Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91309
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志平zh_TW
dc.contributor.advisorChih-Ping Weien
dc.contributor.author郭宇雋zh_TW
dc.contributor.authorYu-Jun Kuoen
dc.date.accessioned2023-12-20T16:25:43Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-10-04-
dc.identifier.citationAbouzeid, A., Granmo, O.-C., and Goodwin, M. (2021). Modelling emotion dynamics in chatbots with neural hawkes processes. In Proceedings of International Conference on Innovative Techniques and Applications of Artificial Intelligence, pages 146-151. Springer.
Adam, E. (2019). Improving the user experience of chatbots with tone analysis. Unpublished Thesis, Department of Computer Science and Business Information Systems, Karlsruhe University of Applied Sciences, Karlsruhe, Baden-Württemberg, Germany.
Belharbi, S., He ́rault, R., Chatelain, C., and Adam, S. (2016). Deep multi-task learning with evolving weights. In Proceedings of European Symposium on Artificial Neural Networks (ESANN).
Busso, C., Bulut, M., Lee, C.-C., Kazemzadeh, A., Mower, E., Kim, S., Chang, J. N., Lee, S., and Narayanan, S. S. (2008). Iemocap: Interactive emotional dyadic motion capture database. Language Resources and Evaluation, 42(4):335-359.
Cao, S., Qu, L., and Tian, L. (2021). Causal relationships between emotions and dialog acts. In Proceedings of 9th International Conference on Affective Computing and Intelligent Interaction (ACII), pages 1-8. IEEE.
Chen, Y., Fan, W., Xing, X., Pang, J., Huang, M., Han, W., Tie, Q., and Xu, X. (2022). CPED: A large-scale Chinese personalized and emotional dialogue dataset for conversational ai. arXiv preprint arXiv:2205.14727.
Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Ganin, Y. and Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. In Proceedings of International Conference on Machine Learning, pages 1180-1189. PMLR.
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., and Lempitsky, V. (2016). Domain-adversarial training of neural networks. Journal of Machine Learning Research, 17(1):2096-2030.
Guibon, G., Labeau, M., Flamein, H., Lefeuvre, L., and Clavel, C. (2021). Few-shot emotion recognition in conversation with sequential prototypical networks. arXiv preprint arXiv:2109.09366.
He, W., Dai, Y., Zheng, Y., Wu, Y., Cao, Z., Liu, D., Jiang, P., Yang, M., Huang, F., Si, L., et al. (2022). Galaxy: A generative pre-trained model for task-oriented dialog with semi-supervised learning and explicit policy injection. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 10749-10757.
He, Z., Tavabi, L., Lerman, K., and Soleymani, M. (2021). Speaker turn modeling for dialogue act classification. arXiv preprint arXiv:2109.05056.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8):1735-1780.
Kim, M. and Kim, H. (2018). Integrated neural network model for identifying speech acts, predicators, and sentiments of dialogue utterances. Pattern Recognition Letters, 101:1-5.
Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kongyoung, S., Macdonald, C., and Ounis, I. (2020). Multi-task learning using dynamic task weighting for conversational question answering. In Proceedings of the 5th International Workshop on Search-Oriented Conversational AI (SCAI), pages 17-26.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324.
Liu, B. (2020). Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge University Press.
Liu, S., Liang, Y., and Gitter, A. (2019a). Loss-balanced task weighting to reduce negative transfer in multi-task learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 9977-9978.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019b). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
Naar, H. (2018). Sentiments. In The Ontology of Emotions. Cambridge University Press.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. In Proceedings of 33rd Conference on Neural Information Processing Systems.
Peng, B., Zhu, C., Li, C., Li, X., Li, J., Zeng, M., and Gao, J. (2020). Few-shot natural language generation for task-oriented dialog. arXiv preprint arXiv:2002.12328.
Ramponi, A. and Plank, B. (2020). Neural unsupervised domain adaptation in NLP—A survey. arXiv preprint arXiv:2006.00632.
Saha, T., Gupta, D., Saha, S., and Bhattacharyya, P. (2021). Emotion aided dialogue act classification for task-independent conversations in a multi-modal framework. Cognitive Computation, 13(2):277-289.
Salmeron, J. L. (2012). Fuzzy cognitive maps for artificial emotions forecasting. Applied Soft Computing, 12(12):3704-3710.
Shahriar, S. and Kim, Y. (2019). Audio-visual emotion forecasting: Characterizing and predicting future emotion using deep learning. In Proceedings of the 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pages 1-7. IEEE.
Shi, X., Li, S., and Dang, J. (2020). Dimensional emotion prediction based on interactive context in conversation. In Proceedings of INTERSPEECH Conference, pages 4193-4197.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017).
Wang, T., Hou, Y., Zhou, D., and Zhang, Q. (2021). A contextual attention network for multimodal emotion recognition in conversation. In Proceedings of 2021 International Joint Conference on Neural Networks (IJCNN), pages 1-7. IEEE.
Wang, Z., Zhu, X., Zhang, Y., Li, S., and Zhou, G. (2020). Sentiment forecasting in dialog. In Proceedings of the 28th International Conference on Computational Linguistics, pages 2448-2458.
Wen, Z., Cao, J., Yang, R., Liu, S., and Shen, J. (2021). Automatically select emotion for response via personality-affected emotion transition. In Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, pages 1-12.
Zhang, J., Gan, R., Wang, J., Zhang, Y., Zhang, L., Yang, P., Gao, X., Wu, Z., Dong, X., He, J., Zhuo, J., Yang, Q., Huang, Y., Li, X., Wu, Y., Lu, J., Zhu, X., Chen, W., Han, T., Pan, K., Wang, R., Wang, H., Wu, X., Zeng, Z., and Chen, C. (2022). Fengshenbang 1.0: Being the foundation of Chinese cognitive intelligence. arXiv preprint arXiv:2209.02970.
Zou, C., Yin, Y., and Huang, F. (2022). Attention-based emotion-assisted sentiment forecasting in dialogue. In Proceedings of 2022 International Joint Conference on Neural Networks (IJCNN), pages 1-8. IEEE.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91309-
dc.description.abstract情感狀態對於人類的行為、動機和決策具有重要影響,因此旨在模擬或預測人類反應的對話系統必須仔細考慮情感這個因素。為了優化對話系統的對話體驗與使用者滿意度,進行使用者情感狀態的預測至關重要。目前的研究主要集中於識別現有對話中的情感狀態,忽略了對即將到來的情感狀態進行主動預測的重要性。然而,若能主動預測對話中即將到來的情感狀態,就能使對話系統有能力事前主動調整將給予使用者的回覆。
因此在本研究中,我們專注於探討對話情感預測這個任務,並提出了一個多任務學習模型,將歷史對話情感識別、歷史對話行為識別,以及未來對話行為預測作為輔助任務,並發展一個新穎的機制讓模型在訓練過程中動態調整不同任務之間的重要性。實驗證實了我們的多任務學習模型能有效地捕獲更多面向的情感相關資訊,並讓模型能夠學習到更好的情感特徵表示,從而提高了情感預測任務的表現,並在整體的準確率上優於當今表現最好的方法。
此外,為了能更貼近現實應用,我們也創建了一個基於常見對話系統場景的全新對話資料集,並在此資料集上進行了領域遷移實驗,最後也驗證了我們提出的領域遷移方法的有效性。我們的研究強調了多任務學習和領域遷移學習在情感預測任務中的重要性,也為開發更複雜的情感分析技術提供了基礎,以提升對話系統中的情感理解能力並改善使用者體驗。
zh_TW
dc.description.abstractAffective states profoundly influence human behaviors, motivations, and decisions, making them a crucial factor to consider in dialogue systems aimed at simulating or predicting human reactions. To improve the conversational experience and user satisfaction in dialogue systems, prediction of users' affective states is essential. Existing research primarily focuses on recognizing affective states within dialogue history, neglecting the proactive forecasting of upcoming affective states. However, the ability to forecast upcoming affective states proactively can enable dialogue systems to adjust responses in advance.
Therefore, in this research, we concentrate on the task of Sentiment Forecasting in Dialogue and propose a multi-task learning model by incorporating sentiment recognition and dialogue act recognition within dialogue history sequence and upcoming dialogue act forecasting as auxiliary tasks. We also develop a novel mechanism to dynamically adjust the importance of each task during training. Experimental results demonstrate the effectiveness of our model in capturing diverse sentiment-related information and learning better sentiment representations, leading to improved sentiment forecasting performance, surpassing existing state-of-the-art methods.
Additionally, to enhance real-world applicability, we collect a new dialogue dataset simulating common dialogue scenarios and conduct domain transfer experiments, further validating the efficacy of our proposed domain transfer methods. Our research emphasizes the significance of multi-task learning and domain transfer in sentiment forecasting tasks, providing a foundation for developing more sophisticated sentiment analysis techniques, improving sentiment understanding in dialogue systems, and enhancing user experiences.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:25:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:25:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Motivation 3
1.3 Research Objective 7
Chapter 2 Literature Review 9
2.1 Affective State Definition 9
2.2 Sentiment Forecasting in Dialogue 10
Chapter 3 Methodology 15
3.1 Problem Formulation 15
3.2 Overview of Our Proposed Architecture 15
3.3 Utterance Encoder 18
3.4 Speaker Turn Embedding Layer 19
3.5 Dialogue Contextual Attention Module 21
3.6 Last Utterance Attention Module 21
3.7 Multi-task Classification and Prediction 22
3.7.1 Sentiment Classifier and Dialogue Act Classifier (Sequence) 23
3.7.2 Sentiment Predictor and Dialogue Act Predictor (Upcoming) 23
3.8 Optimization 24
3.8.1 Dynamic Loss Weighting Strategy 24
3.8.2 Weighted Loss Aggregation 27
Chapter 4 Domain Transfer Strategies 28
4.1 Domain Transfer Strategies 28
4.2 Fine-tuning with Limited Labeled Data 29
4.3 Domain Adversarial Training with Unlabeled Data 30
Chapter 5 Empirical Evaluation 32
5.1 Data Collection 32
5.1.1 Chinese Personalized and Emotional Dialogue Dataset (CPED) 33
5.1.2 Newly Collected Dialogue Dataset (NTUBI-Diag) 36
5.2 Evaluation Procedure and Metrics 39
5.3 Experimental Settings 40
5.3.1 Implementation Details 40
5.3.2 Benchmark Methods 41
5.4 Evaluation Results 43
5.5 Additional Evaluation Results 45
5.5.1 Effectiveness of Auxiliary Tasks 45
5.5.2 Experiments on Domain Transfer 48
Chapter 6 Conclusion 51
6.1 Conclusion 51
6.2 Future Works 52
References 54
-
dc.language.isoen-
dc.subject情感分析zh_TW
dc.subject領域自適應zh_TW
dc.subject遷移學習zh_TW
dc.subject多任務學習zh_TW
dc.subject對話情感預測zh_TW
dc.subject情感分析zh_TW
dc.subject對話系統zh_TW
dc.subject領域自適應zh_TW
dc.subject遷移學習zh_TW
dc.subject多任務學習zh_TW
dc.subject對話情感預測zh_TW
dc.subject對話系統zh_TW
dc.subjectDomain Adaptationen
dc.subjectDialogue Systemen
dc.subjectSentiment Analysisen
dc.subjectSentiment Forecasting in Dialogueen
dc.subjectMulti-task Learningen
dc.subjectTransfer Learningen
dc.subjectDomain Adaptationen
dc.subjectDialogue Systemen
dc.subjectSentiment Analysisen
dc.subjectSentiment Forecasting in Dialogueen
dc.subjectMulti-task Learningen
dc.subjectTransfer Learningen
dc.title基於多任務與遷移學習的對話情感預測zh_TW
dc.titlePredict Before You Speak: Sentiment Forecasting in Dialogue with Multi-task and Transfer Learningen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建錦;楊錦生zh_TW
dc.contributor.oralexamcommitteeChien-Chin Chen;Chin-Sheng Yangen
dc.subject.keyword對話系統,情感分析,對話情感預測,多任務學習,遷移學習,領域自適應,zh_TW
dc.subject.keywordDialogue System,Sentiment Analysis,Sentiment Forecasting in Dialogue,Multi-task Learning,Transfer Learning,Domain Adaptation,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202304293-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-10-05-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf4.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved