Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91639
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王藹農zh_TW
dc.contributor.advisorAi-Nung Wangen
dc.contributor.author簡培育zh_TW
dc.contributor.authorPei-Yu Jianen
dc.date.accessioned2024-02-20T16:20:05Z-
dc.date.available2024-02-21-
dc.date.copyright2024-02-20-
dc.date.issued2024-
dc.date.submitted2024-01-26-
dc.identifier.citation[1] Ben Andrews, Bennett Chow, Christine Guenther, and Mat Langford, Extrinsic geometric flows, Graduate Studies in Mathematics, Vol. 206, American Mathematical Society, Providence, Rhode Island, 2020.
[2] D. Christodoulou and S.-T. Yau, Some remarks on the quasi-local mass, in: James A. Isenberg, ed., Contemporary Mathematics, Vol. 71, Proceedings of the AMS-IMS-SIAM joint summer research conference, June 22-28, 1986, American Mathematical Society, Providence, Rhode Island, 1988, 9-14.
[3] Douglas M. Eardley, Global problems in numerical relativity, in: Larry L. Smarr, ed., Sources of gravitational radiation, Proceedings of the Battelle Seattle workshop, July 27 - August 4, 1978, Cambridge University Press, Cambridge, 1979, 127-138.
[4] Robert Geroch, Energy extraction, Ann. N. Y. Acad. Sci. 224 (1973), no. 1, 108-117, DOI 10.1111/j.1749-6632.1973.tb41445.x.
[5] S. W. Hawking, Gravitational radiation in an expanding universe, J. Math. Phys. 9 (1968), no. 4, 598-604, DOI 10.1063/1.1664615.
[6] Gerhard Huisken and Alexander Polden, Geometric evolution equations for hypersurfaces, in: Stefan Hildebrandt and Michael Struwe, eds., Lecture Notes in Mathematics, Vol. 1713, Lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetaro, Italy, June 15-22, 1996, Springer-Verlag, Heidelberg, 1999, 45-84, DOI 10.1007/BFb0092669.
[7] Gerhard Huisken and Tom Ilmanen, The Riemannian Penrose inequality, Int. Math. Res. Not. 1997 (1997), no. 20, 1045-1058, DOI 10.1155/S1073792897000664
[8] Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353-437, DOI 10.4310/jdg/1090349447.
[9] Sven Hirsch, Hawking mass monotonicity for initial data sets, arXiv:2210.12237v2 [math.DG], 2023.
[10] John M. Lee, Introduction to Riemannian manifolds, 2nd ed., Graduate Texts in Mathematics, Vol. 176, Springer, Cham, 2018, DOI 10.1007/978-3-319-91755-9.
[11] Dan A. Lee, Geometric relativity, Graduate Studies in Mathematics, Vol. 201, American Mathematical Society, Providence, Rhode Island, 2019.
[12] Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation, Princeton University Press, Princeton and Oxford, 2017. Reprint of the 1973 original.
[13] László B. Szabados, Quasi-local energy-momentum and angular momentum in general relativity, Living Rev. Relativ. 12 (2009), no. 4, DOI 10.12942/lrr-2009-4.
[14] Oliver C. Schnürer, Geometric flow equations, in: Vicente Cortés, Klaus Kröncke, and Jan Louis, eds., Geometric flows and the geometry of space-time, Lectures given at the summer school held at the University of Hamburg, September 19-23, 2016, Birkhäuser, Cham, 2018, 77-121, DOI 10.1007/978-3-030-01126-0_2.
[15] Robert M. Wald, General relativity, The University of Chicago Press, Chicago and London, 1984.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91639-
dc.description.abstract廣義相對論中的霍金準局部能量為 S. W. Hawking 在1968年提出的概念,其在逆平均曲率流下的單調性以隱晦的方式初見於一篇1973年的文章,文章作者為 Robert Geroch ,因此該性質一般稱作傑勒西單調性公式。標誌著非負的時變率,這個公式在近代許多幾何流、數學相對論的文獻中被明白揭示並證明,其中一篇文獻是 Gerhard Huisken 與 Alexander Polden 在1996年完成的工作,此二人證明公式的手法為取得幾個演化方程後再求能量的時變率。在這份評注中,我們將詳述 Huisken 與 Polden 如何在那篇1996年的文章中證明傑勒西單調性公式。zh_TW
dc.description.abstractThe Hawking quasi-local energy in general relativity is a notion proposed by S. W. Hawking in 1968. Its monotonicity under inverse mean curvature flow was first suggested in a 1973 article authored by Robert Geroch, commonly known as the Geroch monotonicity formula. As a non-negative time derivative, this formula is explicitly stated and proved in many of the modern references on mathematical relativity and geometric flows, including an article composed by Gerhard Huisken and Alexander Polden in 1996. Huisken and Polden proved the formula by taking the time derivative of the energy function after some evolution equations were developed. In this note, we shall present a detailed exposition of how Huisken and Polden prove the Geroch monotonicity formula in the 1996 article.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:20:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-20T16:20:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsThesis acceptance certificate i
Acknowledgements ii
Abstract in Chinese iii
Abstract in English iv
1 Introduction 1
2 Preliminaries 5
3 Proof of the formula 13
4 Weak formulation 16
A The Gauss-Weingarten equations 18
B Mean curvature as divergence 20
Bibliography 22
-
dc.language.isoen-
dc.subject準局部能量zh_TW
dc.subject霍金能量zh_TW
dc.subject幾何演化方程zh_TW
dc.subject逆平均曲率流zh_TW
dc.subject傑勒西單調性zh_TW
dc.subjectinverse mean curvature flowen
dc.subjectquasi-local energyen
dc.subjectHawking energyen
dc.subjectgeometric evolution equationen
dc.subjectGeroch monotonicityen
dc.title一個關於傑勒西單調性公式的評注zh_TW
dc.titleA Note on the Geroch Monotonicity Formulaen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梁惠禎;張海潮zh_TW
dc.contributor.oralexamcommitteeFei-tsen Liang;Hai-Chau Changen
dc.subject.keyword準局部能量,霍金能量,幾何演化方程,逆平均曲率流,傑勒西單調性,zh_TW
dc.subject.keywordquasi-local energy,Hawking energy,geometric evolution equation,inverse mean curvature flow,Geroch monotonicity,en
dc.relation.page23-
dc.identifier.doi10.6342/NTU202400037-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-30-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf2.22 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved