Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9210
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟(Jaw-Lin Wang)
dc.contributor.authorSheng-Yuan Chengen
dc.contributor.author鄭勝元zh_TW
dc.date.accessioned2021-05-20T20:13:06Z-
dc.date.available2009-07-24
dc.date.available2021-05-20T20:13:06Z-
dc.date.copyright2009-07-24
dc.date.issued2009
dc.date.submitted2009-07-22
dc.identifier.citation1. Abumi K, Kaneda K. Pedicle screw fixation for nontraumatic lesions of the cervical spine. Spine 1997;22:1853.
2. American-Back-Society. http://www.americanbacksoc.org/.
3. Ashman RB, Galpin RD, Corin JD, et al. Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model. Spine(Philadelphia, PA. 1976) 1989;14:1398-405.
4. Boucher HH. A method of spinal fusion. Journal of Bone & Joint Surgery, British Volume 1959;41:248-59.
5. Brantley AGU, Mayfield JK, Koeneman JB, et al. The effects of pedicle screw fit: An in vitro study. Spine 1994;19:1752.
6. Burr DB, Turner CH, Naick P, et al. Does microdamage accumulation affect the mechanical properties of bone? Journal of biomechanics 1998;31:337-45.
7. Chen PQ, Wang JL, Tsuang YH, et al. The postural stability control and gait pattern of idiopathic scoliosis adolescents. Clinical Biomechanics 1998;13:52-8.
8. Coe JD, Warden KE, Herzig MA, et al. Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine 1990;15:902.
9. Davne SH, Myers DL. Complications of lumbar spinal fusion with transpedicular instrumentation. Spine 1992;17:S184.
10. Elite-Surgical-Supplies. http://www.elitesurgical.com/.
11. Eorthopod. http://www.eorthopod.com/.
12. Esses SI, Sachs BL, Dreyzin V. Complications Associated with the Technique of Pedicle Screw Fixation A Selected Survey of ABS Members. Spine 1993;18:2231.
13. Hadjipavlou AG, Nicodemus CL, Al-Hamdan FA, et al. Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct. Journal of spinal disorders 1997;10:12-9.
14. Halvorson TL, Kelley LA, Thomas KA, et al. Effects of bone mineral density on pedicle screw fixation. Spine 1994;19:2415.
15. Hirano T, Hasegawa K, Takahashi HE, et al. Structural characteristics of the pedicle and its role in screw stability. Spine 1997;22:2504.
16. Hsu CC, Chao CK, Wang JL, et al. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. Journal of Orthopaedic Research 2005;23.
17. Inceoglu S, Ferrara L, McLain RF. Pedicle screw fixation strength: pullout versus insertional torque. The Spine Journal 2004;4:513-8.
18. Kay MW, Roe SC, Stikeleather LF, et al. Axial vibration of threaded external fixation pins: Detection of pin loosening. Annals of biomedical engineering 1998;26:361-8.
19. Klein SA, Glassman SD, Ii JRD, et al. Evaluation of the Fixation and Strength of a' Rescue' Revision Pedicle Screw. Journal of Spinal Disorders & Techniques 2002;15:100.
20. Krag M, Beynnon B, Pope MH, et al. An Internal Fixator for Posterior Application to Short Segments of the Thoracic, Lumbar, or Lumbosacral Spine Design and Testing. Clinical Orthopaedics & Related Research 1986;203:75.
21. Krag MH. Biomechanics of thoracolumbar spinal fixation: A review. Spine 1991;16:S84.
22. Krenn MH, Piotrowski WP, Penzkofer R, et al. Influence of thread design on pedicle screw fixation. Journal of Neurosurgery: Spine 2008;9:90-5.
23. Lill CA, Schneider E, Goldhahn J, et al. Mechanical performance of cylindrical and dual core pedicle screws in calf and human vertebrae. Archives of Orthopaedic and Trauma Surgery 2006;126:686-94.
24. Lim TH, An HS, Hasegwa T, et al. Prediction of fatigue screw loosening in anterior spinal fixation using dual energy x-ray absorptiometry. Spine 1995;20:2565.
25. Lu WW, Zhu Q, Holmes AD, et al. Loosening of sacral screw fixation under in vitro fatigue loading. Journal of Orthopaedic Research 2000;18.
26. Luk KDK, Orth MC, Chen L, et al. A Stronger Bicortical Sacral Pedicle Screw Fixation Through The S1 Endplate: An In Vitro Cyclic Loading and Pull-Out Force Evaluation. Spine 2005;30:525.
27. Maruyama T, Takeshita K. Surgical treatment of scoliosis: a review of techniques currently applied. Scoliosis 2008;3:6.
28. McAfee P, Weiland DJ, Carlow JJ. Survivorship analysis of pedicle spinal instrumentation. Spine 1991;16:S428.
29. MedlinePlus. http://www.nlm.nih.gov/MEDLINEPLUS/.
30. Misenhimer GR, Peek RD, Wiltse LL, et al. Anatomic analysis of pedicle cortical and cancellous diameter as related to screw size. Spine 1989;14:367.
31. Okuyama K, Abe E, Suzuki T, et al. Can insertional torque predict screw loosening and related failures?: An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine 2000;25:858.
32. Okuyama K, Abe E, Suzuki T, et al. Influence of bone mineral density on pedicle screw fixation a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. The Spine Journal 2001;1:402-7.
33. Roy-Camille R, Saillant G, Mazel C. Internal Fixation of the Lumbar Spine with Pedicle Screw Plating. Clinical Orthopaedics & Related Research 1986;203:7.
34. Roy-Camille R, Saillant G, Mazel C. Plating of thoracic, thoracolumbar, and lumbar injuries with pedicle screw plates. The Orthopedic clinics of North America 1986;17:147.
35. San-Diego-Center-of-Spinal-Disorder. http://www.sandiego-spine.com/.
36. Sawbones. http://www.sawbones.com/.
37. Sterba W, Kim DG, Fyhrie DP, et al. Biomechanical analysis of differing pedicle screw insertion angles. Clinical Biomechanics 2007;22:385-91.
38. Weinstein JN, Rydevik BL, Rauschning W. Anatomic and technical considerations of pedicle screw fixation: Avoidance of complications in spine surgery. Clinical orthopaedics and related research 1992:34-46.
39. Yamagata M, Kitahara H, Minami S, et al. Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine 1992;17:51.
40. Zdeblick TA, Kunz DN, Cooke ME, et al. Pedicle screw pullout strength: correlation with insertional torque. Spine 1993;18:1673.
41. Zindrick M, Wiltse L, Widell E, et al. A Biomechanical Study of Intrapeduncular Screw Fixation in the Lumbosacral Spine. Clinical Orthopaedics & Related Research 1986;203:99.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9210-
dc.description.abstractObjective. To find the relationship between gap of screw-bone interface and pedicle screw pullout strength, and to develop a non-destructive test to predict the pullout strength of pedicle screw.
Summary of Background Data. Pedicle screw looseness is frequently observed after spinal implantation surgery. The X-ray image and computer tomography are used to diagnose the gap between screw and bone interface. Nevertheless, the correlation between gap of screw-bone interface and screw looseness is not clear. Pullout test of pedicle screw, which is a destructive testing method, is widely used to evaluate the strength of screw-bone interface in vitro. It usually costs large testing sample to predict the progression of screw looseness using this destructive testing method.
Materials and Methods. Sawbones and human cadaveric vertebra were used for this in vitro study. The specimens were divided into three groups, “intact”, “1mm gap” and “2mm gap” (n=10 for each group). The pedicle screws (diameter: 6mm, length: 40mm) were inserted. The fatigue loading apparatus was used to apply axial fatigue loading (20~200N, 5Hz) to the head of the screw to create the interface gap. The tensile-compressive testing apparatus was used to find the interface stiffness and pullout strength of pedicle screw. During the stiffness test, loading was applied on screw head at 20~200N magnitude and 1Hz frequency. The loading of impact testing apparatus was 50N, and the vibration frequency of pedicle screw was measured. During the pullout test, the pedicle screw was pullout axially from the specimen at 5 mm/min, and the maximum pullout force was measured. The relationships between interface stiffness, vibration frequency and pullout strength were analyzed.
Results. When the gap between pedicle screw and specimens was expanded to 1mm, the interface stiffness, vibration frequency and pullout strength of pedicle screw significantly decreased (p=0.00). The interface stiffness and vibration frequency are moderately (r=0.58, p=0.00) and highly (r=0.75, p=0.00) correlated to the pullout strength, respectively.
Conclusions. The pullout strength could be predicted by measuring the interface stiffness and vibration frequency. This method can be useful to predict the progression of screw looseness during fatigue loading.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:13:06Z (GMT). No. of bitstreams: 1
ntu-98-R96548019-1.pdf: 8656953 bytes, checksum: acadfdc14b6818eacc64e01aaeb15f85 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
英文摘要 v
第一章 前言 1
1.1 脊椎基本架構 1
1.2 後方脊椎融合術適用症狀 2
1.3 後方脊椎融合術常見併發症及診斷方式 5
1.4 椎弓根螺釘力學測試文獻回顧 6
1.5 研究動機和目的 10
第二章 材料與方法 11
2.1 研究方法簡介 11
2.2 實驗儀器 11
2.2.1 油壓材料測試機台 11
2.2.2 自製化衝擊測試平台 12
2.2.3 X光機 13
2.3 實驗階段一:人工仿骨-前導實驗 14
2.3.1 試樣準備 14
2.3.2 椎弓根螺釘 15
2.3.3 實驗流程 15
2.4 實驗階段二:人體試樣 18
2.4.1 試樣準備 18
2.4.2 實驗流程 20
2.5 資料分析 22
2.5.1 剛性測試-剛性強度分析 22
2.5.2 衝擊測試-震盪頻率分析 23
2.5.3 拉出測試-拉出強度分析 23
2.5.4 X光影像分析 24
2.5.5 資料統計分析 24
第三章 實驗結果 25
3.1 非破壞性測試結果 25
3.1.1 剛性強度 25
3.1.2 震盪頻率 27
3.1.3 X光影像 28
3.2 破壞性測試結果-拉出強度 29
3.3 拉出強度、剛性強度、震盪頻率三者之間關聯性 30
3.4 骨質密度和拉出強度、剛性強度、震盪頻率之間關聯性 32
第四章 综合討論 34
4.1非破壞性測試討論 34
4.1.1剛性強度 34
4.1.2震盪頻率 34
4.2 破壞性測試討論 - 拉出強度 35
4.3 剛性強度、震盪頻率,拉出強度之間關聯性討論 35
4.4 椎弓形態學討論 36
4.5 實驗限制 37
第五章 結論與未來展望 39
5.1 結論 39
5.2 未來展望 39
參考文獻 40
dc.language.isozh-TW
dc.title椎弓根螺釘在疲勞負載時之鬆脫機轉分析zh_TW
dc.titleAnalysis of Mechanics of Pedicle Screw Loosening During Fatigue Loadinen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林晉(Jinn Lin),陳文斌(Weng-Pin Chen)
dc.subject.keyword椎弓根螺釘,鬆脫,疲勞負載,震動,震盪頻率,zh_TW
dc.subject.keywordpedicle screw,looseness,fatigue,vibration,natural frequency,en
dc.relation.page43
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf8.45 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved