Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91433
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均zh_TW
dc.contributor.advisorJian-Jiun Dingen
dc.contributor.author周敬庭zh_TW
dc.contributor.authorChing-Ting Chouen
dc.date.accessioned2024-01-26T16:29:06Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2024-
dc.date.submitted2024-01-17-
dc.identifier.citation[1] Rafael C. Gonzalez • Richard E. Woods "Digital Image Processing" 4E, pp. 328-332
[2] Peixuan Zhang & Fang Li(2014)" A New Adaptive Weighted Mean Filter for Removing Salt-and-Pepper Noise" IEEE Signal Processing Letters. pp.1280 - 1283
[3] Ian T. Young& Lucas J. van Vliet (1995) " Recursive implementation of the Gaussian filter " Signal Processing. pp.139-151
[4] G. Deng & L.W. Cahill (1993)"An adaptive Gaussian filter for noise reduction and edge detection".
[5] https://zh.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E6%BF%BE%E6%B3%A2%E5%99%A8
[6] Johannes P.F. D''Haeyer "Gaussian Filtering of Images: A Regularization Approach." Signal Processing, pp. 169-181.
[7] http://www.faadooengineers.com/online-study/post/ece/digital-image-processing/1129/boundary-descriptors
[8] Meyer, F., & Beucher, S. "Morphological segmentation." Journal of Visual Communication and Image Representation, 1990.
[9] Bhutada, S., Yashwanth, N., Dheeraj, P., & Shekar, K. . "Opening and closing in morphological image processing." World Journal of Advanced Research and Reviews, 2022.
[10] Khairul Anuar Mat Said*, Asral Bahari Jambek*and Nasri Sulaiman (2016)"A study of image processing using morpholoical opening and closing processes " International Journal of Control Theory and Applications pp.15-21
[11] C. Ronse & H.J.A.M. Heijmans "The algebraic basis of mathematical morphology: II. Openings and closings" CVGIP: Image Understanding pp.74-97
[12] https://jason-chen-1992.weebly.com/home/-morphology
[13] https://medium.com/%E9%9B%BB%E8%85%A6%E8%A6%96%E8%A6%BA/%E5%BD%A2%E6%85%8B%E5%AD%B8-morphology-%E6%87%89%E7%94%A8-3a3c03b33e2b
[14] Szabo, T. L. (2014). "Diagnostic Ultrasound Imaging: Inside Out." pp. 1-37
[15] Rumack, C. M., & Levine, D. (2017). "Diagnostic Ultrasound, 2-Volume Set" (5th ed.). August 8, 2017.
[16] https://www.uscultrasound.com/what-is-ultrasound-and-how-does-it-work/
[17] Andersson KE & Arner A.(2004) "Urinary bladder contraction and relaxation: physiology and pathophysiology." PP.935-986
[18] Banker, Hiral, and Selvarajan, Santosh K. "Prostate Imaging."
[19] Z, Keqin, X, Zhishun, Z, Jing, W, Haixin, Z, Dongqing, & S, Benkang.(2007) "Clinical significance of intravesical prostatic protrusion in patients with benign prostatic enlargement." pp.1096-1099.
[20] Su Hwan Shin, Jong Wook Kim, Jin Wook Kim, Mi Mi Oh, Du Geon Moon. "Defining the Degree of Intravesical Prostatic Protrusion in Association With Bladder Outlet Obstruction" Department of Urology, Korea University Guro Hospital, Seoul, Korea.
[21] Lee, C. H., & Ha, H. K. (2014). "Intravesical prostatic protrusion as a predictor of early urinary continence recovery after laparoscopic radical prostatectomy. "International Journal of Urology pp.653-656.
[22] https://commons.wikimedia.org/wiki/File:Prostate.jpg
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91433-
dc.description.abstract藉由電腦視覺以及醫療資訊兩個領域的結合,傳統超音波影像在醫療領域中很多都藉由人為判讀,但本次研究希望藉由電腦視覺的影像分析技術,提出一套可公式化的方法來處理超音波影像並提出判讀超音波影像的方法,研究主題主要針對膀胱及攝護腺的凹陷指數來判讀前列腺向膀胱內膨出的狀態,我們主要使用的識別方法包含:雜訊濾除、邊緣偵測、動態閥值、形態學、最短距離評估來做處理。並使用PCA距離測量及中心點垂直距離等方法來做量測標準。
我們藉由濾除雜訊,找尋相對位子,對膀胱輪廓的規則整理,閥值比較以及分割合併還有橢圓近似等方法,能夠推斷出膀胱超音波影像的凹陷病變指數(IPP)並藉由橢圓近似還原出膀胱原本該有的樣子。
zh_TW
dc.description.abstractBy combining computer vision and medical information, traditional ultrasound images in the medical field are often interpreted manually. However, in this study, we aim to propose a formulaic approach for processing ultrasound images and present a method for interpreting ultrasound images through computer vision techniques. The research focuses on the depression index of the bladder and prostate to assess the condition of the prostate protruding into the bladder. The identification methods used primarily include noise elimination, edge detection, dynamic threshold, morphology, and shortest distance evaluation. Additionally, we employ PCA distance measurement and vertical distance from the centroid as measurement standards.
Through the elimination of noise, determination of relative positions, regularization of bladder contours, threshold comparison, segmentation and merging, and elliptical approximation, we can infer the intravesical prostatic protrusion (IPP) of bladder ultrasound images. By utilizing elliptical approximation, we aim to reconstruct the original appearance of the bladder from the ultrasound images.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:29:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:29:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Contents v
List of Figures vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Main Contribution 2
1.3 Organization 2
Chapter 2 Reviews of Computer vision image Process Algorithms 3
2.1 Filtering method 3
2.1.1 Mean Filter 4
2.1.2 Median Filter 4
2.1.3 Gaussian filter 5
2.2 Boundary Descriptors 5
2.3 Morphology 7
2.3.1 Erosion 7
2.3.2 Dilation 8
2.3.3 Opening 9
2.3.4 Closing 10
Chapter 3 Reviews of Biomedical Knowledge 12
3.1 Ultrasound 12
3.2 Biomedical Domain Concept 12
3.2.1 Biomedical Ultrasound Image 12
3.2.2 Bladder 13
3.2.3 Prostate 14
3.2.3 Intravesical Prostatic Protrusion(IPP) 14
Chapter 4 Process Image Method 16
4.1 Introduction 16
4.2 Preprocess Image 18
4.2.1 Remove text data 19
4.2.2 Image Segmentation 19
4.2.3 Removing unnecessary label 20
4.3 Process Image 21
4.3.1 Noise Filtering 21
4.3.2 Chose Threshold 22
4.3.3 Remove Irrelevant Regions 25
4.3.4 Find Bladder Main Region 28
4.3.5 First Extension 29
4.3.6 Compare and expand of bladder 32
4.3.7 Find Final Bladder Position 37
4.3.8 Get Bladder Turning Point 38
4.3.9 Estimated Bladder Health Image 41
Chapter 5 Scoring Compare 45
5.1 Physician's marking calculation 45
5.2 Midpoint vertical distance 46
5.3 Ellipse PCA distance 48
5.4 Unit Conversion 51
5.5 Result Compare 52
5.6 Error attribution 54
Chapter 6 Experimental Results 58
Chapter 7 Conclusion 62
Reference 64
-
dc.language.isoen-
dc.subject攝護腺病變特徵zh_TW
dc.subject前列腺向膀胱內膨出zh_TW
dc.subject膀胱凹陷zh_TW
dc.subject超音波影像zh_TW
dc.subject醫療影像處理zh_TW
dc.subjectmedical image processingen
dc.subjectultrasound image analysisen
dc.subjectIntravesical Prostatic Protrusion (IPP)en
dc.subjectfeatures of prostatic lesionsen
dc.subjectBladder indentationen
dc.title前列腺向膀胱內膨出之超音波影像分析zh_TW
dc.titleIntravesical Prostatic Protrusion Ultrasound Image Analysisen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee簡鳳村;許文良;曾易聰zh_TW
dc.contributor.oralexamcommitteeFeng-Tsun Chien;Wen-Liang Hsue;Yi-Chong Zengen
dc.subject.keyword膀胱凹陷,攝護腺病變特徵,前列腺向膀胱內膨出,超音波影像,醫療影像處理,zh_TW
dc.subject.keywordBladder indentation,features of prostatic lesions,Intravesical Prostatic Protrusion (IPP),ultrasound image analysis,medical image processing,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202400113-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-18-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf2.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved