Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91981
Title: 基於分子圖與圖神經網絡於藥物與標靶之親和力預測
Drug Target Affinity Prediction based on Molecular Graphs and Graph Neural Networks
Authors: 徐樂然
Lok-In Tsui
Advisor: 林澤
Che Lin
Keyword: 深度學習,藥物與標靶之親和力,圖神經網絡,分子圖,蛋白質序列,
deep learning,drug-target affinity prediction,graph neural network,molecular graphs,protein sequence,
Publication Year : 2023
Degree: 碩士
Abstract: 藥物-靶標親和力(DTA),表示藥物與靶標之間的結合強度,對於藥物開發至關重要。準確預測DTA可以識別出適用於靶標蛋白的潛在藥物,加速了藥物開發過程。隨著深度學習的最新發展,基於深度學習的預測模型可以精確預測DTA。目前,大多數基於深度學習的DTA預測模型以1D蛋白質序列字符串作為模型輸入,這比圖所含的信息更少。然而,由於蛋白質複雜結構,蛋白質的接觸圖(contact map)難以獲得。鑒於蛋白質序列字符串提供的信息有限,我們提出了NG-DTA,將蛋白質序列轉化為分子子圖(molecular sub-graph),作為蛋白質的輸入並以圖神經網絡處理。實驗表明,在不同尖端深度學習的DTA預測模型中,NG-DTA在一致性指數(CI)和平均平方誤差(MSE)方面表現最佳(Davis數據集:CI為0.905,MSE為0.196;Kiba數據集:CI為0.904,MSE為0.120)。此外,我們應用此模型,對FDA批准的藥物與COVID-19和猴痘的重要蛋白質之間的DTA進行排名,以找出潛在藥物。我們的模型在準確性方面取得了令人滿意的結果,並改善藥物篩選過程。
Drug–target affinity (DTA), which indicates the binding strength between a drug and a target, is essential to drug development. An accurate prediction of DTA can identify the potential drugs for target proteins, speeding up the drug development process. With recent developments in deep learning, deep-learning-based prediction models can precisely predict DTA. Currently, most deep-learning-based DTA prediction models take 1D protein sequences string as model input, which is less informative than the graph representation. However, due to the difficulties of determining the protein structure process, the contact maps of proteins are not always available. In view of the limited information provided by the protein sequence string, we proposed NG-DTA which converted the protein sequence to molecular sub-graphs which are processed by the graph neural networks as input of the protein. Experiment shows that NG-DTA performs the best among different baseline deep-learning-based DTA prediction models in terms of concordance index (CI) and mean square error (MSE) (CI: 0.905, MSE: 0.196 for the Davis dataset; CI: 0.904, MSE: 0.120 for Kiba dataset). Furthermore, we deployed our model in ranking the DTA between the FDA-approved drugs and important COVID-19 and Monkeypox proteins to uncover potential drugs to combat these diseases. Our model has satisfactory accuracy and improves the drug screening process.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91981
DOI: 10.6342/NTU202304476
Fulltext Rights: 未授權
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-112-1.pdf
  Restricted Access
4.13 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved