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中文摘要 

 

 藉由電腦視覺以及醫療資訊兩個領域的結合，傳統超音波影像在醫療領域中

很多都藉由人為判讀，但本次研究希望藉由電腦視覺的影像分析技術，提出一套

可公式化的方法來處理超音波影像並提出判讀超音波影像的方法，研究主題主要

針對膀胱及攝護腺的凹陷指數來判讀前列腺向膀胱內膨出的狀態，我們主要使用

的識別方法包含:雜訊濾除、邊緣偵測、動態閥值、形態學、最短距離評估來做處

理。並使用 PCA距離測量及中心點垂直距離等方法來做量測標準。 

 我們藉由濾除雜訊，找尋相對位子，對膀胱輪廓的規則整理，閥值比較以及

分割合併還有橢圓近似等方法，能夠推斷出膀胱超音波影像的凹陷病變指數(IPP)

並藉由橢圓近似還原出膀胱原本該有的樣子。 

 

關鍵字：膀胱凹陷、攝護腺病變特徵、前列腺向膀胱內膨出、超音波影像、醫療

影像處理。 
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Abstract 

By combining computer vision and medical information, traditional 

ultrasound images in the medical field are often interpreted manually. 

However, in this study, we aim to propose a formulaic approach for 

processing ultrasound images and present a method for interpreting 

ultrasound images through computer vision techniques. The research 

focuses on the depression index of the bladder and prostate to assess the 

condition of the prostate protruding into the bladder. The identification 

methods used primarily include noise elimination, edge detection, dynamic 

threshold, morphology, and shortest distance evaluation. Additionally, we 

employ PCA distance measurement and vertical distance from the centroid 

as measurement standards. 

Through the elimination of noise, determination of relative positions, 

regularization of bladder contours, threshold comparison, segmentation and 

merging, and elliptical approximation, we can infer the intravesical 

prostatic protrusion (IPP) of bladder ultrasound images. By utilizing 

elliptical approximation, we aim to reconstruct the original appearance of 

the bladder from the ultrasound images. 

 

Keywords: Bladder indentation, features of prostatic lesions, 

Intravesical Prostatic Protrusion (IPP), ultrasound image analysis, medical 

image processing. 
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Chapter 1 

Introduction 

 

1.1 Motivation   

In urology, intravesical prostatic protrusion is a condition that often requires 

surgery, and the degree of prostatic depression is a key factor affecting a physician's 

decision regarding the necessity of surgery. However, there has been relatively little 

prior research in the field of image analysis, particularly in the automated interpretation 

of ultrasound images related to the prostate. Most studies related to the bladder involve 

clinical interpretation, invasive treatments for prostate issues, and subsequent medical 

research on the effectiveness of these treatments. 

Interpreting unclear ultrasound images of the bladder and analyzing intravesical 

protrusion are essential processes. Most manual interpretation methods can vary among 

physicians, and sometimes, images can be challenging to interpret due to ultrasound 

noise interference. Therefore, we plan to combine computer vision techniques with 

medical expertise to develop an automated method for discerning intravesical prostatic 

protrusion in ultrasound images. 

In clinical practice, overseas patients often require the assistance of family 

physicians to determine whether a referral to a specialist is necessary. However, family 

physicians may lack relevant background knowledge when interpreting bladder 

ultrasound images. Thus, we propose an automated interpretation process that can be 

beneficial for family physicians in foreign countries to analyze whether patients need 
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specialized care. We hope that our research can provide a comprehensive method for 

processing medical ultrasound images, which can also be applied to ultrasound images 

of other body parts. 

 

1.2 Main Contribution  

Our main contributions are summarized as follows. 

1. We propose an Ultrasonography processing algorithm in which we 

successfully Identify features in ultrasound images. 

2. We propose an algorithm to calculate the Interpretation of Intravesical 

Prostatic Protrusion. Interpretation problem.  

3. We have established a standardized method to represent bladder concavity, 

replacing the previously imprecise manual measurements. 

4. With our method doctor can quickly label the positions of the bladder and 

bladder deformation to facilitate further disease analysis or other related 

disease analysis. 

 

1.3 Organization 

This thesis is organized as follows: In Chapter 1: We Introduce research 

contributions and motivations. In Chapter 2: We present an overview of the Classic 

computer vision processing algorithm. In Chapter 3: We provided a brief overview of 

some medical background knowledge that will be used. In Chapter 4: We introduce the 

step and algorithm that we used to propose the Image. In Chapter 5: We have 

introduced the medical measurement method and the PCA measurement for comparing 

the results between the label image and our result. In Chapter 6, We showcase the 

https://bmilab.ee.nsysu.edu.tw/lab/course/MIS/Lecture03p_Ultrasound.pdf
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outcomes of our processing and present comparative images with the original 

annotations. Chapter 7, We conclude our algorithm and compare the advantages and 

disadvantages of our method, as well as the feedback from the medical community 

regarding our approach. 

 

Chapter 2 

Reviews of Computer vision image Process Algorithms  

Although there are many AI algorithms, such as CNN (Convolutional Neural 

Networks) and RNN (Recurrent Neural Networks), available for image processing. The 

challenge we need to process today is that relevant ultrasound images always have been 

interpreted based on the experience of physicians, with limited label data. Therefore, we 

need to rely on traditional computer vision processing methods to convert the medical 

domain's experiential knowledge into algorithms for processing these images. In this 

context, we will also provide an introduction to the computer vision algorithms that we 

use or are relevant. 

By utilizing these traditional methods, we can explicitly help physicians 

understand our processing steps. In contrast to machine learning, this approach allows 

for a more transparent comparison of cognitive differences with users. It also enables 

the algorithm to be applied to other ultrasound image-processing tasks beyond the scope 

of this experiment. 

 

2.1 Filtering method 

Filters Introduction: 
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General Filters: 

General filters can be applied in various signal processing domains, including 

audio, image, video, digital signal processing, and more. 

General filters can come in different types, including low-pass, high-pass, 

band-pass, and band-stop, used to filter, enhance, or suppress signal components within 

specific frequency ranges. 

Image Filters: 

Image filters are a specialized type of filter designed specifically for the field 

of digital image processing. 

These filters are primarily used to process and enhance digital images to improve 

image quality, reduce noise, enhance details, or detect specific features. 

Ultrasound images often contain a lot of noise, including speckle noise. So when 

processing ultrasound images, it is essential to appropriately filter out this noise. 

However, excessive filtering can lead to the removal of essential features. Therefore, it 

is crucial to make the right choices when selecting filters and their parameters.  

So we will provide a basic introduction to the image filters we use and compare 

them in our study. 

2.1.1 Mean Filter 

 Mean filter [1][2] is a smoothing filtering method commonly used to reduce 

high-frequency noise in images. It calculates the average of the pixels in the 

neighborhood of each pixel and replaces the pixel's value with this average. 

2.1.2 Median Filter 

Median filter [1] is a non-linear filtering method often used to remove 
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salt-and-pepper noise and other types of noise. It replaces each pixel with the median 

value of its neighborhood pixels. 

2.1.3 Gaussian filter 

Gaussian filter[3][4] uses a Gaussian function [5] to weight the pixels in its 

neighborhood, achieving a smoothing effect. This method is commonly used to reduce 

high-frequency noise. Its pulse function's weighting is modeled to follow a normal 

distribution near the origin.  

In simple terms, a Gaussian filter is used to perform a weighted average on the 

entire image. It applies a Gaussian function to combine the central pixel with its 

neighboring pixels, creating a new pixel matrix. This method is commonly referred to as 

convolution. 

 

Fig. 2 1 Gaussian function used for Gaussian filter [6] 

2.2 Boundary Descriptors  

Boundary Descriptors [7] is a method used to describe the contours of objects, 

often combined with concepts like curvature and bending energy. This approach is 

primarily employed for irregular objects, aiming to capture and describe the edge 
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contours of an object. Unlike other shape descriptors, the primary goal of Boundary 

Descriptors is to quickly and effectively identify the outline of an object, rather than 

analyzing other features such as centroid, area, texture, shape, or relative orientation. 

The advantage of this method is its ability to rapidly locate the object's outline 

through fast matrix operations. It is suitable for applications that require quick detection 

and description of object contours, such as object detection, object recognition, and 

image segmentation. Especially when dealing with objects with irregular shapes, 

Boundary Descriptors can effectively assist in extracting and representing their contour 

information, laying the foundation for subsequent edge analysis.  

The method begins with the center point of the original 3x3 grid as the initial point. 

It reallocates new weights to determine the next direction to move based on the previous 

point's position. With each step, the weight distribution in the 3x3 grid of possible 

directions changes, and the algorithm keeps changing direction until it returns to the 

starting point. The approach involves using the line formed by connecting the previous 

point to the current point as the direction to move, and it uses this line as an arrow to 

generate numbers from 1 to 8 in a clockwise manner for the next step. You have added 

some special conditions in your experiment to allow revisiting points, which is 

particularly useful in ultrasound images with many concave features. Thanks to the 

ever-changing weight distribution for the next direction, the algorithm can navigate 

successfully and avoid getting stuck in an infinite loop. 
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Fig. 2 2 Boundary Descriptors Weight distribution diagram 

 

Fig. 2 3 Boundary Descriptors Forward execution diagram [7] 

2.3 Morphology  

Morphology [8] is a technique used in image processing and analysis. It involves 

operations on the relationships between pixels to adjust and analyze the shapes and 

structures within an image. Common morphology operations include erosion, dilation, 

opening, and closing. These methods can alter the shape, size, and structure of objects 

in an image. Morphology is often used in applications like image segmentation, object 

detection, texture analysis, shape feature extraction, hole filling, and connectivity 

analysis. 

2.3.1 Erosion 

Erosion [9] [12][13] is a morphological operation used to shrink or reduce the 

edges of objects in an image. It is expressed by (1) in order. 
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  (1) 

where A is original image elements, B is structuring elements 

Take the intersection of each point in Figure A after moving it up, down, left, and 

right. Shrink or reduce the edges of objects. 

It typically involves a small kernel (also known as a structuring element) that slides 

over the image and is used to "erode" the edges of objects, making them smaller. 

Main uses: Separating objects that are close to each other, decreasing an object's 

size, and growing the holes enclosed by a single area. 

 

Fig. 2 4 Erosion Schematic diagram 

 

2.3.2 Dilation 

Dilation [12][13] is a morphological operation used to expand or increase the 

edges of objects in an image. It is expressed by (2) in order. 

   (2) 

where A is the original image elements, and B is the structuring elements. 
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Take the union of each point in Figure A after moving it up, down, left, and right. 

Similar to erosion, it also uses a structuring element, but it expands the edges of 

objects. 

Main uses: Connecting disjointed objects, increasing the size of objects, and 

shrinking the holes enclosed by a single area. 

 

Fig. 2 5 Dilation Schematic diagram 

2.3.3 Opening 

Opening [10][11] [12][13] is a combination of erosion and dilation operations, first 

performing erosion and then dilation. It is expressed by (3) in order. 

   (3) 

 where A is original image elements, B is structuring elements 

 

It is typically used to remove small noisy objects while preserving the shape of the 

main objects. 

Main uses: Separating closely located objects, smoothing object contours and 
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fractures, narrow isthmuses, eliminating the thin protrusions. 

 

Fig. 2 6 Opening Schematic diagram 

 

2.3.4 Closing 

Closing[10][11] [12][13] is a combination of dilation and erosion operations, first 

performing dilation and then erosion. It is expressed by (4) in order. 

   (4)

 

where A is original image elements, B is structuring elements 

 

It is typically used to close small gaps between objects or connect disjointed 

objects. 

Main uses: Connecting separated objects, filling gaps, smoothing object contours 

and fractures, removing small holes. 
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Fig. 2 7 Closing Schematic diagram 
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Chapter 3  

Reviews of Biomedical Knowledge 

 

3.1 Ultrasound 

Ultrasound [14] is a type of mechanical wave that originated from sonar 

technology. Its principle involves using frequencies higher than what can be heard by 

the human ear, typically ranging from approximately 2 MHz to 10 MHz. Ultrasonic 

waves have the characteristics of high frequency, short wavelength, and linear 

propagation, making them prone to refraction and reflection. This makes ultrasound a 

valuable tool for investigating objects that are not visible with ordinary light. The 

method involves emitting high-frequency ultrasound pulses and then capturing their 

echoes. The delay in the return of echoes and their intensity provides information about 

the internal structure of objects. Ultrasonic imaging is the process of presenting this 

information in the form of images. Currently, ultrasound finds common applications in 

medicine and industry, primarily for imaging, detection, and measurement. 

 

3.2 Biomedical Domain Concept 

3.2.1 Biomedical Ultrasound Image 

 Ultrasound imaging [15] [16] is a process that involves emitting 

high-frequency sound wave pulses and capturing their reflected echoes to create images. 

These sound waves produce echoes as they interact with different tissues and structures, 

and a computer analyzes these echoes and transforms them into images displayed on a 

monitor. The advantages of ultrasound imaging include its non-ionizing nature, 
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allowing observation of organ motion and blood flow, making it a non-invasive imaging 

technique. Additionally, ultrasound equipment is relatively cost-effective compared to 

some other imaging technologies, and it can provide imaging when light cannot 

penetrate. 

However, ultrasound imaging has its drawbacks. When ultrasound needs to 

penetrate deep tissues, its imaging effectiveness is reduced, making it less suitable for 

deep organ imaging. Furthermore, when sound waves reflect multiple times within 

tissues, it can lead to the appearance of artifacts or echoes and may be subject to 

interference, resulting in the presence of various forms of noise. Typically, ultrasound 

imaging exhibits pronounced blurring, particularly when sound waves interact at 

different tissue interfaces. The issue of increased noise and image blurring is a 

significant challenge we aim to address in our experiment. 

 

Fig. 3 1 The noise in ultrasound images 

3.2.2 Bladder 

The bladder [17] is an important organ in the human body, primarily located in the 
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pelvic area, in front of the lower abdomen. It is a pouch-like organ that, under normal 

conditions, takes on a shape resembling an ellipse in ultrasound imaging due to pressure. 

The bladder serves as a storage and excretion organ for urine. At the top of the bladder, 

there is an area known as the bladder neck, which leads to the urethra. When the 

muscles of the bladder receive neural signals from the brain, they contract to expel urine 

into the urethra, allowing the process of urination to occur. 

3.2.3 Prostate 

The prostate [18] is an important organ in the male reproductive system, located 

within the pelvic area. It is about the size of a cherry and surrounds the urethra, closely 

adjacent to the base of the bladder. This organ plays a crucial role in the male 

reproductive and urinary systems, aiding in the protection and nourishment of sperm to 

enhance their motility during ejaculation. 

3.2.3 Intravesical Prostatic Protrusion(IPP) 

Intravesical Prostatic Protrusion [19], or simply IPP, refers to a condition in which 

a portion of the prostate extends into the bladder. The prostate is typically located 

beneath the bladder and surrounds the urethra. When prostate tissue undergoes inward 

growth or enlargement, it may exert pressure on the bladder, causing a portion of the 

prostate tissue to intrude into the bladder cavity from its normal position. This can lead 

to symptoms such as difficulty urinating, increased urinary frequency, and urgency. In 

cases of mild IPP, special treatment may not be required. However, severe symptoms 

may necessitate surgical intervention. The diagnosis is typically conducted using 

ultrasound imaging, which is the focus of our current endeavor to automate the 

symptom assessment. 
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According to the literature, an IPP (Intravesical Prostatic Protrusion) typically 

exceeding 5.5 millimeters is known to result in urination difficulties[20]. Therefore, in 

the subsequent sections of our paper, we will conduct further assessments based on this 

phenomenon. 

 

 

Fig. 3 2 Intravesical Prostatic Protrusion [21][22] 
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Chapter 4  

Process Image Method 

 

4.1 Introduction 

Our collaborative experiment is with the urology department of a certain hospital, 

focusing on the processing of ultrasound images of the bladder and prostate. The 

primary objective is to determine the degree of bladder concavity from these images to 

infer the condition of the prostate. We've achieved this through multiple interviews and 

discussions with the physicians to understand their clinical approach to interpreting 

ultrasound images. Using computer vision and relevant literature, we're gradually 

working towards automating the interpretation method. 

The main challenges we're addressing in this research include handling noise in 

ultrasound images, dealing with text interference in the original images, identifying the 

complete bladder and prostate, evaluating bladder concavity, estimating the healthy 

appearance of the bladder before any pathological changes, achieving assessment with 

limited labeled data and medical expertise introduction, and ultimately, and introducing 

our processing method and steps to medical personnel and obtaining their approval. 

In the following sections, I will introduce our approach for this study, and many 

details on computer vision techniques and methods have already been discussed in 

Chapter 2, and Biomedical knowledge in Chapter 3 
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Fig. 4 1 Flow Chart 
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Fig. 4 2 Ultrasound images of the bladder and prostate 

 

4.2 Preprocess Image 

Fig. 4.1 (above) is one of the images we need to process. Before starting the formal 

computer vision processing, we can identify several issues from this image. The first 

issue is that the image can be divided into the left half and the right half. The left half is 

the 'Transverse view,' and the right half is the 'Sagittal view.' In discussions with the 

collaborating physician, we were informed that measuring Intravesical Prostatic 

Protrusion (IPP) is done using the Sagittal view. Therefore, we need to perform image 

segmentation to extract the part we need for processing. 

The second issue is that we can see a lot of non-image text on the image, including 

English names, hospital record numbers, and ages (I have already obscured them with a 

mosaic in the paper). While this text does not contain precise personal privacy 
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information, for safety reasons and to reduce their impact on our image interpretation, 

we also need to remove them. 

The third issue is that the image contains many unnecessary borders and 

annotations, which, similar to text, might slightly affect image interpretation. So, we 

also need to eliminate these unnecessary borders and annotation lines before we can 

start the formal image processing. Below, I will explain how I preprocess these issues 

step by step. 

 

4.2.1 Remove text data 

I removed the text by specifying a fixed position and color. After careful 

observation of the pixels and positions of each text element, I found that the main color 

combinations were (190, 190, 190), (255, 227, 80), and (134, 220, 255). Of course, 

there were other colors as well, but I initially targeted the top-left diagonal, top-right 

diagonal, and left, and right sides to eliminate these annotations. Once I removed these 

points, I used the average color of the four neighboring pixels to fill the gaps. If two or 

more points in a row were removed, I extended the region to obtain the average color of 

the surrounding area to fill in the missing central area. Using this method, we obtained 

an image without any text interference. 

 

4.2.2 Image Segmentation 

Just like the previous introduction, the medical images that will be used in the 

clinical setting are the Sagittal view on the right side. To ensure precise assessment, we 

need to crop the images. First, we identify the midpoint of the image and split it into 
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two separate images. Then, we perform some processing. This is primarily because 

ultrasound images are only located in the central portion of the image, and there may be 

some borders in the peripheral areas that could affect image interpretation. Therefore, 

we remove these areas to retain only the central region in our processed images, which 

is the main area we want to analyze. We have removed unnecessary regions from most 

of the images as a part of our preprocessing. 

4.2.3 Removing unnecessary label 

This part is similar to removing text, but it mainly focuses on removing certain 

annotations, including centimeter markers on the left and right sides (which will be used 

for distance calculations later, but we need to remove them for now). It also includes 

markings in the middle blue and yellow areas. These are annotations made by 

specialists to indicate the position of the bladder. However, in this context, they will 

only interfere with our image analysis. The removal method primarily targets pixels 

with RGB values indicating yellow. Additionally, we need to remove the bottom marker 

that shows the direction of the ultrasound scan. These areas are treated similarly to text 

removal, focusing on specific positions and RGB pixel values. The filling method after 

removal is the same. 
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Fig. 4 3 Ultrasound images after Preprocess 

 

4.3 Process Image 

4.3.1 Noise Filtering 

Because, as mentioned earlier, ultrasound images contain a lot of noise, we aim to 

minimize noise interference in image analysis to better detect positions. However, we 

also have concerns that excessive smoothing might filter out the objects we want to 

detect. Therefore, after considering several common filters mentioned above, we 

decided to use a Gaussian filter. Here is the kernel formula we use 

   (5) 

We use the kernel function for the Gaussian filter above. After setting the values of 
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'c = 1' and '  = 10,' I convolution the kernel with the original image to perform noise 

reduction. 

 

4.3.2 Chose Threshold 

In this context, we need to choose a threshold to convert the image into black and 

white to identify the shape of the image. Initially, we used a fixed threshold value, but 

we realized that ultrasonic images vary in brightness, and even after filtering, some 

noise is still present. Therefore, we couldn't rely on a fixed value to find a general 

pattern. As a result, we later considered using an adaptive threshold. 

First, we used a method similar to Gaussian filtering to obtain a smooth mask, 

which serves as the threshold. Then, we multiplied it by a coefficient for further filtering. 

Below are the coefficients and the formula we used.  

 ,  ,  ,  , 

            

 (6) 

We take the previously mentioned smooth filter and perform two convolutions 

with the original image to obtain a threshold. We apply different thresholds to filter the 

original image, resulting in different black-and-white binary images. Subsequently, we 

use 'complement' to invert the black and white areas, This process yields the example 

results shown in the image below. 
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(a) 

 

  

(b) 
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(c) 

 

 

         (d) 

Fig. 4 4 Examples of adaptive threshold result.(a): Threshold = 1* Smooth. (b): 

Threshold = 0.9* Smooth. (c): Threshold = 0.8* Smooth.(d): Threshold = 0.6* Smooth. 
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4.3.3 Remove Irrelevant Regions 

From the results above, we can see the images at the imcomplement results of 

0.6smooth, 0.8smooth, 0.9smooth, and 1.0smooth. However, we can observe that with 

lower smoothing values, fewer regions are retained. Even in the context of 0.6 ratio 

smoothing, there are still many small regions or other unrelated areas present. These 

areas can affect our interpretation. Therefore, we initially apply some basic filtering to 

these small blocks. 

First, for small areas, we set a criterion to exclude any region with an area less than 

(length * width) / 100. Then, we proceed to filter out areas that are too far from the 

center of the image. We consulted with a physician, and the physician indicated that all 

IPP images are essentially located at the center of the image. Therefore, we can 

confidently filter out areas near the edges. To avoid excessive filtering, we set the 

condition that an area is only excluded when the center of that area is higher than length 

* 1/4 or lower than length * 3/4 or when it is to the left of width * 1/4 or to the right of 

width * 3/4. Below are example results of filtering for each of the thresholds. 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 

Fig. 4 5 Examples of removing irrelevant regions in different thresholds.(a): Threshold 

= 1* Smooth. (b): Threshold = 0.9* Smooth.(c): Threshold = 0.8* Smooth. (d): 

Threshold = 0.6* Smooth. 
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4.3.4 Find Bladder Main Region 

Based on the steps above, we found that the lowest smoothing coefficient scaling 

factor I used was only able to capture down to 0.6. This was because, during 

experiments, I observed that when the scaling factor was set lower than 0.6, some 

images, especially those where the bladder features were less distinct, resulted in parts 

of the bladder being filtered out. Therefore, I decided to set the minimum scaling factor 

to 0.6. Through all our annotations and test images, we discovered that, regardless of 

the chosen scaling factor, there was always a portion of the bladder within this range, 

with some areas completely black. While not all regions inside the bladder might be 

filtered by the threshold, we still needed to identify areas that could potentially be part 

of the bladder. Locating the bladder is a crucial step for us, and without identifying the 

main bladder region, we wouldn't be able to proceed with the next steps. 

After going through the previous steps, we were able to obtain the approximate 

location of the bladder at a scaling factor of 0.6. However, there could still be additional 

large regions that, based on the original image interpretation, might be the prostate or 

simply meaningless empty areas. This is where our next step comes into focus: 

accurately identifying the bladder's position, essentially distinguishing which area is the 

bladder. We used two criteria for this determination: area and relative position. We 

scanned the image from top to bottom, and the first region we encountered with the 

highest central point and the largest area was considered the bladder. If larger areas 

were encountered further down, they were not considered as part of the bladder. 
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Fig. 4 6 Examples of finding bladder main region 

4.3.5 First Extension 

After going through the above steps, we obtained the most basic outline of the 

bladder's location. However, there is still a significant difference from the expected 

appearance of the bladder. Therefore, we need to gradually expand the bladder to give it 

the desired contour. We will go through three main expansion steps, and this is our first 

expansion step. The primary method is to utilize the bladder position obtained through 

the previously mentioned method. Next, we compare it with the 0.9 * threshold image. 

First, we apply 50 iterations of closing to the bladder's small region obtained from 

the 0.6 * threshold image. Afterward, we perform 15 iterations of opening on the 0.9 * 

threshold image. We then perform region segmentation using Bwlabel. Next, we take 

the regions and combine them with the results of closing from the 0.6 * threshold image 

for the same regions. In other words, if there is an intersection between the opening 

results from the 0.9 * threshold image and the closing results from the 0.6 * threshold 

image, we directly include that region in the 0.6 * threshold image for region expansion. 

Here, we will explain in detail why we follow this approach. First, the reason for 
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performing 15 iterations of opening on the 0.9 * threshold image is that the final 

expansion mainly focuses on the 0.9 * threshold case. Therefore, we need to disconnect 

each region through extensive opening because small connections are often due to 

unnecessary region linkages. Using the principles of opening, we separate these areas. 

The choice of 15 iterations is based on testing and finding a suitable balance. 

As for performing closing on the 0.6 * threshold image, we initially identified the 

basic outline of the bladder, but there may be various fragmented conditions. Therefore, 

we use a larger number of openings to try to complement them as much as possible. 

Afterward, by performing a union expansion on the common areas between the two, we 

can obtain a union region basic bladder outline in the first step. It's worth mentioning 

that we focus on the segmentation of regions in the opening step. We only include an 

area if it overlaps with the closing regions, so sometimes it may be smaller than the 

closing image and possibly even smaller than the bladder obtained in the previous step. 

Below is a schematic diagram of one of our cases. 

 

(a) 
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(b) 

 

 

(c) 
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Fig. 4 7 Examples of First Extension.(a): opening 0.9*Threshold by 15 times.   

(b): closing bladder main region 50 times.  (c): the white region is 0.9*Threshold the 

blue region is the bladder main region and the green region is our expanded region. 

 

4.3.6 Compare and expand of bladder 

Using the method described above, we started with a scaling factor of 0.6 and 

removed unimportant areas, allowing us to identify a small portion of the main bladder 

region. After the first stage of expansion, the bladder expansion profile of the first stage 

was obtained. Subsequently, we want to gradually expand from this small area outward 

to find the contour of the main bladder region. We will undergo a total of three 

expansion stages. Here is the second step. Our approach involved using threshold 

images with different scaling factors for this expansion process. This approach was 

based on the understanding that, even though the bladder is the primary area with a 

relatively large and darker ultrasound imaging region, it doesn't mean that the entire 

bladder area's ultrasound image contour can be identified in the experiments. This is 

because there may be less distinct ultrasound imaging regions at the boundaries or 

certain points within the bladder region. Our method involved repeatedly expanding to 

find a more complete contour of this area by using different scaling factors for 

thresholding. We primarily utilized scaling factors of 0.6, 0.8, and 0.9 for this expansion 

and filtering process. In total, we underwent three rounds of expansion in this step, and 

after each expansion, we compared the results with images using higher coefficient 

thresholds before continuing the expansion. 
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The following step-by-step instructions detail our expansion method. First, we 

utilize the bladder positions we obtained previously. Next, we compare the 0.6 times the 

threshold image. We use an Exclusive OR operation from white image blocks below 0.6 

times the threshold to subtract the first step expended image. Then, we perform block 

segmentation using BWlabel on these blocks. Subsequently, we apply one closing 

operation, followed by three opening operations. Afterward, we perform BWlabel once 

more for block segmentation. These processed blocks are collectively referred to as 

"add regions." 

Next, we scan each "add region" and exclude it if its size exceeds 1.5 times the 

original first step expended image area or if the area of the add region is too large, 

exceeding approximately 1000 pixels (i.e., (image length * image width) / 300) and if 

the center point of the added region is to the right of the farthest right bladder position., 

it is excluded. Additionally, if the y-axis length of the add region is 1.3 times longer 

than its x-axis length, it is excluded. If the add-region includes pixels that are too near to 

the left or too near to the right, it will also be filtered out and not added (within the left 

or right 15 pixels). 

This analysis and selection process completes the first stage of expansion and merging. 

Next, we will explain the reasons for filtering each "add region." First, concerning 

the multiplication of the first step expended image the threshold by 1.5 times the area, it 

is because, during our analysis, we found that in some cases, certain areas in the images 

were connected unnecessarily. Upon consultation with medical professionals, we 

discovered that this connectivity was a result of unnecessary cavities appearing in the 

ultrasound images. Therefore, after our analysis, we concluded that the original first 

step expanded image in the bladder area already covers a certain area. Even when 



doi:10.6342/NTU202400113

34 

 

normally connected, an added area should not exceed 1.5 times the original area. If it 

exceeds this threshold, it likely connects to other cavity areas, so we remove any 

regions exceeding 1.5 times the area. 

Additionally, for "add regions" with an area greater than (image length * image 

width) / 300 and located more to the right than the farthest right point in the bladder, we 

don't merge them. This decision is primarily based on the observation that after 

performing the Exclusive OR operation and adding regions, they are unlikely to have 

excessively large areas. However, they may still contain small cavities that are not part 

of the bladder, as described above. In this case, we use relative positioning to determine 

the location. The preference for the far right point of the bladder is because, in our 

experimental images, the prostate is typically located in the lower right area. Initially, 

we attempted to use image analysis to locate the prostate similarly to how we found the 

basic position of the bladder. However, we found that the prostate, under the 

mechanism of ultrasound imaging, could sometimes appear as a dark cavity, sometimes 

not, and sometimes even as a bright anomaly. There was no consistent imaging pattern, 

so we relied on the relative positioning, specifically to the right of the farthest right 

point of the original bladder at 0.6 times the threshold. If a region is connected to the 

bladder, exceeds the area threshold, and its center point is to the right of the farthest 

right point of the original bladder by a significant margin, we consider it highly likely to 

be the prostate and exclude it from the expanded bladder region. 

Lastly, regarding the y-axis length of "add regions" being more than 1.3 times the 

x-axis length, this is mainly because the ultrasound images of the bladder that we 

obtained predominantly exhibit a left-right elongation (where the X-axis is greater than 

the Y-axis). Even after applying more refined threshold segmentation, this phenomenon 
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persists. Therefore, when the y-axis length of an "add region" is more than 1.3 times the 

x-axis length, we consider that what we are adding is likely an unrelated cavity or an 

image of a region other than the bladder. In such cases, we also remove these regions 

rather than including them in our analysis. 

After explaining the reasons behind each step, let's return to our original method of 

handling different layers. Essentially, we process three layers. The first layer involves 

finding the basic position using the first step expanded image, as previously discussed, 

and then comparing each "add region" to obtain the new bladder. The second layer is 

built upon the newly merged bladder image obtained in the first layer. We perform the 

Exclusive OR operation with the results of a 0.8 times threshold and apply bwlabel to 

obtain various regions. We then individually filter each region to decide whether to 

include them in the merger. Next, we repeat the same Exclusive OR operation using the 

results from the 0.8 times threshold, this time compared to the 0.9 times threshold, and 

apply bwlabel, followed by region selection and merging. This process results in the 

bladder's expanded contour map for the first stage. 
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(a) 

 

 

(b) 
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(c) 

Fig. 4 8 Examples of Extension. (a): first time extension from 4.3.5 step to 0.6, blue 

region is original region and green is extension parts.  (b): second times extension from 

1st step to 0.8, blue region is original region and green is extension part.  (c): third 

times extension from 2st step to 0.9, blue region is original region and green is 

extension part. 

 

4.3.7 Find Final Bladder Position 

After the three expansion steps in the previous second step, we have already 

obtained most of the bladder's outline. However, at this point, we can observe, as 

illustrated in the example above, that there are numerous non-bladder regions present in 

the image. The next step to take is to compare these regions with the smallest bladder 
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area obtained in the earliest stage, which is the result of 4.3.4, and filter out the true 

appearance of the bladder. 

To do this, we start by applying one opening operation followed by two closing 

operations to the result mentioned in section 4.3.6. Afterward, we perform region 

labeling using bwlabel. Then, we scan each region, and if a region contains points from 

4.3.4, we include it in the final area. This way, we obtain the final bladder region. 

 

 

Fig. 4 9 Examples of Final Bladder Outline 

4.3.8 Get Bladder Turning Point 

Once we have identified the bladder's outline, the next step is to search for the 

bladder's concave shape to determine the state of IPP (Intravesical Prostatic Protrusion). 

However, just as mentioned above, the prostate does not exhibit distinct features or 

characteristics in ultrasound imaging. Sometimes it may have dark areas, sometimes it 

may be all white, and sometimes it can be noisy and challenging to interpret. We only 
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know that the prostate is generally located in the lower right corner of the bladder based 

on discussions with collaborating physicians. In a healthy, non-diseased state, the 

bladder appears like an elliptical expanding sac under negative pressure. But when there 

is a prostate condition (IPP), it exhibits a concave shape. So, in this step, we aim to 

identify and estimate its original healthy state and concave shape to calculate the IPP 

index. The idea is to use the characteristic of the elliptical expanding sac to make 

inferences about the health condition. 

Therefore, we plan to use the ratio of area to distance and relative positions to infer 

IPP. First, we use Boundary Descriptors to find the bladder's outer edge, and we 

calculate a basic value based on the formula as follows. 

    (7) 

According to the formula above, we aim to find the smallest possible value, which 

means that in theory, we prefer a larger area and shorter connected edges. In other 

words, we want to find the shortest path, which, in practice, would indicate a concave 

shape because a concave shape would have a relatively smaller area and relatively 

longer edges. By finding the shortest path, we aim to identify the bladder's original 

healthy state. 

After introducing the formula and theory, we will provide a detailed explanation of 

our steps and reasoning. 

First, we use the bladder contour we've identified so far and find the rightmost and 

bottommost points. Because, based on our theory, we assume that the prostate is always 

located in the lower right part of the bladder, we estimate that we need to search within 

the area defined by the rightmost point and the bottommost point. Next, we need to 
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determine whether the Boundary Descriptor selection follows a clockwise or 

counterclockwise direction. Although the Boundary Descriptor is typically in a 

clockwise direction, we perform an extra check for safety. 

Starting from the rightmost point and moving towards the bottommost point, we 

calculate the selected path. We use a loop to calculate the direct line between every pair 

of points and recalculate the new value as follows: . We 

record the position of the two points that give us the minimum value. It's worth noting 

that if there is a bladder edge obstruction between two points in a direct line, we don't 

record that connection. After calculating the minimum path area ratio value for all 

points, we consider the points where the minimum value occurs as the starting and 

ending points of the bladder's concave area. 

 

Fig. 4 10 Bladder Turning Point : The light blue area represents the bladder, and the two 

dark blue asterisks represent the starting and ending points of the concave area. 
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4.3.9 Estimated Bladder Health Image 

After estimating the starting and ending points of the bladder's concave area, the 

next step is to estimate the bladder's original healthy appearance. Here, we use the 

elliptical shape mentioned in our discussion with the physician and the labeled samples 

we have. First, we find the current center point of the bladder and use the previously 

identified starting and ending points of the concave area. Next, we need to perform a 

reconstruction by connecting these points. We treat the concave starting and ending 

points as two points on the ellipse and use the current bladder's center of mass as the 

center point of the ellipse for calculation. Below is the formula and an illustration of the 

elliptical calculation: ( , ) is the Center, (x, y) means the Starting and ending points 

of the elliptical concavity 

   (8) 

Convert to the following: ( , ) is the Center, ( , ) is the Starting points of 

the elliptical concavity, ( , ) is the ending points of the elliptical concavity, a is the 

Major axis, b is the minor axis. 

    (9) 
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Fig. 4 11 Ellipse 

 

Through the calculations mentioned above, we obtained the connections of the 

ellipse and implemented them within our bladder region. However, when we compared 

our calculations with the physician's labels for all our samples, we found that the 

physician's labels were not always in perfect agreement with the ellipse. Sometimes, the 

labeled results appeared slightly more flattened compared to the ellipse. To address this, 

we decided to introduce a weight factor, w. We apply this weight factor w to the 

elliptical calculations and use (1-w) for the original vertical connection. After 

conducting tests, we found that a value of w around 0.5 was the most suitable. 

Therefore, with this weighted calculation, we obtain an estimate of the bladder's original 

healthy outline. 
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(a) 

 

 

(b) 



doi:10.6342/NTU202400113

44 

 

 

(c) 

Fig. 4 12 Examples of estimated bladder in healthy conditions.(a): Link by 1* elliptical 

curve.  (b): Link by 1* straight line.  (c): Link by 0.5* elliptical curve and 0.5* 

straight line. 
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Chapter 5 

Scoring Compare 

In a series of processing steps, we identified the bladder contour and bladder area 

from bladder ultrasound. Subsequently, we assessed the bladder's health status. 

However, after a series of processing steps, we have not yet performed an actual 

numerical analysis and comparative table. Therefore, in this section, we will explain. 

5.1 Physician's marking calculation 

The bladder ultrasound image and the marked lines provided by the physician are 

on separate images. Therefore, we need to merge the two images. Additionally, since 

the markings are not quantified, we need to process the physician's markings to make 

them quantifiable. First, we identify the two intersection points of the circled lines for 

the bladder and prostate positions marked by the physician. Only after this can we 

proceed with numerical scoring. The method of numerical scoring will be explained 

later. Our main focus here is to display the physician's marked image, merge it with the 

ultrasound image, and identify the intersection points.  
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Fig. 5 1 Physician's marking calculation 

 

5.2 Midpoint vertical distance 

This is a common method for measuring the IPP in the medical field, as inquired 

by our collaborating physician. The approach involves identifying the intersection 

points at the depression of the bladder, connecting two points, and then measuring the 

vertical distance from the midpoint to the concave region inside the bladder. If we are 

using the physician's annotated image, we take the intersection points of the two 

annotated circles to calculate the vertical distance. If we have identified the bladder 

contour ourselves, we can connect the two intersection points from Chapter Four and 

measure the vertical distance from the midpoint to the inner concave region of the 

bladder. 
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(a) 

 

 

(b) 

Fig. 5 2 Comparison of Actual Results in IPP:  (a): Physician's marking . (b): 
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Experimental results   The red line represents the bladder, the yellow line represents 

the prostate, white asterisks denote the intersection points of the two, the green line 

signifies the connection between the intersection points, and the blue line represents the 

IPP distance. 

 

5.3 Ellipse PCA distance 

From the above method, we can identify the common IPP measurement used by 

physicians in the medical field. However, using this method alone, we cannot estimate 

the original contour of a healthy bladder. To assess the accuracy of our reconstruction, 

we introduced an additional method to estimate the bladder. In this case, we utilized the 

Elliptical Estimation using Principal Component Analysis (PCA). The principle behind 

this approach is based on the inference that the bladder and prostate, in a healthy state, 

should exhibit an elliptical or sac-like ultrasound shape. Therefore, we applied PCA to 

estimate the bladder by assuming that the intersection point is approximately elliptical. 

We conducted a horizontal projection to calculate the major and minor axes of the 

ellipse. We used the minor axis of the ellipse as a comparative measurement standard to 

evaluate how accurately we reconstructed the appearance of a healthy bladder. It is 

important to note that these results are unrelated to the IPP index; they serve solely as 

an indicator for the degree of accuracy in estimating the appearance of a healthy 

bladder. 

Here, we provide a detailed explanation of the PCA methodology, which is similar 

to the approach described in Section 4.3.9 when estimating the appearance of the kidney 

using elliptical estimation. Firstly, we utilize the previously estimated healthy bladder 
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and identify its intersection line with the kidney. The region of intersection between 

these two serves as the target for our processing. The following is our formula: 

 

( , ) is the centroid,    are any point within the range 

z = [( - ),( - )],   =  z
T * z    (10) 

 

[E,D] : matrix D is eigenvalues, and matrix E whose columns are the corresponding 

right eigenvectors of  

 = z * (first column vector of E),  = z * (second column vector of E); 

 , ,  E( ) represents taking the average 

 

    (11) 
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After the PCA calculation mentioned above, we obtain the major and minor axes (a, 
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b) of the ellipse. We then use the minor axis b as the standard for reconstructing a 

healthy bladder. 

 

(a) 

 

 

(b) 

Fig. 5 3 PCA distance: (a): PCA in Physician's marking. (b): PCA in my result 
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5.4 Unit Conversion 

While the above method allows us to explicitly obtain the calculated depth of the 

bladder depression and the depth of the physician's marked range, a crucial aspect is 

determining whether there is a need for treatment related to the IPP. The key criterion 

for assessing IPP is whether it reaches 5.5 millimeters. Therefore, we need to perform 

unit conversion to transform the original pixel values into millimeters. We adopted a 

method using the conversion between millimeters and pixels based on marked points on 

the image. Starting from the highest point at mark 1 to the lowest point at mark 5, we 

performed calculations and found a total of 180 pixels. Upon meticulous examination, 

we confirmed that each interval had a consistent number of pixels. Therefore, we 

inferred that in our experimental ultrasound images, each millimeter corresponds to 36 

pixels. Using this conversion factor as a basis, we recalculated our previous results and 

made the final comparisons  

                   

(a)                       (b) 

Fig. 5 4 Unit Conversion Image: (a): part of the ultrasound image the red box indicates 

the position of the calibration ruler. (b): magnified ultrasound. 
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5.5 Result Compare 

For the comparison of results, we primarily divide it into two parts. The first part 

involves calculating the accuracy of correctly identifying the IPP for processing. 

Considering a 10% margin of error, so we discussed with the physician to set 5 

millimeters as the threshold for severe processing. The second part involves comparing 

the depression values of IPP, focusing on targets where IPP is greater than 5 

millimeters. 

 

Table 5. 5 Results and error comparison table 

IMAGE NUM LABEL  RESULT ATTENTION   ERROR(%)   

1-1 6.7 5.3 V 20.89 

1-2 8.33 8.33 V 0 

1-3 0.28 0.28 X  

1-4 0.56 0.56 X  

1-5 9.17 6.94 V 24.32 

2-1 4.4 5.8 T 31.81 

2-2 8.89 6.11 V 31.27 

2-3 6.94 6.38 V 8.07 

2-4 0.28 1.67 X  

2-5 5.83 5 V 14.24 

2-6 0.28 2.22 X  

2-7 0.28 1.67 X  

2-8 13.3 13.3 X 0 
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2-9 1.39 2.78 X  

2-10 0.28 0.83 X  

2-11 5 6.11 V 22.2 

2-12 0.28 1.94 X  

2-13 18.6 25.3 V 36.02 

2-14 0.28 0.28 X  

2-15 3.06 3.06 X  

2-16 5.56 5.56 V 0 

2-17 3.33 3.33 X  

2-18 0.28 3.33 X  

2-19 12.8 11.7 V 8.59 

2-20 0.28 1.11 X  

 

We would like to provide a detailed explanation of the comparison table mentioned 

above. The images are categorized based on the batches provided by the physician, 

namely the first batch and the second batch. The units for both marking and result 

comparison are in millimeters, rounded to the second decimal place. The error 

percentage is calculated only for targets where IPP is greater than 5 millimeters, and it is 

also rounded to the second decimal place. The calculation formula is as follows: (Label 

Value – Result Value ) / Label Value   

Based on the above results, we summarize the data, presenting a 95% accuracy rate 

in predicting the need for further examination of bladder difficulty. In the second step, 

when predicting depression greater than 5 millimeters, requiring an advanced 

examination of bladder IPP depression, we achieve an average accuracy of 16.45% 
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5.6 Error attribution 

Regarding the reasons for errors, we have a few findings. First, the data we 

received is manually annotated, and the values are subject to human observation. In 

some scenarios, we noticed that when we zoomed in on the images, many annotations 

might have some human observation errors, possibly due to the distance between the 

markings and the edges of the bladder image. The second potential source of error 

comes from using the area-to-perimeter ratio to find the shortest distance. This distance 

may not precisely represent the actual intersection point. The most common occurrence 

is when the starting and ending points of the intersection between the bladder and 

prostate form an 'M' shape in the depression, and it should connect from the far right to 

the far left initially. However, we might have identified only the midpoint connecting to 

the far left to select as the starting point. Although the proportion of this occurrence is 

not high, we have observed some instances of this condition. The third potential reason 

is incomplete identification of the bladder contour, possibly due to the bladder being 

connected to other cavities or issues during the imaging procedure. This insufficient 

completeness in contour identification might result in errors in our analysis. However, 

instances of this situation are also relatively rare. 
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(e) 

Fig. 5 5 Error attribution Reason: (a) & (b) provide a comparison with the physician's 

annotations. When viewed at normal size, they may appear to be marked on the edge of 

the bladder. However, upon closer inspection of the enlarged results of (b), it becomes 

evident that there is some distance from the bladder edge. (c) & (d) provide a 

comparison in a scenario with a bladder depression resembling an 'M' shape. There is a 

discrepancy in the determined points between the physician's marking in (c) and our 

results in (d).  (e) illustrates that in some cases, our results may show a slight distance 

between the starting and ending points of the bladder depression. The blue asterisks 

represent the physician's markings, while the green asterisks represent our marked 

results, indicating a minor discrepancy. 
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Chapter 6 

Experimental Results 

Since our paper primarily focuses on medical images of bladder ultrasound, 

although we have discussed the numerical results in the previous sections, our findings, 

aside from being quantified, can also be utilized to facilitate rapid image interpretation 

by physicians. To illustrate these points, we present ten processed results in this paper. 

In each pair of images, the left part shows the results annotated by the physician, while 

the right part displays our processed results. The yellow line represents the expected 

appearance of the bladder in healthy conditions, and the red line indicates the condition 

where the prostate causes depression in the bladder. 
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Fig. 6 1 Images result compare 
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Chapter 7 

Conclusion  

The detailed research primarily focuses on the concavity index of the bladder and 

the interpretation of prostate protrusion into the bladder. The identification methods 

mainly employed include noise reduction, edge detection, dynamic thresholding, 

morphology, and the shortest distance evaluation for processing. Measurement 

standards are established using PCA distance measurements and vertical distance from 

the central point. 

The algorithm we developed for processing bladder ultrasound images (IPP): 

1. The initial step involves handling non-image data related to patient records. 

2. Subsequent steps entail the removal of noise from ultrasound images. 

3. The primary location of the bladder is determined by comparing it with the 

primary brightness threshold. 

4. The prostate's position is deduced by iteratively enhancing the appearance of 

the bladder relative to brightness. 

5. Non-bladder sections are removed based on relative position and 

morphological analysis. 

6. By comparing the boundary Descriptor's perimeter and area ratio tables, we 

identify the estimated junction point of the bladder-prostate depression. 

7. Using the previously mentioned processed image, the extent of bladder 

concavity is estimated through vertical projection and the PCA algorithm. 

Based on the methods above, the concavity disease index of bladder ultrasound 
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images can be determined.  
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