Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9138
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許永真(Jane Yung-jen Hsu)
dc.contributor.authorYu-Chin Taien
dc.contributor.author戴于晉zh_TW
dc.date.accessioned2021-05-20T20:10:33Z-
dc.date.available2009-07-30
dc.date.available2021-05-20T20:10:33Z-
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citation[1] L. Bao and S. Intille. Activity recognition from user-annotated acceleration data. Lecture
Notes in Computer Science, pages 1–17, 2004.
[2] A. Bourke, J. ODbrien, and G. Lyons. Evaluation of a threshold-based tri-axial accelerometer
fall detection algorithm. Gait & Posture, 26(2):194–199, 2007.
[3] C. Brooks, K. Iagnemma, and S. Dubowsky. Vibration-based terrain analysis for mobile
robots. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pages 3415–3420, 2005.
[4] S. Cha and S. Srihari. On measuring the distance between histograms. Pattern Recognition,
35(6):1355–1370, 2002.
[5] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.
[6] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan. The pothole
patrol: using a mobile sensor network for road surface monitoring. In MobiSys ’08:
Proceeding of the 6th international conference on Mobile systems, applications, and
services, pages 29–39, New York, NY, USA, 2008. ACM.
[7] D. Fischer, M. B‥orner, J. Schmitt, and R. Isermann. Fault detection for lateral and vertical
vehicle dynamics. Control Engineering Practice, 15(3):315–324, 2007.
[8] E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, and H. Soliman. Roughness parameters.
Journal of Materials Processing Tech., 123(1):133–145, 2002.
[9] P. Giguere and G. Dudek. Surface Identification Using Simple Contact Dynamics for
Mobile Robots. In Proceedings of the IEEE International Conference on Robotics and
Automation, 2009.
[10] T. Gillespie. Everything you always wanted to know about the IRI, but were afraid to
ask! In Road Profile Users Group Meeting, Lincoln, Nebraska, 1992.
[11] T. Huynh and B. Schiele. Analyzing features for activity recognition. In Proceedings of
the 2005 joint conference on Smart objects and ambient intelligence: innovative contextaware
services: usages and technologies, pages 159–163. ACM New York, NY, USA,
2005.
[12] S. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.
[13] A. Loizos and C. Plati. An alternative approach to pavement roughness evaluation. International
Journal of Pavement Engineering, 9(1):69–78, 2008.
[14] P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: rich monitoring of road and
traffic conditions using mobile smartphones. In SenSys ’08: Proceedings of the 6th ACM
conference on Embedded network sensor systems, pages 323–336, New York, NY, USA,
2008. ACM.
[15] L. Ojeda, J. Borenstein, G. Witus, and R. Karlsen. Terrain characterization and classification
with a mobile robot. Journal of Field Robotics, 23(2), 2006.
[16] N. Ravi, N. Dandekar, P. Mysore, and M. Littman. Activity recognition from accelerometer
data. In PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL
INTELLIGENCE, volume 20, page 1541. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press, 2005.
[17] P. Sen. Estimates of the regression coefficient based on Kendall’s tau. Journal of the
American Statistical Association, pages 1379–1389, 1968.
[18] F. Serratosa and A. Sanfeliu. Signatures versus histograms: Definitions, distances and
algorithms. Pattern recognition, 39(5):921–934, 2006.
[19] S. Smith. Digital signal processing: a practical guide for engineers and scientists.
Newnes, 2003.
[20] L. Sun, Z. Zhang, and J. Ruth. Modeling indirect statistics of surface roughness. Journal
of Transportation Engineering, 127(2):105–111, 2001.
[21] S.Wang,W. Pentney, A. Popescu, T. Choudhury, and M. Philipose. Common sense based
joint training of human activity recognizers. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, pages 2237–2242, 2007.
[22] L. Wei, T. Fwa, and Z. Zhe. Wavelet analysis and interpretation of road roughness.
Journal of Transportation Engineering, 131:120, 2005.
[23] I. Witten and E. Frank. Data mining: practical machine learning tools and techniques
with Java implementations. ACM SIGMOD Record, 31(1):76–77, 2002.
[24] D. Wyatt, M. Philipose, and T. Choudhury. Unsupervised activity recognition using
automatically mined common sense. In PROCEEDINGS OF THE NATIONAL CONFERENCE
ON ARTIFICIAL INTELLIGENCE, volume 20, page 21. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press, 2005.
[25] E. Yilmaz, J. A. Aslam, and S. Robertson. A new rank correlation coefficient for information
retrieval. In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, pages 587–594, New
York, NY, USA, 2008. ACM.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9138-
dc.description.abstract近年來,台灣的道路工程品質往往給人「地無三里平」的刻板印象。根據法務部的從民國 94 年至民國 96 年的數據顯示,因為道路品質所引發的國賠事件,賠償金額共為一億一仟三百多萬元。施工品質不良除了賠上額外的經費,更進一步危害用路人的安全。本研究利用固定在機車置物箱內的行動裝置,收集三軸加速度器在不同路面的資料,進而分析加速度變化與路面狀況的關係。
本研究的目的在於偵測異常路面及評估路段品質。我們收集了騎乘機車時的加速度資料,共十二個路段,三個小時,約六十公里,並利用監督式(supervised)及非監督式(unsupervised)兩種機器學習的方法評估路面狀況。監督式的機器學習利用已標記的資料,嘗試辨認某個位置是否為異常路面,由此方法得到 78.5% 的異常路面辨識率(precision)。非監督式的機器學習利用分群(clustering)及學習門檻值(threshold),找出平穩路面的振動模型。實驗最後,以上述兩種方法評估路段狀況,進而建立起一個道路品質的地圖。
zh_TW
dc.description.abstractMaintaining the quality of roadways is a major challenge for governments around the world. Poor road surfaces pose significant safety threats to drivers and motorists. According to the statistics of the Ministry of Justice in Taiwan, there are 220 claims for state compensation caused by road quality problems from 2005 to 2007, and the government paid a total of 113 million NTD in compensation.
This research explores utilizing a mobile phone with tri-axial accelerometer to collect acceleration data while riding in the motorcycle. The data is analyzed to detect road anomaly and to evaluate the quality of the road segments. Acceleration data on motorcycles are collected on twelve road segments, three hours long, with a total length of about 60 kilometers in our experiments. Both supervised and unsupervised machine learning methods are used to recognize the road condition. SVM learning is used to detect road anomaly and to identify its corresponding position from labeled acceleration data. This method achieves a precision of 78.5% in road anomaly detection. To construct a model of smooth roads, unsupervised learning is used to learn the thresholds by clustering data collected from the accelerometer. The results are used to rank the quality of multiple road segments. We compare the rank list from the evaluator with the rank list from human testers who rode on the roads segments. The experiment showed that the automatic rank result is good based on the Kendall tau rank correlation coefficient.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:10:33Z (GMT). No. of bitstreams: 1
ntu-98-R96922047-1.pdf: 2445412 bytes, checksum: 02a3ecb314f9992ac5b6fc4cc4fedbc2 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAbstract v
List of Figures xii
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.1.1 National Compensation due to Poor Road Quality 2
1.1.2 Pothole Avoidance 2
1.1.3 Rapid Change in Road 3
1.2 Research Objectives 3
1.2.1 Road Anomaly Detection 4
1.2.2 Relabeling Technique 4
1.2.3 Road Condition Evaluation 4
1.3 Challenges 5
1.3.1 The Model of Smooth Road 5
1.3.2 Supervised Classifier for Relabeling 5
1.3.3 Trade-off between Detection and Use 6
1.4 Thesis Organization 6
Chapter 2 Literature Review 7
2.1 Pavement Roughness Evaluation 7
2.2 Acceleration Data Recognition 8
2.2.1 Activity Recognition 8
2.2.2 Terrain Analysis for Mobile Robots 9
2.2.3 Fault Detection for Vehicle 10
2.3 Road Surface Monitoring 11
2.3.1 Road Surface Monitoring Using Mobile Device 11
2.3.2 Websites for Monitoring Non-emergency Issues 11
Chapter 3 Anomaly Detection of Road Surface 13
3.1 Assumption 13
3.2 Problem Definition 14
3.2.1 Road Surface Classification 14
3.2.2 The Quality of Road Section 18
3.3 Proposed Solution 20
3.3.1 Input Data Preprocessing 20
3.3.2 Method for Road Surface Classification 22
3.3.3 The Model of Smooth Surface 24
3.3.4 Evaluation of Road Quality 26
Chapter 4 Implementation 29
4.1 Hardware and Software Setup 29
4.1.1 Hardware Setup 29
4.1.2 Software Setup 30
4.2 System Architecture 34
4.2.1 User Side 34
4.2.2 Server Side 35
Chapter 5 Experimental Design and Results 37
5.1 Data Collection 37
5.1.1 Data Description 38
5.1.2 Data Observation 39
5.2 Evaluation 46
5.2.1 Anomaly Detection using LIBSVM 46
5.2.2 Quality Evaluation of Road Section 50
Chapter 6 Conclusion 53
6.1 Summary of Contributions 54
6.2 Future Work 55
Bibliography 56
dc.language.isoen
dc.title以智慧型行動裝置進行自動偵測異常路面zh_TW
dc.titleAutomatic Road Anomaly Detection Using Smart Mobile Deviceen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇豐文(Von-Wen Soo),陳俊良(Chuen-Liang Chen),朱浩華(Hao-Hua (Hao),蔡宗翰(Richard Tzong-Han Tsai)
dc.subject.keyword加速度器,行動裝置,手機,行動感測,異常路面,路面坑洞,zh_TW
dc.subject.keywordaccelerometer,mobile device,mobile phone,mobile sensing,road surface anomaly,pothole,en
dc.relation.page58
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf2.39 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved