

′)
R31x

′ +R32y
′ +R33z

′

 (A.13)

=


fx

R11x
′ +R12y

′ +R13z
′

R31x′ +R32y′ +R33z′
+ ox

fy
R21x

′ +R22y
′ +R23z

′

R31x′ +R32y′ +R33z′
+ oy

1

 (A.14)

Now, it is important to identify what object in the CCS needs to be analyzed. The

object of interest in this case is the elliptic light spot, which is constructed by de La Hire’s

method as mentioned in Eq. (A.7). The ellipse defined this way can be parameterized by a

single parameter, t. This property is useful for locating the analytic position of the extreme

point of the ellipse.

To put it more precisely, the lateral size of the ellipse is defined by the horizontal

distance between the leftmost and the rightmost point of the ellipse. Therefore, the points

of interests correspond to the points where
d
dt
u = 0.
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Figure A.7 The spot size is defined as the distance from the left extreme point to right
extreme point on u axis, i.e. the horizontal axis of an image.

Plug u given in Eq. (A.14) into
d
dt
u = 0, we get

0 =
d
dt
u =

d
dt
(
fx

R11x
′ +R12y

′ +R13z
′

R31x′ +R32y′ +R33z′
+ ox

)
=

d
dt
fx

R11x
′ +R12y

′ +R13z
′

R31x′ +R32y′ +R33z′
+

d
dt
ox

= fx
d
dt

R11x
′ +R12y

′ +R13z
′

R31x′ +R32y′ +R33z′
∵ ox is a constant (A.15)

Since x′ = x− lx, it is also a function of parameter t, so are y′ and z′. The numerator and

denominator in Eq. (A.15) can be simplified as f(t) and g(t). Then

f(t) = R11x
′ +R12y

′ +R13z
′ (A.16)

g(t) = R31x
′ +R32y

′ +R33z
′ (A.17)

∴ 0 = fx
d
dt

R11x
′ +R12y

′ +R13z
′

R31x′ +R32y′ +R33z′
= fx

d
dt

f(t)

g(t)

= fx
f ′(t)g(t)− f(t)g′(t)(

g(t)
)2 (A.18)
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For Eq. (A.18) to be true, the numerator has to be 0 under the constraint of

(
g(t)

)2 ̸= 0 (A.19)

This constraint can be proven to be valid in CCS since that g(t) is originally z′ = z − lz,

the z-coordinate in CCS according to (A.13) and (A.17). The objects being captured must

be placed in front of the camera, that is the positive z region in CCS. Objects cannot be

placed on the origin of CCS, which is the position of the camera center. Thus, (A.19)

holds.

Given that the numerator of (A.18) has to be 0, it can be deduced that

f ′(t)g(t) = g′(t)f(t) (A.20)

f ′(t)g(t) =

(
d
dt
(
x′R11 + y′R12 + z′R13

))
g(t)

=

(
d
dt
(
x′R11

)
+

d
dt
(
y′R12

)
+

d
dt
(
z′R13

))
g(t)

=

(
R11

d
dt
(d
2
cos(t+ θ)− lx

)
+R12

d
dt
(d
2
sin(t+ θ)− ly

)
+R13

d
dt
(−d

2
tanϕ cos(t)− lz

))
g(t) using (A.7)

=

(
R11

d

2

(
− sin(t+ θ)

)
+R12

d

2
cos(t+ θ) + R13

d

2
tanϕ sin t

)
g(t)

=
d

2

(
−R11 sin(t+ θ) + R12 cos(t+ θ) + R13 tanϕ sin t

)
× (x′R31 + y′R32 + z′R33)

=
d

2
(1∗ + 2∗ + 3∗) (A.21)
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1∗ = −R11 sin(t+ θ)x′R31 +R12 cos(t+ θ)x′R31 +R13 tanϕ sin(t)x′R31 (A.22)

2∗ = −R11 sin(t+ θ)y′R32 +R12 cos(t+ θ)y′R32 +R13 tanϕ sin(t)y′R32 (A.23)

3∗ = −R11 sin(t+ θ)z′R33 +R12 cos(t+ θ)z′R33 +R13 tanϕ sin(t)z′R33 (A.24)

g′(t)f(t) =

(
d
dt
(
x′R31 + y′R32 + z′R33

))
f(t)

=

(
d
dt
(
x′R31

)
+

d
dt
(
y′R32

)
+

d
dt
(
z′R33

))
f(t)

=

(
R31

d
dt
(d
2
cos(t+ θ)− lx

)
+R32

d
dt
(d
2
sin(t+ θ)− ly

)
+R33

d
dt
(−d

2
tanϕ cos(t)− lz

))
f(t) using (A.7)

=

(
R31

d

2

(
− sin(t+ θ)

)
+R32

d

2
cos(t+ θ) + R33

d

2
tanϕ sin t

)
f(t)

=
d

2

(
−R31 sin(t+ θ) + R32 cos(t+ θ) + R33 tanϕ sin t

)
× (x′R11 + y′R12 + z′R13)

=
d

2
(4∗ + 5∗ + 6∗) (A.25)

4∗ = −R31 sin(t+ θ)x′R11 +R32 cos(t+ θ)x′R11 +R33 tanϕ sin(t)x′R11 (A.26)

5∗ = −R31 sin(t+ θ)y′R12 +R32 cos(t+ θ)y′R12 +R33 tanϕ sin(t)y′R12 (A.27)

6∗ = −R31 sin(t+ θ)z′R13 +R32 cos(t+ θ)z′R13 +R33 tanϕ sin(t)z′R13 (A.28)
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0 = f ′(t)g(t)− g′(t)f(t) =
d

2
(1∗ + 2∗ + 3∗ − 4∗ − 5∗ − 6∗)

=
d

2

(
(1∗ − 4∗) + (2∗ − 5∗) + (3∗ − 6∗)

)
=

d

2

((
R12 cos(t+ θ)x′R31 +R13 tanϕ sin(t)x′R31 −R32 cos(t+ θ)x′R11 −R33 tanϕ sin(t)x′R11

)
+
(
−R11 sin(t+ θ)y′R32 +R13 tanϕ sin(t)y′R32 +R31 sin(t+ θ)y′R12 −R33 tanϕ sin(t)y′R12

)
+
(
−R11 sin(t+ θ)z′R33 +R12 cos(t+ θ)z′R33 +R31 sin(t+ θ)z′R13 −R32 cos(t+ θ)z′R13

))
(A.29)

After some rearrangement and substitution of x′, y′ and z′, (A.29) can be expressed

as below

0 = f ′(t)g(t)− g′(t)f(t) = A cos(t+ θ) + B sin(t+ θ) + C sin(t) +D

= E cos(t− δ) +D (using trigonometric identities) (A.30)

where

A = (−R12R31 +R32R11)lx + (−R12R33 +R32R13)lz (A.31)

B = (R11R32 −R31R12)ly + (R11R33 −R31R13)lz (A.32)

C =
(
(−R13R31 +R33R11)lx + (−R13R32 +R33R12)ly

)
tan(ϕ) (A.33)

D = R12
d

2
R31 −R11

d

2
R32 −R13 tan(ϕ)

d

2
R31 sin(θ) + R13 tan(ϕ)

d

2
R32 cos(θ)

+R11
d

2
tan(ϕ)R33 sin(θ)−R12

d

2
tan(ϕ)R33 cos(θ) (A.34)

E =

√(
A cos(θ) + B sin(θ)

)2
+
(
− A sin(θ) + B cos(θ) + C

)2 (A.35)

δ = arctan
−A sin(θ) + B cos(θ) + C

A cos(θ) + B sin(θ)
(A.36)
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Also, consider the other case

0 = g′(t)f(t)− f ′(t)g(t) = −A cos(t+ θ)− B sin(t+ θ)− C sin(t)−D

= E ′ cos(t− δ′)−D (A.37)

where

E ′ =

√(
− A cos(θ)− B sin(θ)

)2
+
(
A sin(θ)− B cos(θ)− C

)2
= E (A.38)

δ′ = arctan
A sin(θ)− B cos(θ)− C

−A cos(θ)− B sin(θ)
= arctan

−A sin(θ) + B cos(θ) + C

A cos(θ) + B sin(θ)
= δ

(A.39)

Thus, Eq. (A.37) becomes

0 = E cos(t− δ)−D (A.40)

Therefore,

du
dt

= 0 =⇒ t ∈
{
t
∣∣ E cos(t− δ) +D = 0 ∨ E cos(t− δ)−D = 0

}
(A.41)

du
dt

= 0 implies that the solution of t satisfy (A.30) or (A.40). Notice that there are 2 possi-

ble solutions for Eq. (A.30) as well as Eq. (A.40) for t ∈ [0, 2π). Thus, there are 4 possible

solutions in total. However, there are only 2 extreme points on any perceived ellipse. To
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obtain correct solutions, Eq. (A.30) and Eq. (A.40) are considered simultaneously.

(
E cos(t− δ) +D

)(
E cos(t− δ)−D

)
= 0

E2 cos2(t− δ)−D2 = 0

cos2(t− δ) =
D2

E2
=

cos
(
2(t− δ)

)
+ 1

2

cos
(
2(t− δ)

)
=

2D2

E2
− 1

2(t− δ) = ± arccos(
2D2

E2
− 1) + 2nπ, where n ∈ Z

t− δ = ± 0.5 arccos(
2D2

E2
− 1) + nπ, where n ∈ Z

∴ t = δ ± 0.5 arccos(
2D2

E2
− 1) + nπ, where n ∈ Z (A.42)

Under the constraint of t ∈ [0, 2π), n = 1 and n can only be 1. If n ≥ 2 , then t can

be greater than 2π. If n ≤ 0 , then t can be lesser than 0, t /∈ [0, 2π). It suffices to show

−π ≤ δ ± 0.5 arccos(
2D2

E2
− 1) < π, so that t ∈ [0, 2π) for n equals to 1.

According to (A.36), δ is a function of arctan, so its range is (−π/2, π/2). arccos has

a range of [0, π]. Thus, the lower and upper limit of

arctan(·)± 0.5 arccos(·)

are−π/2−0.5π = −π, and π/2+0.5π = π. Thus,−π ≤ δ± 0.5 arccos(
2D2

E2
−1) < π

Therefore,

t = δ ± 0.5 arccos(
2D2

E2
− 1) + π (A.43)

As a result, under a fixed circumstance (fixed camera specs, position, object tilting angle)

the distance between the leftmost edge and the rightmost edge of the ellipse appears on
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the image is calculated by

|u(t1)− u(t2)| (A.44)

where u is calculated as shown in (A.10) and

t1 = δ + 0.5 arccos(
2D2

E2
− 1) + π (A.45)

t2 = δ − 0.5 arccos(
2D2

E2
− 1) + π (A.46)

Notice that the system parameters (camera specs, position, viewing angle) and the object

tilting angles (θ and ϕ) are contained in the terms δ, D and E.

It is crucial to acknowledge the difference between real light spots and the spots in

this model. The light spot in this model has a clearly defined boundary, its shape can be

seen as an ellipse in a 3D Cartesian space, while the light spot in reality is blurred. There

is no clear boundary for a real light spot. In practice, the boundary of a real light spot can

be extracted from image processing, since the light intensity of same value from the same

light spot forms a shape approximately like an ellipse. Therefore, this model still holds

for practical use.

Further details regarding the validity of applicability in real scenario are provided in

Appendix B.
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Appendix B — Theoretical Rationale

for Leveraging the Characteristics of

Light Spots in Line Patterns

B.1 Preface

Most of the time, clear boundaries of light spots are not present in actual images. In

this research, a virtual boundary is generated by fitting a bivariate Gaussian distribution

to the light spot. The contour lines of the Gaussian distribution can be considered as the

boundary of the light spot.

As defined in chapter 4, the boundary line of the light spot is the contour line corre-

sponding to half the maximum. A natural question arises: can the lateral spot size model

be extended to this contour? If the answer is positive, another problem arises. How can

the usage of this model on line patterns be justified when the model is built upon light

spots?

As a result, the following two sections attempt to answer these questions respectively,

and eventually affirm the validity of usage.
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B.2 Relationship between lateral spot size and the con-

tour of half maximum

This section offers a comprehensive rationale for employing the spot size model on

light spots with blurred boundaries. The challenge lies in applying a spot size model,

originally designed for sharp boundaries, to actual images where light spot boundaries

are defined by the contour of a fixed intensity. This creates a counter-intuitive scenario.

Therefore, an explicit formula for the lateral spot size of blurred light spots must be estab-

lished.

Proposition 1: Let f(x, y) be a Gaussian distribution with parameters µx , µy ,

σx , σy , ρ and CHM the contour line at half maximum of f(x, y). The distance between

the maximum and minimum value of x on CHM , i.e. lateral spot size, is

xmax − xmin = 2
√
2 ln 2σx

while ρ ̸= ±1 and σy ̸= 0

Figure B.8 An illustration of a bivariate Gaussian distribution and the contour of half
maximum
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Proposition 1 asserts that the lateral spot size for a light spot with blurred boundaries

can be expressed solely as a function of the standard deviation along the x-axis. It is in-

dependent of the shape of the light spot along the y-axis. Notably, the formula closely

resembles the Full Width at Half Maximum (FWHM) for a 1D Gaussian distribution, dif-

fering only in the term for standard deviation. In the case of the FWHM in a 1D Gaussian,

the standard deviation is denoted as σ, whereas in this formula, it is denoted as σx.

f(x, y) is a bivariate Gaussian distribution, and it is expressed as

f(x, y) =
1

2πσxσy

√
1− ρ2

exp
(
− 1

2(1− ρ2)

(
(
x− µx

σx

)2 − 2ρ(x− µx)(y − µy)

σxσy

+ (
y − µy

σy

)2
))

Maximum occurs when x = µx and y = µy, that is

f(x, y) =
1

2πσxσy

√
1− ρ2

(B.47)

Half maximum occurs when

f(x, y) =
0.5

2πσxσy

√
1− ρ2

(B.48)

Every point lying on CHM yield this value.

exp
(
− 1

2(1− ρ2)

(
(
x− µx

σx

)2 − 2ρ(x− µx)(y − µy)

σxσy

+ (
y − µy

σy

)2
))

= 0.5 = 2−1

− 1

2(1− ρ2)

(
(
x− µx

σx

)2 − 2ρ(x− µx)(y − µy)

σxσy

+ (
y − µy

σy

)2
)
= − ln 2

(
x− µx

σx

)2 − 2ρ(x− µx)(y − µy)

σxσy

+ (
y − µy

σy

)2 = 2(1− ρ2) ln 2 (B.49)
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Multiply both sides of the Eq. (B.49) by σ2
xσ

2
y ,

(x− µx)
2σ2

y − 2ρ(x− µx)(y − µy)σxσy + (y − µy)
2σ2

x = 2(1− ρ2)σ2
xσ

2
y ln 2 (B.50)

Eq. (B.50) is in fact an elliptical equation of x and y. This exactly describes the contour,

CHM .

To find the extreme points on x-direction, i.e. xmin and xmax of this contour, one can

utilize implicit differentiation to find the differential form of the contour. Take derivative

of y on both sides of Eq. (B.50)

d
dy

(
(x−µx)

2σ2
y−2ρ(x−µx)(y−µy)σxσy+(y−µy)

2σ2
x

)
=

d
dy

(
2(1−ρ2)σ2

xσ
2
y ln 2

)
= 0

2(x− µx)σ
2
y

dx
dy

− 2ρσxσy((y − µy)
dx
dy

+ (x− µx)) + 2(y − µy)σ
2
x = 0 (B.51)

(
(x− µx)σ

2
y − ρσxσy((y − µy)

)dx
dy

= ρσxσy(x− µx)− (y − µy)σ
2
x (B.52)

∴ dx
dy

=
ρσxσy(x− µx)− (y − µy)σ

2
x

−ρσxσy(y − µy) + (x− µx)σ2
y

(B.53)

Extreme points occur at
dx
dy

= 0, i.e.

ρσxσy(x− µx)− (y − µy)σ
2
x

−ρσxσy(y − µy) + (x− µx)σ2
y

= 0 (B.54)

∴ ρσxσy(x− µx) = (y − µy)σ
2
x

ρσy(x− µx) = (y − µy)σx (B.55)

Also, the denominator cannot be 0.

−ρσxσy(y − µy) + (x− µx)σ
2
y ̸= 0 (B.56)
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Verifying the solution given by Eq. (B.55),

− ρ2σ2
y(x− µx) + (x− µx)σ

2
y ̸= 0 (B.57)

(1− ρ2)(x− µx)σ
2
y ̸= 0 (B.58)

ρ ̸= 1 ∨ −1, x ̸= µx, and σy ̸= 0

ρ ̸= ±1 means that Eq. (B.55) holds when x and y are not linearly correlated. Ge-

ometrically speaking, when elliptical contour collapses to a line, extreme point do not

exists.

x ̸= µx is valid since the extreme point of CHM is obviously not located on x = µx

σy ̸= 0 also means the elliptical contour collapses to a line, the line only has a fixed

y-value. If the shape looks like a horizontal line, then Eq. (B.55) does not hold.

Plugging Eq. (B.55) back to the elliptical equation (B.50), the solution to the maxi-

mum and minimum x value can be obtained.

(x− µx)
2σ2

y − 2ρ2(x− µx)
2σ2

y + ρ2σ2
y(x− µx)

2 = 2(1− ρ2)σ2
xσ

2
y ln 2 (B.59)

(x− µx)
2 − 2ρ2(x− µx)

2 + ρ2(x− µx)
2 = 2(1− ρ2)σ2

x ln 2 (B.60)

(1− ρ2)(x− µx)
2 = 2(1− ρ2)σ2

x ln 2 (B.61)

∴ (x− µx)
2 = 2σ2

x ln 2, x− µx = ±
√
2 ln 2σx (B.62)

xmax − xmin = (µx +
√
2 ln 2σx)− (µx −

√
2 ln 2σx) = 2

√
2 ln 2σx □ (B.63)

Equating this and the lateral spot size formula (A.44) in appendix A,

xmax − xmin = |u(t1)− u(t2)| = 2
√
2 ln 2σx (B.64)
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it is apparent that the spot size formula is related to the standard deviation of the light spot

when the boundary is blurred.

This concludes Proposition 1. Moreover, the proposed lateral spot size model in

Appendix A is applicable to light spots with blurred boundaries. The subsequent section

will demonstrate the extension of the lateral spot size model to line patterns, with the key

insight derived from the formula presented in Proposition 1.

B.3 Extension from light spots to line patterns

The line patterns exhibit an entirely different appearance from a light spot. Some

may argue that a line can be considered as an infinite combination of closely packed spots.

However, this argument lacks rigor and does not provide a sufficient explanation for ap-

plying the lateral spot size model to line patterns.

This section aims to provide a theoretical rationale for the validity of applying the

lateral spot size model to line patterns. The intended outcome is to show that certain

properties remain unchanged when extending a spot to a line. These properties can then

be utilized to infer the lateral spot size when only line patterns are observable.

The images of a light spot are often referred to as point spread functions (PSF), where

the function has 2 inputs, the coordinates x and y, and 1 output, the intensity at that coor-

dinate. The cross-sectional intensity of a line pattern are often referred to as line spread

functions (LSF), where the function has 1 input, the coordinate x, and 1 output, the in-

tensity at that position. It is known that LSF is in fact the integration of PSF in one di-

rection [40]. From the perspective of probability theory, a PSF can be viewed as a joint

density function of 2 random variables, and LSF is the marginal density function. This
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can be expressed as

LSF (x) =

∫ ∞

−∞
PSF (x, y)dy (B.65)

This relation can be obtained from convolution of PSF with 2D linear delta function (in-

finity on y-axis, 0 everywhere else). The illustration of the concept behind this formula is

plotted below.

Figure B.9 The value of LSF (x) is the accumulation of the luminance on y-axis [41]

Proposition 2: The cross-sectional intensity profile of the line pattern (i.e. LSF) fol-

lowsGaussian distribution,N (µ1, σ1), with meanµ1 and standard deviation σ1 if the point

light pattern (i.e. PSF) follows a bivariate Gaussian distribution, N (µ1, µ2, σ1, σ2, ρ)

A bivariate Gaussian distribution with parameters µ1, µ2, σ1, σ2, ρ is expressed as

fX1X2(x1, x2) =
1

2πσ1σ2

√
1− ρ2

e
− 1

2(1−ρ2)

(
(
x1−µ1

σ1
)2− 2ρ(x1−µ1)(x2−µ2)

σ1σ2
)+(

x2−µ2
σ2

)2
)

(B.66)

Consider the exponential term, the form can be simplified using change of variables. Let
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x1 − µ1

σ1

= x′
1 and

x2 − µ2

σ2

= x′
2, then

− 1

2(1− ρ2)

(
(
x1 − µ1

σ1

)2 − 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

) + (
x2 − µ2

σ2

)2
)

= − 1

2(1− ρ2)

(
x′2
1 − 2ρx′

1x
′
2 + x′2

2

)
= − 1

2(1− ρ2)
(x′2

1 − ρ2x′2
1 + ρ2x′2

1 − 2ρx′
1x

′
2 + x′2

2 )

= − 1

2(1− ρ2)

(
x′2
1 (1− ρ2) + (x′

2 − ρx′
1)

2
)

(B.67)

Thus, Eq. (B.66) becomes

1

2πσ1σ2

√
1− ρ2

exp
(
− x′2

1 (1− ρ2)

2(1− ρ2)

)
exp

(
− 1

2(1− ρ2)

(
x′
2 − ρx′

1

)2) (B.68)

Therefore,

LSF (x1) =

∫ ∞

−∞
fX1X2(x1, x2)dx2

=

∫ ∞

−∞

exp
(
− x′2

1 (1− ρ2)

2(1− ρ2)

)
2πσ1σ2

√
1− ρ2

exp
(
− 1

2(1− ρ2)

(
x′
2 − ρx′

1

)2)dx2

=
exp

(
− x′2

1

2

)
2πσ1σ2

√
1− ρ2

∫ ∞

−∞
exp

(
− 1

2(1− ρ2)

(x2 − µ2

σ2

− ρ
x1 − µ1

σ1

)2)dx2

=
exp

(
− x′2

1 /2
)

2πσ1σ2

√
1− ρ2

∫ ∞

−∞
exp

(
− 1

2

( x2 − µ2

σ2

− ρ
x1 − µ1

σ1√
1− ρ2

)2)dx2 (B.69)
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Let x′′
2 =

x2 − µ2

σ2

− ρ
x1 − µ1

σ1√
1− ρ2

, then

dx′′
2

dx2

=
1

σ2

√
1− ρ2

∴ dx′′
2 =

1

σ2

√
1− ρ2

dx2

∴ LSF (x1) =
exp

(
− x′2

1 /2
)

2πσ1σ2

√
1− ρ2

∫ ∞

−∞
exp

(
− 1

2
x′′2
2

)
dx2

=
exp

(
− x′2

1 /2
)

2πσ1σ2

√
1− ρ2

∫ ∞

−∞
exp

(
− 1

2
x′′2
2

)
σ2

√
1− ρ2dx′′

2

=
exp

(
− x′2

1 /2
)

2πσ1

∫ ∞

−∞
exp

(
− x′′2

2 /2
)
dx′′

2 (B.70)

Using the result of Guassian integral,
∫∞
−∞ e−x2/2dx =

√
2π, then the line spread function

becomes

LSF (x1) =
exp (−x′2

1 /2)

2πσ1

√
2π

=
exp

(
− 1

2
(
x1 − µ1

σ1

)2
)

√
2πσ1

=
1√
2πσ1

exp
(
− (x1 − µ1)

2

2σ2
1

)
∼ N (µ1, σ1)

This implies that the LSF, which is a 1D Gaussian distribution, has the same standard

deviation as its underlying PSF.

Notice, Eq. (B.64) in proposition 1 concluded that lateral spot size can be written as

2
√
2 ln 2σx (B.71)

where σx is the x-directional standard deviation of the light spot, which is fitted by a
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bivariate Gaussian distribution. By applying proposition 2, the lateral spot size is identical

to the FWHM of the Gaussian-fitted cross-sectional profile

2
√
2 ln 2σx = 2

√
2 ln 2σ (B.72)

where σ is the standard deviation of the cross-sectional intensity. Hence, the formula

FWHM = 2
√
2 ln 2σ = |u(t1)− u(t2)| (B.73)

where u(t1) and u(t2) are the extreme points of the de La Hire’s ellipse as described in

Appendix A.

Proposition 2 demonstrated that Gaussian-distributed light spot has some good prop-

erties. The light spot has the same standard deviation on x-axis as the line pattern does.

This invariant can be useful since by calculating the standard deviation of cross-sectional

intensity, the lateral spot size can be obtained.

In practical scenarios, this proposition may face challenges when dealing with ir-

regular local surface, where the light spot spans multiple curvatures simultaneously. It’s

essential to note that the assumption here is that the local surface, covered by the light

spot, maintains a uniform tilting angle.
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