請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91927
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅翊禎 | zh_TW |
dc.contributor.advisor | Yi-Chen Lo | en |
dc.contributor.author | 顧子欣 | zh_TW |
dc.contributor.author | Tzu-Hsin Ku | en |
dc.date.accessioned | 2024-02-26T16:29:31Z | - |
dc.date.available | 2024-02-27 | - |
dc.date.copyright | 2024-02-26 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 簡子芸, 豆漿與豆腐之微生物分離即其特性分析. 國立台灣大學生物資源暨農學院食品科技研究所碩士論文. 台北, 台灣, 2019. Adler, J. (2011). My life with nature. Annual Review of Biochemistry, 80, 42-70. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305(5690), 1622-1625. Bansal, T., Englert, D., Lee, J., Hegde, M., Wood, T. K., & Jayaraman, A. (2007). Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157: H7 chemotaxis, colonization, and gene expression. Infection and Immunity, 75(9), 4597-4607. Brauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. (2016). Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews Microbiology, 14(5), 320-330. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual review of plant biology, 64, 807-838. Chen, Y. s., Wu, H. c., Lo, H. y., Lin, W. c., Hsu, W. h., Lin, C. w., Lin, P. y., & Yanagida, F. (2012). Isolation and characterisation of lactic acid bacteria from jiang‐gua (fermented cucumbers), a traditional fermented food in Taiwan. Journal of the Science of Food and Agriculture, 92(10), 2069-2075. Chien, H.-L., Huang, W.-Z., Tsai, M.-Y., Cheng, C.-H., & Liu, C.-T. (2019). Overexpression of the chromosome partitioning gene parA in Azorhizobium caulinodans ORS571 alters the bacteroid morphotype in Sesbania rostrata stem nodules. Frontiers in microbiology, 10, 2422. Cho, M. J., & Buescher, R. W. (2012). Potential role of native pickling cucumber polygalacturonase in softening of fresh pack pickles. Journal of Food Science, 77(4), C443-C447. Colin, R., & Sourjik, V. (2017). Emergent properties of bacterial chemotaxis pathway. Current Opinion in Microbiology, 39, 24-33. https://doi.org/10.1016/j.mib.2017.07.004 Corral, J., Sebastià, P., Coll, N. S., Barbé, J., Aranda, J., & Valls, M. (2020). Twitching and swimming motility play a role in Ralstonia solanacearum pathogenicity. mSphere, 5(2), e00740-00719. Dakwa, V., Powell, S., Eyles, A., Gracie, A., Tamplin, M., & Ross, T. (2021). Effect of peroxyacetic acid treatment and bruising on the bacterial community and shelf-life of baby spinach. International journal of food microbiology, 343, 109086. Davin-Regli, A., & Pagès, J.-M. (2015). Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in microbiology, 6, 392. Esteban-Cuesta, I., Dorn-In, S., Drees, N., Hölzel, C., Gottschalk, C., Gareis, M., & Schwaiger, K. (2019). Antimicrobial resistance of Enterobacter cloacae complex isolates from the surface of muskmelons. International journal of food microbiology, 301, 19-26. Falkow, S. (1988). Molecular Koch's postulates applied to microbial pathogenicity. Reviews of infectious diseases, S274-S276. Fan, K., Zhang, M., & Chen, H. (2020). Effect of Ultrasound Treatment Combined with Carbon Dots Coating on the Microbial and Physicochemical Quality of Fresh-Cut Cucumber. Food and Bioprocess Technology, 13(4), 648-660. https://doi.org/10.1007/s11947-020-02424-x Guo, Q., Shi, M., Chen, L., Zhou, J., Zhang, L., Li, Y., Xue, Q., & Lai, H. (2020). The biocontrol agent Streptomyces pactum increases Pseudomonas koreensis populations in the rhizosphere by enhancing chemotaxis and biofilm formation. Soil Biology and Biochemistry, 144, 107755. Irwin, J. A. (2020). Chapter 6 - Overview of extremophiles and their food and medical applications. In R. Salwan & V. Sharma (Eds.), Physiological and Biotechnological Aspects of Extremophiles (pp. 65-87). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-818322-9.00006-X Johnson, J. S., Spakowicz, D. J., Hong, B.-Y., Petersen, L. M., Demkowicz, P., Chen, L., Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M., Sodergren, E., & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13036-1 Kearns, D. B. (2010). A field guide to bacterial swarming motility. Nature Reviews Microbiology, 8(9), 634-644. Kim, S., Ha, J., Lee, H., Lee, S., Lee, J., Choi, Y., Oh, H., Yoon, Y., & Choi, K. H. (2019). Role of Pseudomonas aeruginosa DesB in adaptation to osmotic stress. J Food Prot, 82(8), 1278-1282. https://doi.org/10.4315/0362-028X.JFP-18-507 Kondoh, H., Ball, C. B., & Adler, J. (1979). Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. Proceedings of the National Academy of Sciences, 76(1), 260-264. https://doi.org/10.1073/pnas.76.1.260 Lee, J., Bansal, T., Jayaraman, A., Bentley, W. E., & Wood, T. K. (2007). Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Applied and environmental microbiology, 73(13), 4100-4109. Levin-Reisman, I., Brauner, A., Ronin, I., & Balaban, N. Q. (2019). Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proceedings of the National Academy of Sciences, 116(29), 14734-14739. Møretrø, T., Schirmer, B. C., Heir, E., Fagerlund, A., Hjemli, P., & Langsrud, S. (2017). Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. International journal of food microbiology, 241, 215-224. Matilla, M. A., & Krell, T. (2018). The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiology Reviews, 42(1), fux052. Maturin, L., & Peeler, J. (2001). BAM: Aerobic plate count. US Food and Drug Administration: Silver Spring, MD, USA. Mead, P. S., & Griffin, P. M. (1998). Escherichia coli O157:H7. The Lancet, 352(9135), 1207-1212. https://doi.org/10.1016/s0140-6736(98)01267-7 Morales-Soto, N., Anyan, M. E., Mattingly, A. E., Madukoma, C. S., Harvey, C. W., Alber, M., Déziel, E., Kearns, D. B., & Shrout, J. D. (2015). Preparation, imaging, and quantification of bacterial surface motility assays. JoVE (Journal of Visualized Experiments)(98), e52338. Myintzaw, P., Pennone, V., McAuliffe, O., Begley, M., & Callanan, M. (2022). Correlation of organic acid tolerance and genotypic characteristics of Listeria monocytogenes food and clinical isolates. Food microbiology, 104, 104004. Niazian, M., Sadat-Noori, S. A., Tohidfar, M., Mortazavian, S. M. M., & Sabbatini, P. (2021). Betaine aldehyde dehydrogenase (BADH) vs. flavodoxin (Fld): Two important genes for enhancing plants stress tolerance and productivity. Frontiers in Plant Science, 12, 650215. O'Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular microbiology, 30(2), 295-304. Pérez-Díaz, I. M., Hayes, J. S., Medina, E., Webber, A. M., Butz, N., Dickey, A. N., Lu, Z., & Azcarate-Peril, M. A. (2019). Assessment of the non-lactic acid bacteria microbiota in fresh cucumbers and commercially fermented cucumber pickles brined with 6% NaCl. Food microbiology, 77, 10-20. https://doi.org/10.1016/j.fm.2018.08.003 Parales, R. E., Ditty, J. L., & Harwood, C. S. (2000). Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Applied and environmental microbiology, 66(9), 4098-4104. Patel, J., Singh, M., Macarisin, D., Sharma, M., & Shelton, D. (2013). Differences in biofilm formation of produce and poultry Salmonella enterica isolates and their persistence on spinach plants. Food microbiology, 36(2), 388-394. Pham, H. T., & Parkinson, J. S. (2011). Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism. Journal of bacteriology, 193(23), 6597-6604. Pramanik, K., Mitra, S., Sarkar, A., & Maiti, T. K. (2018). Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. Journal of hazardous materials, 351, 317-329. Remenant, B., Jaffrès, E., Dousset, X., Pilet, M.-F., & Zagorec, M. (2015). Bacterial spoilers of food: behavior, fitness and functional properties. Food microbiology, 45, 45-53. Rudrappa, T., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant physiology, 148(3), 1547-1556. Sampedro, I., Parales, R. E., Krell, T., & Hill, J. E. (2014). Pseudomonaschemotaxis. FEMS Microbiology Reviews, n/a-n/a. https://doi.org/10.1111/1574-6976.12081 Sun, E., Liu, S., & Hancock, R. E. (2018). Surfing motility: a conserved yet diverse adaptation among motile bacteria. Journal of bacteriology, 200(23), e00394-00318. Taguchi, K., Fukutomi, H., Kuroda, A., Kato, J., & Ohtake, H. (1997). Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology, 143(10), 3223-3229. https://doi.org/10.1099/00221287-143-10-3223 Tans-Kersten, J., Brown, D., & Allen, C. (2004). Swimming Motility, a Virulence Trait of Ralstonia solanacearum, is regulated by FlhDC and the plant host environment. Molecular Plant-Microbe Interactions, 17(6), 686-695. https://doi.org/10.1094/mpmi.2004.17.6.686 Truchado, P., Gil, M. I., Suslow, T., & Allende, A. (2018). Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLOS ONE, 13(7), e0199291. https://doi.org/10.1371/journal.pone.0199291 Williams, C., Weng, Y., & Du, X. (2022). Sensory Profiles of 10 Cucumber Varieties Using a Panel Trained with Chemical References. ACS Food Science & Technology. https://doi.org/10.1021/acsfoodscitech.1c00453 Yang, B., Wang, Y., & Qian, P.-Y. (2016). Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC bioinformatics, 17(1), 1-8. Zhai, Y., & Perez-Diaz, I. M. (2020). Contribution of Leuconostocaceae to CO2-mediated bloater defect in cucumber fermentation. Food Microbiol, 91, 103536. https://doi.org/10.1016/j.fm.2020.103536 Zhang, M., Zhang, Y., Han, X., Wang, J., Yang, Y., Ren, B., Xia, M., Li, G., Fang, R., He, H., & Jia, Y. (2021). Whole genome sequencing of Enterobacter mori, an emerging pathogen of kiwifruit and the potential genetic adaptation to pathogenic lifestyle. AMB Express, 11(1). https://doi.org/10.1186/s13568-021-01290-w Zhang, Y., & Gross, C. A. (2021). Cold Shock Response in Bacteria. Annual Review of Genetics, 55(1), 377-400. https://doi.org/10.1146/annurev-genet-071819-031654 Zheng, X.-F., Yang, Z.-q., Zhang, H., Jin, W.-X., Xu, C.-W., Gao, L., Rao, S.-Q., & Jiao, X.-a. (2020). Isolation of virulent phages infecting dominant mesophilic aerobic bacteria in cucumber pickle fermentation. Food microbiology, 86, 103330. Zhu, B., Lou, M.-M., Xie, G.-L., Wang, G.-F., Zhou, Q., Wang, F., Fang, Y., Su, T., Li, B., & Duan, Y.-P. (2011). Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L. International Journal of Systematic and Evolutionary Microbiology, 61(11), 2769-2774. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91927 | - |
dc.description.abstract | 微生物引起的食品腐敗導致食品的感官分數和營養價值下降。細菌中的趨化泳動行為與特定化合物的降解有關。然而,泳動行為是否涉及食品腐敗尚無相關研究佐證。在目前有關於小黃瓜菌相的分析與研究中,實驗室利用全長16S rDNA定序之方式,發現腸桿菌屬(Enterobacter)為普遍存在於小黃瓜中的菌屬之一,此外分離及挑選來自小黃瓜的其中一菌株,命名為Enterobacter sp. FS08,全基因體定序 (Whole genome sequencing, WGS) 鑑定結果與National Center for Biotechnology Information (NCBI)資料庫中Enterobacter mori 08-091、Enterobacter cloacae WP8-W19—CRE-02相似。初期實驗結果發現Enterobacter sp. FS08與其他小黃瓜分離株相比,具有更高的泳動速率。這個結果暗示 Enterobacter sp. FS08 的泳動行為或許與它在小黃瓜表成為優勢菌株有關。因此,本研究的目的為探討Enterobacter sp. FS08的泳動能力與截切小黃瓜中特定成分之間的關聯,並同時了解菌株是否有良好的壓力適應性,以了解菌株是否有提高生存能力的特性,也幫助推測菌株與生鮮小黃瓜之間的關聯。結果顯示,Enterobacter sp. FS08不僅在15℃下表現出游泳能力,而且對小黃瓜基質、葡萄糖和蘋果酸也表現出顯著的趨化泳動反應,還能在7.5%的鹽濃度下生長,已和中等嗜鹽菌相當。而泳動和趨化性的表現可以透過一些WGS分析出之基因來解釋,例如具有化學趨化物質受體(chemoreceptor)的tsr、trg基因與鞭毛合成的相關基因fliE。未來則可進一步探討Enterobacter sp. FS08之泳動與小黃瓜腐敗的關聯性。瞭解微生物行為之相關機制後有助於未來開發延長生鮮產品保存期限之策略。 | zh_TW |
dc.description.abstract | Food spoilage caused by bacteria leads to poor sensory and nutritional quality. Chemotactic swimming behavior in bacteria is related to the degradation toward specific compounds. However, the link between the swimming behavior and food spoilage is unclear. In the current study, I studied cucumber microbiota and found that Enterobacter is one of common genera existing in cucumber, defined by full length 16S rDNA amplicon sequencing method. I selected and isolated one of the Enterobacter strains from cucumber, named Enterobacter sp. FS08, whose genome was analyzed by whole genome sequencing (WGS). The WGS result showed that Enterobacter sp. FS08 was similar to Enterobacter mori 08-091 and Enterobacter cloacae WP8-W19—CRE-02 in NCBI database. Furthermore, the Enterobacter sp. FS08 with flagella displayed higher rate of swimming motility compared to other isolates from cucumbers. Therefore, the goal of this study was to characterize the link between the strain and cucumber. The correlation between specific compositions in cucumber and Enterobacter sp. FS08 was determined and the stress tolerance of this strain was evaluated. The result showed that Enterobacter sp. FS08 not only exhibits swimming ability at 15℃, but also displays markedly positive chemotactic swimming response to the cucumber matrix, glucose and malic acid. Enterobacter sp. FS08 can grow in 7.5% NaCl environment, which is in the range of moderate halophile. The observed phenotypes could be explained by the presence of genes related to chemoreceptors, such as tsr and trg and flagellar biosynthesis, e.g., flhA based on the WGS results. Further studies are required to delineate the relationship between swimming of Enterobacter sp. FS08 and the spoilage of fresh-cut cucumbers. Better understanding of the microbial behavior paves the way for extending the shelf life and controlling the quality of fresh-cut products in the future. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:29:31Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-26T16:29:31Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i 中要 ii 英文摘要 iii 目錄 iv 圖目錄 viii 表目錄 ix 第一章 前言 1 第二章 文獻回顧 2 第一節 截切小黃瓜品質指標 2 第二節 細菌物種鑑定方法 2 2.2.1 16S rDNA定序 2 2.2.2 全基因體定序(Whole genome sequencing, WGS) 2 第三節 總體基因體學(metagenomics) 3 2.3.1 總體基因體學定義 3 2.3.2 細菌微生物群(bacterial microbiota)介紹 3 2.3.3 小黃瓜細菌菌相 4 第四節 腸桿菌屬(Enterobacter) 4 第五節 細菌之抗性(resistance)、容忍(tolerance)與持續(persistence) 5 2.5.1 細菌對抗生素之抗性、容忍與持續 5 2.5.2 食品微生物中之抗性、容忍性與持續性 6 第六節 細菌泳動(swimming) 6 第七節 細菌趨性(bacterial taxis) 6 2.7.1 細菌趨性介紹 6 2.7.2 細菌化學趨性之延伸與應用 7 2.7.3 致病性(pathogenicity) 7 2.7.4 生物修復(bioremediation) 7 2.7.5 生物製劑(biocontrol agent,BCA) 8 2.7.6 細菌化學趨性之分子機制 8 第三章 研究目的與架構 10 第四章 材料與方法 12 第一節 儀器設備 12 第二節 套裝軟體 12 第三節 截切小黃瓜化學組成與生菌數分析 12 4.3.1 截切小黃瓜 12 4.3.1.1 小黃瓜來源 12 4.3.1.2 截切與包裝流程 12 第四節 葡萄糖、果糖含量分析 13 4.4.1 小黃瓜樣品前處理 13 4.4.2 葡萄糖、果糖含量分析 13 第五節 有機酸含量分析 13 4.5.1 L- Lactic acid 13 4.5.2 D- Lactic acid 14 4.5.3 L-Malic acid 14 第六節 小黃瓜生菌數 14 第七節 截切與未經截切完整小黃瓜細菌群分析 14 4.7.1 DNA萃取 14 4.7.1.1 取樣 14 4.7.2 菌群16S rDNA定序 15 4.7.3 資料庫比對 15 第八節 菌株列表、保存與培養條件 15 4.8.1 使用菌株 15 4.8.2 菌株保存 15 4.8.3 培養條件 16 第九節 Enterobacter sp. FS08菌株觀察與生化測試 18 4.9.1 利用顯微鏡觀察菌株 18 4.9.2 利用負染色法觀察菌株鞭毛 18 4.9.3 生化測試 18 第十節 全基因體分析 19 4.10.1 定序與組裝 19 4.10.2 資料庫比對 19 4.10.3 基因體比較 19 第十一節 菌株耐受性測試 19 4.11.1 低溫耐受性測試 19 4.11.2 十二烷基硫酸鈉(Sodium dodecyl sulfate, SDS) 耐受性測試 19 4.11.3 乳酸耐受性測試 20 4.11.4 鹽濃度耐受性測試 20 第十二節 泳動試驗 20 4.12.1 半固體培養法方法建立 20 4.12.2 菌株泳動速率 20 4.12.3 不同碳原或有機酸組成下之泳動試驗 21 4.12.4 趨性測試 22 4.12.4.1 50% (w:v)小黃瓜果汁 22 4.12.4.2 培養基製作 23 4.12.4.3 接菌條件與培養時間 23 第五章 結果 24 第一節 截切小黃瓜儲藏試驗 24 5.1.1 糖類與有機酸含量 24 第二節 小黃瓜微生物群分析 25 第三節 Enterobacter sp. FS08菌株基本特性 29 5.3.1 Enterobacter sp. FS08生化特性與外觀 29 第四節 Enterobacter sp. FS08全基因體分析 32 5.4.1 Contigs annotation 32 5.4.2 基因體比較 32 5.4.3 溫度、清潔劑、滲透壓與乳酸耐受性測試 34 第五節 菌株泳動能力分析 39 5.5.1 泳動(swimming)測試—半固體培養法 39 5.5.2 菌株泳動能力與篩選 41 5.5.3 有機酸與糖類對泳動能力之影響 44 第六節 細菌化學趨性 47 第六章 討論 50 第一節 截切小黃瓜儲藏試驗 50 6.1.1 糖類與有機酸含量 50 第二節 小黃瓜微生物群分析 51 第三節 Enterobacter sp. FS08 生化特性與外觀 52 第四節 Enterobacter sp. FS08全基因體分析 52 第五節 Enterobacter sp. FS08 耐受性測試 53 第六節 Enterobacter sp. FS08 泳動能力與趨性分析 54 第七章 結論與展望 56 第八章 參考文獻 57 附錄 63 | - |
dc.language.iso | zh_TW | - |
dc.title | 分離自截切小黃瓜之菌株Enterobacter sp. FS08特性分析 | zh_TW |
dc.title | Characterization of Enterobacter sp. FS08 isolated from fresh-cut cucumber | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳勁初;李月嘉;呂廷璋;林旭陽;林乃君 | zh_TW |
dc.contributor.oralexamcommittee | Chin-Chu Chen;Yue-Jia Lee;Ting-Jang Lu;;Nai-Chun Lin | en |
dc.subject.keyword | 趨化泳動,小黃瓜菌相,16S rDNA定序,腸桿菌屬,全基因體定序, | zh_TW |
dc.subject.keyword | Chemotactic swimming,cucumber microbiota,full length 16S rDNA amplicon sequencing,Enterobacter,whole genome sequencing, | en |
dc.relation.page | 69 | - |
dc.identifier.doi | 10.6342/NTU202203679 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2022-09-27 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 食品科技研究所 | - |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.02 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。