請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91717
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋聖榮 | zh_TW |
dc.contributor.advisor | Sheng-Rong Song | en |
dc.contributor.author | 涂家綸 | zh_TW |
dc.contributor.author | Chia-Lun Tu | en |
dc.date.accessioned | 2024-02-22T16:23:27Z | - |
dc.date.available | 2024-02-23 | - |
dc.date.copyright | 2024-02-22 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-05 | - |
dc.identifier.citation | Adams, C.J. and Beck, R.J. 2009. A signature for nephrite jade using its strontium isotopic composition: some Pacific Rim examples. Journal of Gemmology, 31:153-162.
Baziotis, I., Tsai, C. H., Ernst, W. G., Jahn, B. M., & Iizuka, Y (2017). New P–T constraints on the Tamayen glaucophane‐bearing rocks, eastern Taiwan: Perple_X modelling results and geodynamic implications. Journal of Metamorphic Geology, 35(1), 35-54. Belkin, H. E., & De Vivo, B. (2023). Compositional variation and zoning of epidote supergroup minerals in the Campi Flegrei geothermal field, Naples, Italy. European Journal of Mineralogy, 35(1), 25-44. Brunsmann, A., Franz, G., Erzinger, J., and Landwehr, D. (2000). Zoisite-and clinozoisite-segregations in metabasites (Tauern Window, Austria) as evidence for high-pressure fluid-rock interaction. Journal of Metamorphic Geology, 18(1), 1-22. Chen, W.S., Chung, S.L., Chou, H.Y., Zugeerbai, Z., Shao, W.Y., and Lee, Y.H. (2017) A reinterpretation of the metamorphic Yuli belt: Evidence for a middle-late Miocene accretionary prism in eastern Taiwan. Tectonics, doi: 10.1002/2016TC004383 CHEN Yan-Jing. On epizonogenism and genetic classification of hydrothermal deposits.[J]. Earth Science Frontiers, 2010, 17(2): 27-34. Deer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the rock-forming minerals. Mineralogical Society of Great Britain and Ireland. Dominikus Deka Dewangga, Chin-Ho Tsai et al., (in prep). Mass transfer between pelitic schist and serpentinite in a paleo subduction interface: a case study from Yuli belt, eastern Taiwan. Poster presentation, National Dong Hwa University. Foster, M. D. (1960). Interpretation of the composition of trioctahedral micas (No. 354-B). Henry, D. J., Guidotti, C. V., & Thomson, J. A. (2005). The Ti saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American mineralogist, 90(2-3), 316-328. Huang, P. H., Wei, C., & Zhang, J. (2021). High‐P metamorphism of garnet–epidote–amphibole schists from the Yuli Belt, Eastern Taiwan: Evidence related to warm subduction. Journal of Metamorphic Geology, 39(6), 675-693. Jacobs, D. C., & Parry, W. T. (1979). Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico. Economic Geology, 74(4), 860-887. Jébrak, M. (1997). Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore geology reviews, 12(3), 111-134. Jowett, E. C. (2021). Fitting iron and magnesium into the hydrothermal chlorite geothermometer. Available at SSRN 3863523. Klein, C., & Philpotts, A. (2016). Earth Materials: Introduction to Mineralogy and Petrology (2nd ed.). Cambridge: Cambridge University Press. Kotov, Y. I., & Skenderov, G. M. (1988). Hydrothermal Biotite Veins. International Geology Review, 30(10), 1104-1113. Lin, A.T., Watts, A.B. and Hesselbo, S.P. 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15:453-478. Lo, Ching-hua、Yui, Tzen-fu (1996) 。40Ar/39Ar Dating of High Pressure Rocks in the Tananao Basement Complex, Taiwan。中國地質學會會刊,39:1卷,13-30。 Madugalla, T. B. N. S., Pitawala, H. M. T. G. A., Naumann, R., & Trumbull, R. B. (2015). Hydrothermal mica deposits in altered meta-ultrabasites from north-central Sri Lanka. Journal of Geochemical Exploration, 153, 66-78. McMillan, P. F. (1989). Raman spectroscopy in mineralogy and geochemistry. Annual Review of Earth and Planetary Sciences, 17(1), 255-279. Nachit, H., Ibhi, A., & Ohoud, M. B. (2005). Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337(16), 1415-1420. Pan Tang, Ju-xing Tang, Bin Lin, Li-qiang Wang, Wen-bao Zheng, Qiu-feng Leng, Xin Gao, Ze-bin Zhang, Xiao-qian Tang, Mineral chemistry of magmatic and hydrothermal biotites from the Bangpu porphyry Mo (Cu) deposit, Tibet, Ore Geology Reviews, Volume 115 Rieder, M., Cavazzini, G., D’yakonov, Y.S. et al. Nomenclature of the Micas. Clays Clay Miner. 46, 586–595 (1998). https://doi.org/10.1346/CCMN.1998.0460513 Stephen A. Nelson (2015). Mineralogy- Phyllosilicates (Micas, Chlorite, Talc, & Serpentine), Department of Earth & Environmental Sciences, Tulane University, https://www2.tulane.edu/~sanelson/eens211/index.html Tan, L.P. and Chuay, H.Y. (1979) Serpentinites of the Fengtien-Wanyung area, Hualien, Taiwan, Acta Geologica Taiwanica, 20, 52-68. Taddeucci, Jacopo & Cimarelli, Corrado & Alatorre-Ibarguengoitia, M. & Delgado Granados, Hugo & Andronico, Daniele & Del Bello, Elisabetta & Scarlato, Piergiorgio & Stefano, F.. (2021). Fracturing and healing of basaltic magmas during explosive volcanic eruptions. Nature Geoscience. 14. 1-7. 10.1038/s41561-021-00708-1. Uchida, E., Endo, S., & Makino, M. (2007). Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1), 47-56. WHITE, G. N., ULERY, A. L., & RICHARD DREES, L. (2008). Scanning Electron Microscopy. Methods of Soil Analysis Part 5—Mineralogical Methods. Yavuz, F., Kumral, M., Karakaya, N., Karakaya, M. Ç., & Yıldırım, D. K. (2015). A Windows program for chlorite calculation and classification. Computers & Geosciences, 81, 101-113. Yen, T.P. (1963) The metamorphic belts within the Tananao schist terrain of Taiwan. Proc. Geol. Soc. China, 6, 72–74. Yui, T.F., Usukia,T., Chena, C.Y., Ishidab, A., Sanob, Y., Sugaa, K., Iizukaa, Y., and Chena, C.T. (2014) Dating thin zircon rims by NanoSIMS: the Fengtien nephrite (Taiwan) is the youngest jade on Earth. International Geology Review, 56 (16), 1932-1944. Yui, T.F., Yeh, H.W., and Wang Lee, C. (1988) Stable isotope studies of nephrite deposits from Fengtien, Taiwan. Geochim. Cosmochim. Acta, 52(3), 593-602. Yui, T.F., Yeh, H.W., and Wang Lee, C. (1990) A stable isotope study of serpentinization in the Fengtien ophiolite, Taiwan. Geochim. Cosmochim. Acta, 54, 1417–1426. 汪建民 (1998) 材料分析 Materials Analysis,中國材料科學學會。 俞震甫 (2016) 臺灣玉礦研究: 過去、現在、未來。國立臺灣博物館學刊,69(1),第 3-15 頁。 唐攀, 唐菊兴, 郑文宝, 冷秋锋, & 林彬. (2017). 岩浆黑云母和热液黑云母矿物化学研究进展. 矿床地质, 36(4), 935-950. 李伟, 谢桂青, 姚磊, 朱乔乔, 孙洪涛, 王建, & 王小雨. (2014). 鄂东南地区程潮大型矽卡岩型铁矿区岩体成因探讨. 吉林大学学报 (地球科学版), 44(6), 1827-1855. 林佳穎 (2017) 花蓮豐田地區天星礦場的蛇紋岩與閃玉之成因。國立臺灣海洋大學地球科學研究所碩士論文,基隆市,共 88 頁。 駱芳琳 (2014)。由岩石水熱反應模擬化學風化作用之礦物變化與元素遷移。國立臺灣海洋大學應用地球科學所碩士論文,基隆市,共 90 頁。 陳尚青、許道生、吳威德(2016)。實物現場X-ray殘留應力量測及其振動應力消除技術。科儀新知,(207),44-54。 吳冠何(2020)。花蓮豐田地區理新礦場之透輝石脈產狀與成因探討。國立臺灣海洋大學地球科學研究所碩士論文,基隆市,共 88 頁。 羅文翰(2018)。玉里帶清水溪地區變質岩的鋯石鈾鉛年代制約與全岩地球化學特性之研究。國立東華大學自然資源與環境學系碩士論文,花蓮縣,共136頁。 杜維善 (1972) 台灣省花蓮縣豐田礦區地質調查報告。經濟部聯合礦業研究所,第 117 號,共 13 頁。 葉芝穎(2019)。東台灣玉里帶變質沉積岩之峰期溫壓新制約與地質詮釋。國立東華大學自然資源與環境學系碩士論文,花蓮縣,共157頁。 台灣省礦務局 (1994) 豐田礦業專業區規劃開發計畫成果總報告。台灣省礦務局,共129頁。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91717 | - |
dc.description.abstract | 本研究在台灣玉里帶中發現了變質熱液成因的黑雲母礦脈,其為脈狀產狀且組成為90% 金雲母、6% 鉀長石與3% 方解石,是前人研究中尚未報導過的新發現。
根據岩象與岩石學分析,藉由綠簾石-斜黝簾石岩內殘餘的鈉長石、鉀長石與碳物質證實其原岩為變質泥質岩,再受到富含鈣、矽的熱液換質後形成綠簾石-斜黝簾石岩。且同一期熱液換質事件形成了緊鄰的軟玉礦床。樣本中脈狀金雲母以裂隙填充的形式沉澱於受剪切之斜黝簾石岩中,寬度介於1mm-1cm,並緊鄰閃玉與蛇紋岩。於偏光顯微鏡下觀察,黑雲母粒徑介於30-80um,彼此緊密鑲嵌且呈無序排列,在平行偏光下呈現淡綠色與弱多色性。 根據電子微探儀礦物化學資料計算,此黑雲母 (XMg= 0.69)組成介於Mg-biotite與Phlogopite之間,且根據Nachit (2005)提出的TiO2-FeO-MgO分類法屬於Neoform Biotite,此外根據與之共生的綠泥石地質溫度計計算,其形成溫度約為289±10℃,證實其係由低溫熱液所形成之熱液黑雲母。而在較遠離超基性岩的變質泥質岩中同樣也觀察到了熱液黑雲母存在,然而其XMg=0.49,鎂元素比例明顯較鄰近超基性岩中的黑雲母礦脈低,指示鎂元素應是自超基性岩擴散。 綜合對此樣本的各項觀察,並綜合前人研究線索,在此臺灣閃玉熱液換質事件的後期,富含鈣、矽的變質熱液以變質泥質岩和蛇紋岩之接觸邊界為通道,伴隨由超基性岩提供的鎂、鐵元素,變質泥質岩所提供的鉀、鋁、矽元素在與變質高孔隙水壓的情形沈澱了此脈狀黑雲母於裂隙之中。根據前人研究,此事件可能發生於上新世晚期(3.3Ma),為臺灣閃玉成礦熱液作用晚期事件。 | zh_TW |
dc.description.abstract | The Yuli Belt, located at the southeastern Taiwan, is regarded as metamorphosed subduction complex, and mainly composed of metapelites and quartz-mica schists with few metamorphic mafic and ultramafic rocks and high-pressure blocks, which were formed during the late-Miocene subduction event. We firstly discovered biotite veins of metamorphic hydrothermal origins in the Yuli Belt. These biotite veins are predominantly composed of biotite (90%) with minor K-feldspar (6%) and calcite (4%).
According to the petrological analyses, the host rock of vein, epidote-clinozoisite rock was recognized as meta-pelite, which contains relict albite and carbonaceous materials, then was metasomatized by hydrothermal fluid rich in Ca and Si. Petrographically, the biotite grains are 30-80 µm in diameter with interlocking texture and random orientation, and show pale-green color and weak pleochroism under PPL. Based on the analysis of electron microprobe analyzer, the compositions of these biotites (XMg= 0.69) fall between Mg-biotite and phlogopite, and belong to neo-form biotite, in terms of classification, the TiO2-FeO-MgO ternary diagram, proposed by Nachit (2005). In addition, the formation temperature is estimated as 289±10℃, coexisting with chlorite, which suggests that these biotite were formed in low-temperature hydrothermal condition. The host rocks, sheared clinozoisitic rock, of biotite veins occurred with nephrite deposits, which was formed in late Pliocene (3.3 Ma). This biotite-forming metasomatic event, therefore, could be occurred as the same stage of the hydrothermal mineralization of nephrite. The metasomatism occurred between the ultramafic rocks (Fe, Mg provider) and meta-pelites (K, Al and Si provider) interacted with the Ca-, Si- and CO2-rich metamorphic hydrothermal fluids, to precipitate biotite in the fissures under the condition of high pore water pressure. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:23:27Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-22T16:23:27Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii 口試委員審定書 iv 目次 v 圖次 vii 表次 ix 本研究常用礦物名稱縮寫及成分對照表 x 第一章 前言 1 1.1 研究目的 1 1.2 地質背景 2 1.2.1 玉里帶 2 1.2.2 綠簾石-斜黝簾石岩 4 1.3 前人研究 7 第二章 研究方法 12 2.1 野外地質調查與樣本採集 12 2.1.1 地理位置 12 2.1.2 採樣位置 13 2.2 樣本製備 13 2.2.1 樣本前處理 13 2.2.2 岩石厚片樣本 13 2.2.3 岩石光學薄片樣本 14 2.2.4 岩石粉末樣本 15 2.2.5 冷鑲埋樣本 16 2.3 實驗方法與儀器 17 2.3.1 偏光顯微鏡(Polarizing Microscope) 17 2.3.2 掃描式電子顯微鏡與能量散射光譜儀 (SEM & EDS) 18 2.3.3 微區螢光光譜分析儀(Micro-XRF) 20 2.3.4 電子微探分析儀 (Electron Probe MicroAnalyzer,EPMA) 22 2.3.5 拉曼光譜儀 (Raman Spectrometer) 23 2.3.6 X光粉末繞射分析 (X-ray Powder Diffractometer,XRD) 26 第三章 研究結果 28 3.1 野外產狀與樣本描述 28 3.1.1 野外產狀描述 28 3.1.2 樣本描述 31 3.2 礦物組成與岩象觀察 33 3.2.1 綠簾石-斜黝簾石岩 33 3.2.3 Type I型礦脈 37 3.2.4 Type II型礦脈 50 3.2.5 Type III型礦脈 51 3.2.6 變質泥質岩 54 3.2.7 矽質片岩 56 3.2.8 樣本T0401-2 (Type I礦脈) 58 第四章 討論 59 4.1 綠簾石-斜黝簾石岩之原岩 59 4.2 新生斜黝簾石與圍岩斜黝簾石之比較 61 4.3 黑雲母礦脈礦物學分類 64 4.3.2 黑雲母成因分類 68 4.4 雲母主量元素比較 71 4.5 綠泥石地質溫度計與結果比較 73 4.6 黑雲母地質壓力計 76 4.7 黑雲母礦脈成因假說 76 第五章 結論 80 參考資料 81 附錄一 樣本220926-03 金雲母礦脈EDS Mapping影像 86 | - |
dc.language.iso | zh_TW | - |
dc.title | 花蓮天星礦場黑雲母礦脈成因探討 | zh_TW |
dc.title | Occurrences and Genesis of Biotite Veins in the Tian-Shing Mine of Fengtien, East Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 盧乙嘉;朱傚祖;郭力維 | zh_TW |
dc.contributor.oralexamcommittee | Yi-Chia Lu;Hao-Tsu Chu;Li-Wei Kuo | en |
dc.subject.keyword | 臺灣閃玉,玉里帶,黑雲母礦脈,熱液換質, | zh_TW |
dc.subject.keyword | Taiwan Nephrite,Yuli Belt,Biotite Vein,Hydrothermal Alteration, | en |
dc.relation.page | 88 | - |
dc.identifier.doi | 10.6342/NTU202400471 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-02-06 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 16.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。