請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92045完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝長澤 | zh_TW |
| dc.contributor.advisor | Chang-Tse Hsieh | en |
| dc.contributor.author | 李晨申 | zh_TW |
| dc.contributor.author | Chen-Shen Lee | en |
| dc.date.accessioned | 2024-03-04T16:15:45Z | - |
| dc.date.available | 2024-03-05 | - |
| dc.date.copyright | 2024-03-04 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-01 | - |
| dc.identifier.citation | [1] Zheng-Cheng Gu and Xiao-Gang Wen. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B, 80:155131, Oct 2009.
[2] Xiao-Gang Wen. Symmetry-protected topological phases in noninteracting fermion systems. Phys. Rev. B, 85:085103, Feb 2012. [3] Andrew M. Essin and Michael Hermele. Classifying fractionalization: Symmetry classification of gapped 𝟋2 spin liquids in two dimensions. Phys. Rev. B, 87:104406, Mar 2013. [4] Andrej Mesaros and Ying Ran. Classification of symmetry enriched topological phases with exactly solvable models. Phys. Rev. B, 87:155115, Apr 2013. [5] Andreas P. Schnyder, Shinsei Ryu, Akira Furusaki, and Andreas W. W. Ludwig. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B, 78:195125, Nov 2008. [6] Giuseppe De Nittis and Kiyonori Gomi. Classification of “Quaternionic” BlochBundles: Topological Quantum Systems of Type AII. Commun. Math. Phys., 339(1):1–55, 2015. [7] Alexei Kitaev. Periodic table for topological insulators and superconductors. AIP Conference Proceedings, 1134(1):22–30, 05 2009. [8] Shinsei Ryu, Andreas P Schnyder, Akira Furusaki, and Andreas W W Ludwig. Topological insulators and superconductors: tenfold way and dimensional hierarchy. New Journal of Physics, 12(6):065010, jun 2010. [9] Daniel S. Freed and Gregory W. Moore. Twisted Equivariant Matter. Annales Henri Poincaré, 12 2013. [10] Guo Chuan Thiang. On the K-Theoretic Classification of Topological Phases of Matter. Annales Henri Poincaré, 04 2016. [11] Ken Shiozaki, Masatoshi Sato, and Kiyonori Gomi. Atiyah-hirzebruch spectral sequence in band topology: General formalism and topological invariants for 230 space groups. Phys. Rev. B, 106:165103, Oct 2022. [12] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B, 82:155138, Oct 2010. [13] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-Gang Wen. Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B, 87:155114, Apr 2013. [14] Zheng-Cheng Gu and Xiao-Gang Wen. Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory. Phys. Rev. B, 90:115141, Sep 2014. [15] Ryan Thorngren and Dominic V. Else. Gauging spatial symmetries and the classification of topological crystalline phases. Phys. Rev. X, 8:011040, Mar 2018. [16] Hao Song, Sheng-Jie Huang, Liang Fu, and Michael Hermele. Topological phases protected by point group symmetry. Phys. Rev. X, 7:011020, Feb 2017. [17] Ken Shiozaki, Charles Zhaoxi Xiong, and Kiyonori Gomi. Generalized homology and Atiyah-Hirzebruch spectral sequence in crystalline symmetry protected topological phenomena. Progress of Theoretical and Experimental Physics, page ptad086, 07 2023. [18] Daniel S Freed and Michael J Hopkins. Reflection positivity and invertible topological phases. Geometry & Topology, 25:1165–1330, may 2021. [19] Anton Kapustin. Symmetry protected topological phases, anomalies, and cobordisms: Beyond group cohomology, 2014. [20] Anton Kapustin, Ryan Thorngren, Alex Turzillo, and Zitao Wang. Fermionic symmetry protected topological phases and cobordisms. Journal of High Energy Physics, 12 2015. [21] Kazuya Yonekura. On the Cobordism Classification of Symmetry Protected Topological Phases. Communications in Mathematical Physics, 06 2019. [22] Hassan Shapourian, Ken Shiozaki, and Shinsei Ryu. Many-body topological invariants for fermionic symmetry-protected topological phases. Phys. Rev. Lett., 118:216402, May 2017. [23] Ken Shiozaki, Hassan Shapourian, and Shinsei Ryu. Many-body topological invariants in fermionic symmetry-protected topological phases: Cases of point group symmetries. Phys. Rev. B, 95:205139, May 2017. [24] Ken Shiozaki, Hassan Shapourian, Kiyonori Gomi, and Shinsei Ryu. Many-body topological invariants for fermionic short-range entangled topological phases protected by antiunitary symmetries. Phys. Rev. B, 98:035151, Jul 2018. [25] Ching-Kai Chiu, Jeffrey C. Y. Teo, Andreas P. Schnyder, and Shinsei Ryu. Classification of topological quantum matter with symmetries. Rev. Mod. Phys., 88:035005, Aug 2016. [26] Xiao-Liang Qi, Hosho Katsura, and Andreas W. W. Ludwig. General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states. Phys. Rev. Lett., 108:196402, May 2012. [27] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 83:1057–1110, Oct 2011. [28] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 82:3045–3067, Nov 2010. [29] C. L. Kane and E. J. Mele. Z2 topological order and the quantum spin hall effect. Phys. Rev. Lett., 95:146802, Sep 2005. [30] Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang. Topological field theory of time-reversal invariant insulators. Phys. Rev. B, 78:195424, Nov 2008. [31] Cenke Xu and J. E. Moore. Stability of the quantum spin hall effect: Effects of interactions, disorder, and 𝟋2 topology. Phys. Rev. B, 73:045322, Jan 2006. [32] Liang Fu, C. L. Kane, and E. J. Mele. Topological insulators in three dimensions. Phys. Rev. Lett., 98:106803, Mar 2007. [33] Shinsei Ryu and Yasuhiro Hatsugai. Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys. Rev. Lett., 89:077002, Jul 2002. [34] Hui Li and F. D. M. Haldane. Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states. Phys. Rev. Lett., 101:010504, Jul 2008. [35] Y. Hatsugai. Bulk-edge correspondence in graphene with/without magnetic field: Chiral symmetry, dirac fermions and edge states. Solid State Communications, 149(27):1061–1067, 2009. [36] P. Delplace, D. Ullmo, and G. Montambaux. Zak phase and the existence of edge states in graphene. Phys. Rev. B, 84:195452, Nov 2011. [37] Roger S. K. Mong and Vasudha Shivamoggi. Edge states and the bulk-boundary correspondence in dirac hamiltonians. Phys. Rev. B, 83:125109, Mar 2011. [38] Gian Michele Graf and Marcello Porta. Bulk-edge correspondence for two-dimensional topological insulators. Communications in Mathematical Physics, 324(3):851– 895, October 2013. [39] János K. Asbóth, László Oroszlány, and András Pályi. A Short Course on Topological Insulators. Springer International Publishing, 2016. [40] Yang Peng, Yimu Bao, and Felix von Oppen. Boundary green functions of topological insulators and superconductors. Phys. Rev. B, 95:235143, Jun 2017. [41] Chen-Shen Lee, Iao-Fai Io, and Hsien-chung Kao. Winding number and zak phase in multi-band ssh models. Chinese Journal of Physics, 78:96– 110, August 2022. [42] Lukasz Fidkowski and Alexei Kitaev. Effects of interactions on the topological classification of free fermion systems. Phys. Rev. B, 81:134509, Apr 2010. [43] Evelyn Tang and Xiao-Gang Wen. Interacting one-dimensional fermionic symmetryprotected topological phases. Phys. Rev. Lett., 109:096403, Aug 2012. [44] Bo-Hung Chen and Dah-Wei Chiou. An elementary rigorous proof of bulk-boundary correspondence in the generalized su-schrieffer-heeger model. Physics Letters A, 384(7):126168, 2020. [45] Chen-Shen Lee. A linear algebra-based approach to understanding the relation between the winding number and zero-energy edge states, 2023. [46] Frank Pollmann, Ari M. Turner, Erez Berg, and Masaki Oshikawa. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B, 81:064439, Feb 2010. [47] Xie Chen, F. J. Burnell, Ashvin Vishwanath, and Lukasz Fidkowski. Anomalous symmetry fractionalization and surface topological order. Phys. Rev. X, 5:041013, Oct 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92045 | - |
| dc.description.abstract | 本文旨在為受兩種不同對稱性保護的(1+1)維費米子對稱保護拓樸相提供物理解釋,其分別是U(1)和手性對稱性及U(1)和反射對稱性。
第一章提供了一些與對稱保護拓樸相相關知識的簡要回顧。除了對稱保護拓樸相的基本定義及分類它們的方法,我們還介紹了如何透過配邊理論建構多體拓樸不變量及體邊對應的概念。 在第二和第三章中,我們提出了一種能夠協助人們物理地理解這兩種(1+1)維費米子對稱保護拓樸相的方法,主要是透過建立它們對應的多體拓樸不變量及可分解系統之間的關係。其中,可分解系統是指系統在週期性邊界條件下可以被分解成某個子系統的多個副本。此外,我們還指出了有限尺寸效應在多體系統和自由費米子系統之間的不同。 第四章主要在探討平移對稱性如何改變這兩種 (1+1) 維費米子對稱保護拓樸相。同時,我們也為在考慮平移對稱性後產生的拓樸相建立對應的拓樸不變量。 | zh_TW |
| dc.description.abstract | This thesis aims to provide a physical interpretation of the (1+1)d fermionic symmetry-protected topological (SPT) phases protected by U(1) and chiral (U(1)+S) symmetry and protected by U(1) and reflection (U(1) + R) symmetry.
The first chapter contains some basic knowledge related to the SPT phases. Beyond the concept of SPT, we introduce the classification schemes of SPT phases, how to construct many-body topological invariants through the cobordism theory, and the idea of bulk-boundary correspondence. In the second and third chapters, as an approach to physically understanding the (1+1)d fermionic SPT phases protected by U(1) + S and U(1) + R, we construct the relations between their corresponding many-body topological invariants and the decomposable systems, defined as systems that can be decomposed into n copies of a subsystem under the consideration of periodic boundary conditions. Additionally, we indicate that the finite-size effect on many-body systems differs from that on free fermion systems. The fourth chapter focuses on how translation symmetry changes two SPT phases studied in the previous two chapters. We also construct a set of topological invariants to describe the SPT phases that involve translation symmetry. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:15:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-04T16:15:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements ii
摘要 iii Abstract iv Contents vi Chapter 1 Introduction 1 1.1 Symmetry-Protected Topological Phases 1 1.2 Classification of SPT phases 2 1.3 Many-body topological invariants 4 1.3.1 Chiral-respecting topological invariant 5 1.3.2 Reflection-respecting topological invariant 7 1.4 Bulk-boundary correspondence 8 Chapter 2 (1+1)d Fermionic SPT Phases Protected by U(1) and Chiral Symmetry 9 2.1 Bulk-boundary correspondence in (1+1)d free fermion systems with U(1) and chiral symmetry 10 2.2 Bulk-boundary correspondence in (1+1)d fermionic systems with U(1) and chiral symmetry 12 2.3 Some examples 13 Chapter 3 (1+1)d Fermionic SPT Phases Protected by U(1) and Reflection Symmetry 17 3.1 Bulk-boundary correspondence in (1+1)d fermionic systems with U(1) and reflection symmetry 18 3.2 Example: SSH models 21 3.3 Example: systems with quartic interaction 25 Chapter 4 Role of Translation Symmetry 29 4.1 (1+1)d fermionic systems with U(1) + R and translation symmetry 30 4.2 Example: translation symmetry j → j + 2 33 4.3 Example: translation symmetry j → j + 4 34 Chapter 5 Conclusion and Discussion 38 Appendix A — AHSS in generalized homology 40 Appendix B — Analytical calculations of ZR(H1) 44 Appendix C — (Zf, 2 Arg[ZcR]/π, 2 Arg[ZcR′ ]/π) of generators 45 References 47 | - |
| dc.language.iso | en | - |
| dc.subject | 對稱保護拓樸相 | zh_TW |
| dc.subject | 手性對稱性 | zh_TW |
| dc.subject | 反射對稱性 | zh_TW |
| dc.subject | 多體拓樸不變量 | zh_TW |
| dc.subject | 體邊界對應 | zh_TW |
| dc.subject | Reflection symmetry | en |
| dc.subject | Symmetry-protected topological phase | en |
| dc.subject | Chiral symmetry | en |
| dc.subject | Bulk-boundary correspondence | en |
| dc.subject | Many-body topological invariant | en |
| dc.title | 具有手性對稱性及具有反射對稱性的(1+1)維電荷守恆系統的費米子對稱保護拓樸相 | zh_TW |
| dc.title | Fermionic Symmetry-Protected Topological Phases for (1+1)d Charge-conserved Systems with Chiral Symmetry and with Reflection Symmetry | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 高賢忠;張明哲 | zh_TW |
| dc.contributor.oralexamcommittee | Hsien-Chung Kao;Ming-Che Chang | en |
| dc.subject.keyword | 對稱保護拓樸相,手性對稱性,反射對稱性,多體拓樸不變量,體邊界對應, | zh_TW |
| dc.subject.keyword | Symmetry-protected topological phase,Chiral symmetry,Reflection symmetry,Many-body topological invariant,Bulk-boundary correspondence, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202400302 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-04 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 4.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
