Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9178
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃偉彥
dc.contributor.authorChien-Wen Chenen
dc.contributor.author陳建文zh_TW
dc.date.accessioned2021-05-20T20:11:57Z-
dc.date.available2009-07-28
dc.date.available2021-05-20T20:11:57Z-
dc.date.copyright2009-07-28
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation[1] V. F. Hess, Phys. Zeitschr. 13 (1912) 1084.
[2] J. Linsley, Phys. Rev. Lett. 10, 146 (1963).
[3] E. Hubble, Proceedings of the National Academy of Sciences of the United States
of America, Volume 15, Issue 3, pp. 168-173 (1929).
[4] A. A. Penzias and R. W. Wilson, Astrophys. J. vol. 142, p.419-421 (1965).
[5] A. G. Riess et al. [Supernova Search Team Collaboration], Astron. J. 116, 1009
(1998) [arXiv:astro-ph/9805201].
[6] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J.
517, 565 (1999) [arXiv:astro-ph/9812133].
[7] J. Belz et al., Astropart. Phys. 25, 57 (2006) [arXiv:astro-ph/0510375].
[8] R. Abbasi et al., Astropart. Phys. 29, 77 (2008) [arXiv:0708.3116 [astro-ph]].
[9] R. Abbasi et al. [FLASH Collaboration], Nucl. Instrum. Meth. A 597, 32 (2008).
[10] R. Abbasi et al. [FLASH Collaboration], Nucl. Instrum. Meth. A 597, 37 (2008).
[11] Je-An Gu, C.-W. Chen and P. Chen, New J. Phys. 11 (2009) 073029
[arXiv:0803.4504 [astro-ph]].
[12] C.-W. Chen, Je-An. Gu and P. Chen, Mod. Phys. Lett. A. Vol. 24, No. 21 (2009) pp.
1649-1657 [arXiv:0903.2423 [astro-ph.CO]].
[13] C.-W. Chen, P. Chen and Je-An Gu, arXiv:0905.2738 [astro-ph.CO], submitted to
Phys. Lett. B.
[14] M. Nagano and A. A. Watson, Rev. Mod. Phys. 72, 689 (2000).
[15] J. Bluemer, R. Engel and J. R. Hoerandel, arXiv:0904.0725 [astro-ph.HE].
[16] E.Waxman, Phys. Rev. Lett. 75 (1995) 386; M. Vietri, Astrophys. J. 453 (1995) 883;
T.K. Gaiser, F. Halzen and T. Stanev, Phys. Rep. 258 (1995) 173; K. Mannheim,
Astropart. Phys. 3 (1995) 295.
[17] M. Birkel and S. Sarkar, Astropart. Phys 9, (1998) 297; P. Battacharjee, C.T. Hill
and D.N. Schramm Phys. Rev. Lett. 69, (1992) 567; R.J. Protheroe and T. Stanev,
Phys. Rev. Lett. 77 (1996) 3708; M. Birkel and S. Sarkar, Astropart. Phys. 9 (1998)
297; P. Battacharjee and G. Sigl, Phys. Rep. 327 (2000) 109.
[18] K. Greisen, Phys. Rev. Letters 16 (1966) 748; V.A. Kuzmin, G.T. Zatsepin, Pisma
Zh. Eksp. Teor. Fiz. 4 (1966) 114, JETP Letters 4, 78.
[19] M. Takeda et al., Astrophys. J. 522 (1999) 225.
[20] R. Abbasi et al. [HiRes Collaboration], Phys. Rev. Lett. 100, 101101 (2008)
[arXiv:astro-ph/0703099].
[21] J. Abraham et al. [Pierre Auger Collaboration], Phys. Rev. Lett. 101, 061101 (2008)
[arXiv:0806.4302 [astro-ph]].
[22] A. Chiavassa et al. (KASCADE Collab.), Proc. of 29th Int. Cosmic Ray Conf., Pune
6 (2005) 313. M. Kestel et al., Nucl. Instrum. Meth. A 535 (2004) 139; H. Klages
et al. (Pierre Auger Collab.), Proc. of 30th Int. Cosmic Ray Conf., Merida 5 (2007)
849; M. C. Medina et al.; Nucl. Instrum. Meth. A566 (2006) 302–311; C. C. H. Jui
(TA Collab.), Proc. of 29th Int. Cosmic Ray Conf., Pune 8 (2005) 327; D. Nitz et al.
(Pierre Auger Collab.), Proc of 30th Int. Cosmic Ray Conf., Merida 5 (2007) 889;
Y. Takahashi et al. (EUSO Collab.), Proc. of 30th Int. Cosmic Ray Conf., Merida 5
(2007) 1145.
[23] For a summary and references, see Particle Data Group, Phys. Letters B592 (2004),
242.
[24] A.N. Bunner, Ph.D. Thesis, Cornell University (1967).
[25] F. Blanco and F. Arqueros, Phys Letters A 345 (2005) 355.
[26] B. Keilhauer et al., Astropart. Phys. 25 (2006) 259.
[27] F. Arqueros et al., Astropart. Phys. 26 (2006) 231.
[28] G. Davidson and R. O’Neil, Jour. Chem. Phys 41 (1964) 3946.
[29] M. Nagano et al., Astropart. Phys. 20 (2003) 293.
[30] M. Nagano et al., Astropart. Phys. 22 (2004) 235.
[31] F. Kakimoto et al., Nucl. Instr. Meth. A 372 (1996) 527.
[32] J. Belz et al., Astropart. Phys., 25 (2006) 129.
[33] P. Colin et al., Astropart. Phys. 27 (2007) 317.
[34] M. Ave et al., arXiv:astro-ph/0703132v1, submitted to Elsevier Science.
[35] G. Lefeuvre et al., Nucl. Instr. Meth. A 578 (2007) 78.
[36] Reports of work in progress by various groups, made to the
4th Air Fluorescence Workshop, Prague, 2006, may be found at
http.//www.particle.cz/conferences/floret2006/index.html.
[37] Qimaging scientific camera, http://www.qimaging.com/index.php
[38] Robert H. Simmons and Johnny S. T. Ng, Nucl. Instr. Meth. A 575 (2007) 334.
[39] Photonis, Brive La Gaillard, France, www.photonis.com.
[40] Spectra-Physics, Stratford, CT 06616, USA, model 77400.
[41] Hamamatsu Photonics K.K., Shizuoka-ken 438-0193, Japan; model H-7260-03.
[42] Newport Corp., Mountain View, CA; model VSL337ND-S
[43] LaserProbe Inc., Utica, NY 13502; model RjP-734.
[44] A. Bucholtz, Appl. Opt. 34 (1995) 2765.
[45] B. Bodhaine et al., Oceanic Technol., 16 (1999) 1854.
[46] Hamamatsu Photonics K.K., Shizuoka-ken 438-0193, Japan; model S2281.
[47] W.R. Nelson, H. Hiragama and D.W.O. Rogers, ”The EGS4 Code System', SLAC-
265, Stanford Linear Accelerator Center (1985).
[48] J.S.T. Ng et al., Phys. Rev. Letters 87 (2001) 244801-1.
[49] Edmund Optics, Barrington, NJ08007 U.S.A., www.edmundoptics.com.
[50] Nova Phase Inc., Newton, NJ07860, U.S.A., www.novaphase.com.
[51] CERN Applications Software Group, Geneva, Switzerland (1993).
[52] A. Fasso et al., Proc Monte Carlo 2000 Conference, Lisbon 2000, Springer Verlag,
Berlin (2001) 159, 955; A. Fasso et al., Proc. Conference for Computing in High
Energy and Nuclear Physics (CHEP 2003), La Jolla, California, e-Print Archive
physics/0306162.
[53] D. Indurthy et al., Nucl. Instr. Meth. A 258 (2004) 731.
[54] J. Frieman, M. Turner and D. Huterer, Ann. Rev. Astron. Astrophys. 46, 385 (2008)
[arXiv:0803.0982 [astro-ph]].
[55] A. Albrecht et al., arXiv:astro-ph/0609591.
[56] M. Barnard, A. Abrahamse, A. Albrecht, B. Bozek and M. Yashar, Phys. Rev. D 77,
103502 (2008) [arXiv:0712.2875 [astro-ph]].
[57] A. Abrahamse, A. Albrecht, M. Barnard and B. Bozek, Phys. Rev. D 77, 103503
(2008) [arXiv:0712.2879 [astro-ph]].
[58] B. Bozek, A. Abrahamse, A. Albrecht and M. Barnard, Phys. Rev. D 77, 103504
(2008) [arXiv:0712.2884 [astro-ph]].
[59] M. Barnard, A. Abrahamse, A. J. Albrecht, B. Bozek and M. Yashar, Phys. Rev. D
78, 043528 (2008) [arXiv:0804.0413 [astro-ph]].
[60] Y. Wang and P. Mukherjee, Phys. Rev. D 76, 103533 (2007) [arXiv:astroph/
0703780].
[61] V. Sahni, A. Shafieloo and A. A. Starobinsky, Phys. Rev. D 78, 103502 (2008)
[arXiv:0807.3548 [astro-ph]].
[62] C. Zunckel and C. Clarkson, Phys. Rev. Lett. 101, 181301 (2008) [arXiv:0807.4304
[astro-ph]].
[63] E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 180, 330 (2009)
[arXiv:0803.0547 [astro-ph]].
[64] R. R. Caldwell, R. Dave and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998)
[arXiv:astro-ph/9708069].
[65] Je-An Gu andW-Y. P. Hwang, Phys. Lett. B 517, 1 (2001) [arXiv:astro-ph/0105099].
[66] L. A. Boyle, R. R. Caldwell and M. Kamionkowski, Phys. Lett. B 545, 17 (2002)
[arXiv:astro-ph/0105318].
[67] J. A. Frieman, C. T. Hill, A. Stebbins and I. Waga, Phys. Rev. Lett. 75, 2077 (1995)
[arXiv:astro-ph/9505060].
[68] A. J. Albrecht, C. P. Burgess, F. Ravndal and C. Skordis, Phys. Rev. D 65, 123507
(2002) [arXiv:astro-ph/0107573].
[69] I. Zlatev, L. Wang and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999) [arXiv:astroph/
9807002];
[70] P. J. Steinhardt, L.Wang and I. Zlatev, Phys. Rev. D 59, 123504 (1999) [arXiv:astroph/
9812313].
[71] R. R. Caldwell and E. V. Linder, Phys. Rev. Lett. 95, 141301 (2005) [arXiv:astroph/
0505494].
[72] E. V. Linder, Phys. Rev. D 73, 063010 (2006) [arXiv:astro-ph/0601052].
[73] D. Huterer and H. V. Peiris, Phys. Rev. D 75, 083503 (2007) [arXiv:astroph/
0610427].
[74] D. Huterer and M. S. Turner, Phys. Rev. D 60, 081301 (1999) [arXiv:astroph/
9808133].
[75] A. A. Starobinsky, JETP Lett. 68, 757 (1998) [Pisma Zh. Eksp. Teor. Fiz. 68, 721
(1998)] [arXiv:astro-ph/9810431].
[76] T. Nakamura and T. Chiba, Mon. Not. Roy. Astron. Soc. 306, 696 (1999)
[arXiv:astro-ph/9810447].
[77] T. D. Saini, S. Raychaudhury, V. Sahni and A. A. Starobinsky, Phys. Rev. Lett. 85,
1162 (2000) [arXiv:astro-ph/9910231].
[78] B. F. Gerke and G. Efstathiou, Mon. Not. Roy. Astron. Soc. 335, 33 (2002)
[arXiv:astro-ph/0201336].
[79] V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006) [arXiv:astroph/
0610026].
[80] M. Sahlen, A. R. Liddle and D. Parkinson, Phys. Rev. D 75, 023502 (2007)
[arXiv:astro-ph/0610812].
[81] M. C. Bento, O. Bertolami and A. A. Sen, Phys. Rev. D 66, 043507 (2002) [arXiv:grqc/
0202064].
[82] N. Bilic, G. B. Tupper and R. D. Viollier, Phys. Lett. B 535, 17 (2002) [arXiv:astroph/
0111325].
[83] A. Y. Kamenshchik, U. Moschella and V. Pasquier, Phys. Lett. B 511, 265 (2001)
[arXiv:gr-qc/0103004].
[84] A. A. Sen and R. J. Scherrer, Phys. Rev. D 72, 063511 (2005) [arXiv:astroph/
0507717].
[85] M. Makler, S. Quinet de Oliveira and I. Waga, Phys. Lett. B 555, 1 (2003)
[arXiv:astro-ph/0209486].
[86] T. M. Davis et al., Astrophys. J. 666, 716 (2007) [arXiv:astro-ph/0701510].
[87] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001) [arXiv:grqc/
0009008].
[88] E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003) [arXiv:astro-ph/0208512].
[89] A. G. Riess et al. [Supernova Search Team Collaboration], Astrophys. J. 607, 665
(2004) [arXiv:astro-ph/0402512].
[90] P. Astier et al. [The SNLS Collaboration], Astron. Astrophys. 447, 31 (2006)
[arXiv:astro-ph/0510447].
[91] A. G. Riess et al., Astrophys. J. 659, 98 (2007) [arXiv:astro-ph/0611572].
[92] G. Miknaitis et al., Astrophys. J. 666, 674 (2007) [arXiv:astro-ph/0701043].
[93] W. M. Wood-Vasey et al. [ESSENCE Collaboration], Astrophys. J. 666, 694 (2007)
[arXiv:astro-ph/0701041].
[94] M. Kowalski et al., Astrophys. J. 686, 749 (2008) [arXiv:0804.4142 [astro-ph]].
[95] M. Hicken et al., arXiv:0901.4804 [astro-ph.CO].
[96] D. J. Eisenstein et al. [SDSS Collaboration], Astrophys. J. 633, 560 (2005)
[arXiv:astro-ph/0501171].
[97] W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol, J. A. Peacock, A. C. Pope
and A. S. Szalay, Mon. Not. Roy. Astron. Soc. 381, 1053 (2007) [arXiv:0705.3323
[astro-ph]].
[98] C.-W. Chen, Je-An Gu and P. Chen (in preparation).
[99] Z. K. Guo, N. Ohta and Y. Z. Zhang, Phys. Rev. D 72, 023504 (2005) [arXiv:astroph/
0505253].
[100] R. J. Scherrer, Phys. Rev. D 73, 043502 (2006) [arXiv:astro-ph/0509890].
[101] T. Chiba, Phys. Rev. D 73, 063501 (2006) [arXiv:astro-ph/0510598].
[102] E. V. Linder and R. J. Scherrer, arXiv:0811.2797 [astro-ph].
[103] V. Barger, E. Guarnaccia and D. Marfatia, Phys. Lett. B 635, 61 (2006) [arXiv:hepph/
0512320].
[104] R. R. Caldwell, Phys. Lett. B 545, 23 (2002) [arXiv:astro-ph/9908168].
[105] J. Kujat, R. J. Scherrer and A. A. Sen, Phys. Rev. D 74, 083501 (2006) [arXiv:astroph/
0606735].
[106] G. Ellis, R. Maartens and M. A. H. MacCallum, Gen. Rel. Grav. 39, 1651 (2007)
[arXiv:gr-qc/0703121].
[107] A. Shafieloo, V. Sahni and A. A. Starobinsky, arXiv:0903.5141 [astro-ph.CO].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9178-
dc.description.abstract我們探索粒子天文物理學與宇宙學中兩個最撩人興趣的問題。他們分別是超高能宇宙射線的能譜以及暗能的本質。
一. 使用地面陣列或大氣螢光觀測器是測定超高能宇宙射線能量最普遍的兩種方式。由地面陣列AGASA與大氣螢光觀測器HiRes兩者所得到的超高能宇宙射線能譜呈現明顯的差異。 FLASH是一個致力於減少大氣螢光觀測器的能量觀測系統誤差的實驗。 我們量測被28.5 GeV電子束激發的空氣螢光之產率與光譜。 在一大氣壓304 K的乾燥空氣中,我們量測到的螢光產率是每MeV 20.8 ± 1.6個光子。我們也量測空氣螢光產率與28.5 GeV電子脈衝所引發的電磁簇射的深度的函數關係。結果證實了在量測超高能宇宙射線中使用大氣螢光量變曲線的正當性。
二. 我們對五種暗能模型做一致性測試。模型包括宇宙常數,廣義化的Chaplygin gas,以及三種第五元素模型:指數位能,冪律位能,以及反指數位能。對於每一個模型,我們認定一個一般而言會隨紅移變化但在這模型的範疇中是常數的特徵量Q(z)。我們進一步定義「一致性度量」M(z)為Q(z)對紅移的導數。如果一個模形與觀測相符,觀測應該允許對應的M(z)的值為零。採用了一個被廣泛使用的暗能狀態方程式參數化並且使用目前SNIa,CMB,以及BAO的觀測資料後,我們發現指數位能模型在95.4%的信心程度下被排除。這套方法的鑑別力以及由於選擇的參數化可能造成的偏見應該在未來用Monte Carlo test來檢驗。暗能模型在w-w’平面的分類已經在文獻上被研究了。 其中w是暗能狀態方程式而w’是它以哈伯時間為單位的時間導數。 我們使用同樣的觀測資料以及採用同樣的暗能狀態方程式參數化而得到w-w’平面上的約束。 我們發現包括宇宙常數,魅影,非魅影 barotropic 流體,還有單調上滾的第五元素等暗能模型在68.3% 的信心程度下被目前的觀測資料排除。下滾的第五元素包括解凍與凍結模型和目前的觀測相符.所有上列的模型在95.4% 的信心程度仍然與觀測資料相符。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-05-20T20:11:57Z (GMT). No. of bitstreams: 1
ntu-98-F90222025-1.pdf: 2003396 bytes, checksum: e42e88dc112120ea47112e5c767206e4 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAcknowledgment i
Preface iii
Abstract vii
I Laboratory Measurement of Air Fluorescence from Showers 1
1 Introduction 3
1.1 Ultra High Energy Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . 3
1.2 UHECR Fluorescence Detectors . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The FLASH Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 The FLASH Thin Target Experiment 9
2.1 Experimental method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Beam Profile Measurement . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Beam Charge Measurement . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Fluorescence Light Measurement . . . . . . . . . . . . . . . . . 13
2.1.5 Spectrum Measurement . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Optical Calibration of the Fluorescence
Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Absolute Calibration . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Relative Calibration . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Acceptance and Energy Deposit Correction . . . . . . . . . . . . 22
2.3 Data Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Data Processing and Background Subtraction . . . . . . . . . . . 23
2.3.2 Photon Yield in Dry Air . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Fluorescence Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 The FLASH Thick Target Experiment 33
3.1 Experimental Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Fluorescence Light Measurement . . . . . . . . . . . . . . . . . 36
3.1.3 Ionization Measurement . . . . . . . . . . . . . . . . . . . . . . 36
3.1.4 Transverse Shower Profile Measurement . . . . . . . . . . . . . . 37
3.2 Data Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Longitudinal Shower Ionization Profile . . . . . . . . . . . . . . 39
3.2.2 Transverse Shower Profile . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Longitudinal Shower Fluorescence Profile . . . . . . . . . . . . . 41
3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
II Constraining the Nature of Dark Energy 47
4 Introduction 49
4.1 Dark Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Testing Dark Energy Models . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Discriminating Dark Energy Models . . . . . . . . . . . . . . . . . . . . 52
5 Consistency Test of Dark Energy Models 55
5.1 Consistency test of dark energy models . . . . . . . . . . . . . . . . . . 55
5.1.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Observational data and constraint . . . . . . . . . . . . . . . . . 58
5.1.3 Results of the consistency test . . . . . . . . . . . . . . . . . . . 59
5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6 Constraints on the Phase Plane 63
6.1 Classification of dark energy models . . . . . . . . . . . . . . . . . . . . 63
6.2 Constraints on the w–w' plane . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.1 Observational data . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.2 Results of the constraints on the w–w' plane . . . . . . . . . . . . 65
6.3 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 68
Bibliography 71
dc.language.isoen
dc.title探索粒子天文物理學與宇宙學中的兩個面向: 一.簇射大氣螢光的實驗室量測 二.暗能本質的現象學規範zh_TW
dc.titleAspects of Particle Astrophysics and Cosmology:
I. Laboratory Measurement of Air Fluorescence from Showers II. Constraining the Nature of Dark Energy
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.coadvisor陳丕燊
dc.contributor.oralexamcommittee方勵之,林貴林,闕志鴻,林文隆,張祥光,吳建宏
dc.subject.keyword超高能宇宙射線,大氣簇射,大氣螢光,暗能,一致性測試,暗能狀態方程式,zh_TW
dc.subject.keywordultra high energy cosmic rays,air shower,air fluorescence,dark energy,consistency test,dark energy equation of state,en
dc.relation.page78
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf1.96 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved