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Abstract

Affective states profoundly influence human behaviors, motivations,

and decisions, making them a crucial factor to consider in dialogue

systems aimed at simulating or predicting human reactions. To improve

the conversational experience and user satisfaction in dialogue systems,

prediction of users’ affective states is essential. Existing research primarily

focuses on recognizing affective states within dialogue history, neglecting

the proactive forecasting of upcoming affective states. However, the ability

to forecast upcoming affective states proactively can enable dialogue systems

to adjust responses in advance.

Therefore, in this research, we concentrate on the task of Sentiment

Forecasting in Dialogue and propose a multi-task learning model by

incorporating sentiment recognition and dialogue act recognition within

dialogue history sequence and upcoming dialogue act forecasting as auxiliary

tasks. We also develop a novel mechanism to dynamically adjust the

importance of each task during training. Experimental results demonstrate the

effectiveness of our model in capturing diverse sentiment-related information

and learning better sentiment representations, leading to improved sentiment

forecasting performance, surpassing existing state-of-the-art methods.
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Additionally, to enhance real-world applicability, we collect a new

dialogue dataset simulating common dialogue scenarios and conduct domain

transfer experiments, further validating the efficacy of our proposed domain

transfer methods. Our research emphasizes the significance of multi-task

learning and domain transfer in sentiment forecasting tasks, providing a

foundation for developing more sophisticated sentiment analysis techniques,

improving sentiment understanding in dialogue systems, and enhancing user

experiences.

Keywords: Dialogue System, Sentiment Analysis, Sentiment Forecasting in

Dialogue, Multi-task Learning, Transfer Learning, Domain Adaptation
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Chapter 1

Introduction

1.1 Background

Affective states have a crucial impact on humans’ behaviors, motivations, and

decisions. Therefore, when a system aims to simulate or predict human reactions, this

factor needs to be carefully considered (Salmeron, 2012). In essence, in the process of

human-machine interaction, having affective intelligence is also considered an important

component to improve the process (Wang et al., 2021). Given the significance of

affective states in the realm of human-machine interaction, and considering the growing

popularity of dialogue systems that aid users in various daily activities (Peng et al., 2020),

numerous researchers in the field of Natural Language Processing (NLP) have embarked

on investigations into the presence of affective states within dialogues.

We can delve deeper into examining the impact of affective states on the functionality

of dialogue systems in the context of human-computer interaction. To illustrate this, let

us consider a ubiquitous scenario of real-time chat customer service. In this particular

setting, our aim is to enhance the conversational experiences of customers. Notably, this

scenario aligns with the one described in Guibon et al. (2021).

1
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In such situations, the primary concern in numerous studies revolves around

comprehending user intent more effectively and generating responses that are both fluent

and semantically rich. As a result, extensive research efforts have focused on enhancing

dialogue understanding and generation tasks. A prevalent approach involves leveraging

pre-trained conversation models (Peng et al., 2020; He et al., 2022) or even employing

few-shot learning methods to deal with real-world data (Peng et al., 2020).

However, even if the response effectively conveys information and is linguistically

fluent enough to capture users’ attention, disregarding the users’ affective feelings towards

the response can result in a subpar user experience (Figure 1.1). Therefore, early

prediction of the user’s affective state and its evolution within the dialogue flow can

assist the system in delivering more suitable responses in advance, thereby enhancing

user satisfaction (Shahriar and Kim, 2019).

Figure 1.1: Scenario of A Dialogue System

In order to facilitate advancements in research on affective dialogue, several studies

have introduced new benchmark datasets. One notable example is the Interactive

Emotional Dyadic Motion Capture (IEMOCAP) dataset introduced by Busso et al.

(2008), recognizing that affective states can be conveyed through verbal and non-verbal

channels, such as facial expressions and hand gestures. This dataset comprises

2
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approximately 10+ hours of dyadic dialogues, including videos, transcriptions, and

specific labels of affective states. Its primary objective is to promote research in the fields

of multi-modal communication and human expressive interaction, making it a commonly

employed resource for affective-related tasks.

Recently, Chen et al. (2022) constructed a comprehensive benchmark dataset called

Chinese Personalized and Emotional Dialogue dataset (CPED) for conversational AI.

This dataset comprises over 12,000 dialogues extracted from around 400 speakers and

40 TV shows, incorporating textual, audio, and video features. Notably, CPED takes

into account not only speakers’ personalities and affective states, but also factors such

as age, gender, dialogue acts (i.e., intent in the utterance, such as greeting or question),

and scenes. By considering these comprehensive factors, CPED presents new avenues for

research related to affective dialogue.

1.2 Research Motivation

Due to the significant importance of affective states in dialogue systems, a

considerable amount of research has been conducted in this area. Early studies primarily

centered around the task of recognizing affective states within dialogues, commonly

referred to as Emotion Recognition in Conversation (ERC) (Kim and Kim, 2018; Wang

et al., 2021; Guibon et al., 2021; Saha et al., 2021). Specifically, emotion recognition

involves recognizing the potential current affective state upon encountering a specific

utterance from a speaker. In essence, the question at hand is: “What do you believe is

the affective state of this utterance?” However, given their access to the content of the

target utterance, this task is relatively straightforward and has limited practicality. In

3
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many scenarios, it becomes necessary for the dialogue system to predict or forecast in

advance the type of affective state a particular machine-generated utterance may evoke

in the user, in order to proactively adjust and rectify the candidate machine-generated

utterance beforehand.

Therefore, some prior studies have proposed a new task known as Emotion

Forecasting in Dialogue (Shahriar and Kim, 2019; Shi et al., 2020; Abouzeid et al.,

2021; Zou et al., 2022), which is regarded as an emerging and promising field of research.

According to Shahriar and Kim (2019), this task involves unique problem formulations

that differ from the traditional emotion recognition task. The distinction between these

two tasks is illustrated in Figure 1.2. Emotion forecasting aims to forecast the speaker’s

future affective state based on past cues. In other words, it requires forecasting the

affective state of an upcoming utterance in the dialogue before the content of the utterance

is revealed. In essence, the question at hand is: “What do you believe will be the affective

state present in the upcoming utterance?” Due to the absence of information about the

content of the upcoming utterance, this task is relatively challenging, but has shown

potential applications in various fields in recent years (Salmeron, 2012; Shahriar and

Kim, 2019). By having this capability, the dialogue system can select more empathetic

responses, and can also steer the dialogue towards a desired affective state, resulting in

the user’s affective state aligning more closely with expectations.

However, there has still been limited research conducted on this particular task.

Additionally, the existing studies tend to solely focus on utilizing dialogue context as

features, without delving into further feature exploration, more effective auxiliary tasks,

or model architecture design. To the best of our knowledge, no research has specifically

4



doi:10.6342/NTU202304293

addressed the incorporation of affective state and dialogue act features within the context

sequence, nor considered the potential dialogue act feature of the upcoming utterance.

Nevertheless, it is evident that these features have a substantial impact on the affective

dynamics of speakers within a dialogue (Cao et al., 2021; Chen et al., 2022). For instance,

certain dialogue acts may inherently exhibit specific affective states, and there may exist

continuity or causal relationships among multiple dialogue acts. Additionally, the flow

of affective states and dialogue acts within a dialogue may adhere to specific patterns,

which are intuitively evident. Therefore, if we can model the information of dialogue

act sequence or affective state sequence, it can lead to a more profound understanding of

the dynamics and progression of the whole dialogue. Furthermore, the ability to forecast

upcoming dialogue act may be intricately linked to forecasting upcoming affective state.

Hence, the modeling of dialogue act and affective state sequence is considered crucial for

effectively forecasting the affective state of an upcoming utterance.

Additionally, previous studies have predominantly relied on RNN-based modules for

encoding contextual features, disregarding the potential advantages provided by attention

mechanism (Vaswani et al., 2017). Moreover, the benchmark datasets commonly used

in these studies are primarily derived from TV dramas or movies, where dialogues

are constrained by predefined flows and speakers’ roles, and the scenarios also differ

from practical applications such as customer service, resulting in limited real-world

applicability.

5
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Figure 1.2: Illustrations of Emotion Recognition Task vs. Emotion Forecasting Task

6
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1.3 Research Objective

Considering the limitations of existing emotion forecasting studies, our primary

objective is to improve the forecasting effectiveness of this challenging task. Moreover,

we intend to introduce a new dataset that closely simulates real-world applications.

Finally, we will leverage transfer learning techniques to effectively transfer the knowledge

acquired by the model from the public dataset to our dataset’s new domain. This approach

will enable the model to be applicable in practical real-world scenarios.

However, how can we improve the performance of this challenging task? First,

it is necessary to investigate additional features that may impact the affective state of

the upcoming utterance within a dialogue. Wen et al. (2021) discovered that emotion

transitions are influenced by both the dialogue context and specific personality traits.

Furthermore, Chen et al. (2022) stated that in addition to personality traits, factors such as

gender, age, dialogue act (DA), and scene also exert influence on dialogues. This causal

relationship between emotions and dialogue acts (DA) has been further confirmed by Cao

et al. (2021) through qualitative and quantitative research. Considering the potential value

of these features, it is worthwhile to explore how sentiment and dialogue act (DA) in the

dialogue context impact the affective state of the upcoming utterance within a dialogue.

Next, an appropriate model architecture design is essential to incorporate these

significant features effectively. In the past, many studies have applied the Multi-Task

Learning (MTL) architecture to tackle such situations. This approach enables the model

to learn multiple tasks simultaneously and allows certain parameters or representations to

be shared among related tasks. This design fosters a complementary effect and facilitates

knowledge sharing between tasks, as demonstrated by its superior performance in various

7
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dialogue-related experiments (Kim and Kim, 2018; Saha et al., 2021; Zou et al., 2022)

compared to learning a single task. Therefore, we decide to adopt and enhance this

multi-task learning framework to effectively incorporate the identified features. We firmly

believe that addressing these issues will significantly improve the overall effectiveness of

the emotion forecasting task.

8
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Chapter 2

Literature Review

2.1 Affective State Definition

How should the affective state in dialogue be formally defined? According to Naar

(2018), there is a distinction in everyday language between affective states predicated for

a relatively short time and relatively long time. When an affective state lasts for a short

time, it is called emotion. If it lasts for a long time, it is called sentiment. Therefore,

affective states in dialogue can be divided into two types, emotion and sentiment, which

differ in terms of their duration.

Despite the difference between emotion and sentiment, there is still an internal

connection. Liu (2020) has stated that sentiment can be understood as the underlying

positive or negative feeling, attitude, or evaluation associated with an opinion. Based

on the definition, the terms emotion and sentiment are actually interconnected, as the

sentiment seems to be a general state or underlying feeling of the emotion (Adam, 2019).

In other words, sentiment can be described as a coarse-grained state of emotion. Figure

2.1 illustrates the difference.

In the realm of affective dialogue research, diverse approaches have been employed

9
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to label emotion across different studies. For instance, Busso et al. (2008) used two

different types of label systems: a continuous label in the valence-arousal dimension and

a 9-category label scheme, while Chen et al. (2022) labeled emotion with 13 categories.

However, when it comes to sentiment labeling, there is a notable consensus among

researchers. Almost all studies adhere to a consistent definition of sentiment, categorizing

it into three distinct polarities: negative, neutral, and positive. Consistent with this

prevailing trend, our research will use sentiment as our target label, and also adopt the

same three types of sentimental polarity as the basis for our target labeling.

Figure 2.1: Difference between Emotion and Sentiment (Adopted from Adam (2019))

2.2 Sentiment Forecasting in Dialogue

Figure 2.2 illustrates the overall architecture employed in prior research on Sentiment

Forecasting in Dialogue, as well as Emotion Forecasting in Dialogue. This architecture

encompasses various models utilized in prior studies.

To begin, the Utterance Encoder, alternatively referred to as the Sentence Encoder,

is employed to acquire the representation of each individual utterance present in the

dialogue. Previous investigations commonly employed Convolutional Neural Networks

10
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(CNNs) (LeCun et al., 1998) or Recurrent Neural Networks (RNNs) and their variants,

such as Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or Gated

Recurrent Unit (GRU) (Chung et al., 2014), as the Utterance Encoder to obtain the

fundamental utterance representation. Recent studies have also incorporated pre-trained

language models such as BERT (Devlin et al., 2018) to enhance the quality of the

utterance representation.

Once the utterance representations are obtained, the next step involves employing a

Context Encoder to capture the interdependent contextual information among utterances

in the dialogue. Previous studies commonly implement the Context Encoder as two

components: the Pair-wise Encoder and the Sequence-wise Encoder. The Pair-wise

Encoder focuses on extracting information from utterances spoken by the same speaker.

Its role is to capture the intra-speaker dependencies within the dialogue. On the

other hand, the Sequence-wise Encoder is responsible for extracting information from

the sequence of all utterances spoken by both speakers in the dialogue. Its role

is to capture the inter-speaker dependencies within the dialogue. By incorporating

both the Pair-wise and Sequence-wise encoders, this architecture can effectively model

both the local internal influence of each speaker and the global external influence

of all speakers involved in the dialogue. To construct the Context Encoder, these

studies typically employ the attention mechanism. The attention mechanism has

demonstrated remarkable performance in modeling contextual information across various

dialogue-related scenarios. By leveraging attention, the Context Encoder can effectively

capture the relevant dependencies and relationships between utterances, enabling a

comprehensive representation of the dialogue context.
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Once the utterance representations are passed through the Context Encoder, we

obtain two essential representations: the local contextual representation and the global

contextual representation. Previous studies have commonly employed an attention-based

Fusion Module to merge these representations effectively. The purpose of this module

is to combine the local and global contextual information in a meaningful way.

Following the fusion of contextual representations, the next step involves utilizing a

Classification Module comprised of fully-connected layers. This module is responsible

for forecasting the sentiment polarity of the upcoming utterance. By leveraging

the merged representations, the classification module can make informed predictions

regarding the sentiment in the upcoming utterance.

This baseline architecture serves as a foundation for integrating contextual

information, merging representations, and forecasting the affective state of the upcoming

utterance within dialogues.

Figure 2.2: General Architecture of Sentiment/Emotion Forecasting in Dialogue

Several studies have focused on the task of Emotion Forecasting in Dialogue.

Shahriar and Kim (2019) introduced the first research that aimed to forecast the future

12
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emotion of a speaker using audio-visual data. Their study highlighted the significance of

considering both present and previous utterances when dealing with emotion forecasting.

However, this study incurs several limitations. First, it only models the emotional flow

of a single speaker and does not consider the other speaker’s information. Second, the

emotional flow may vary depending on the dialogue scene. To address these limitations,

Shi et al. (2020) proposed an emotion forecasting model that incorporates the multi-modal

context, including text and audio modalities, and takes into account the interactive

information from both speakers. They also analyzed the impact of different conversation

scenarios, such as comforting or convincing, on emotion changes. Wen et al. (2021)

offered a different perspective on emotion forecasting, considering it as the process of

“emotion transition” in the valence-arousal-dominance (VAD) space between the previous

and upcoming emotions.

In terms of Sentiment Forecasting in Dialogue, which is the focus of our study, Wang

et al. (2020) introduced this novel task and proposed the Neural Sentiment Forecasting

(NSF) model. They focus on simulating the next upcoming utterance and learning

the influence of context on the upcoming utterance. Zou et al. (2022) proposed the

Emotion-Assisted Sentiment Forecasting (EASF) model, which incorporates sentiment

and emotion features. Similar to the architecture mentioned above, they forecast

sentiment by considering both internal and external influences. Additionally, their

research explored the impact of each utterance using attention mechanisms and suggested

applying this architecture to dialogue generation tasks in chatbots in future work.

These studies on dialogue emotion and sentiment forecasting have laid the foundation

for future research. In contrast to existing methods, our study aims to explore other
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potential auxiliary tasks and features that can effectively extract useful information from

the dialogue context, to help improve the performance of the sentiment forecasting task.
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Chapter 3

Methodology

3.1 Problem Formulation

In our research, we define the problem of sentiment forecasting in dialogue as

follows: Given a dyadic dialogue history D, consisting of n utterances, denoted as

D= [u1,u2, . . . ,un], where each ui represents the i-th utterance spoken within the dialogue.

The objective of this task is to predict the sentiment polarity (positive, negative, or neutral)

of the upcoming utterance un+1. It is important to note that the upcoming utterance,

un+1, does not currently exist in the dialogue history. Also, during the testing phase,

we encounter the lack of information regarding the sentiment polarity of the existing

utterances within the dialogue.

3.2 Overview of Our Proposed Architecture

We propose a novel model called Multi-task Sentiment Forecasting (MTSF) to

tackle the challenge of sentiment forecasting in dialogue. Our model treats sentiment

forecasting as a multi-task problem, necessitating the handling of one main task along

with three auxiliary tasks. The main task is the sentiment forecasting (upcoming), while

the auxiliary tasks involve dialogue act forecasting (upcoming), sentiment recognition
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(sequence), and dialogue act recognition (sequence). The objective of this architecture

is to improve the effectiveness of the main task, which is the sentiment forecasting

(upcoming) task, by sharing the learned parameters or representations across multiple

related auxiliary tasks. The complete architecture of the MTSF model is illustrated in

Figure 3.1.

Figure 3.1: Architecture of Our Proposed MTSF Model

The sentiment forecasting task (upcoming) aims to forecast the sentiment polarity of

the upcoming utterance un+1. Similarly, the dialogue act forecasting task (upcoming)

aims to forecast the dialogue act label of the upcoming utterance un+1. The sentiment

recognition task (sequence) focuses on recognizing the sentiment polarities of all the

utterances in the dialogue history D = [u1,u2, . . . ,un]. The dialogue act recognition task

(sequence) focuses on recognizing the dialogue act labels of all the utterances in the

dialogue history D. It is important to note that the main task is the upcoming sentiment

forecasting, while the other three tasks serve as auxiliary tasks, contributing to the model’s
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learning of better representations.

Our proposed MTSF model consists of three fundamental feature extraction

components. The first component is the Utterance Encoder, which utilizes the pretrained

RoBERTa model (Liu et al., 2019b) to encode tokens in each utterance. The hidden state

of the [CLS] token is then obtained as the representation of the utterance. The second

component is the Speaker Turn Embedding Layer, which aims to learn representations

for each speaker turn. In our dialogue scenario involving two speakers, we obtain

two representations to indicate who is speaking in each utterance. These speaker

representations are concatenated with the corresponding utterance representations based

on their positions in the dialogue.

The third component is the Dialogue Contextual Attention Module, which employs

multi-head attention to effectively capture interdependent contextual information among

utterances in the dialogue, and utilizes a simple feed-forward network to reduce the

dimensionality of the representations. This module produces contextual representations

for each utterance in the dialogue, represented as H′ = [h′1,h′2, ...,h′n].
After obtaining the contextual representation h′i for each utterance ui, two classifiers

are employed: the Sentiment Classifier and the Dialogue Act Classifier. These

classifiers use linear transformation and softmax function to utilize the contextual

representation h′i for recognizing the sentiment polarity and dialogue act label of each

utterance ui within the dialogue, respectively. Moreover, an additional attention module

called the Last Utterance Attention Module is introduced. This module uses the

contextual representation of the last utterance, h′n, as a query, and applies multi-head

attention to the contextual representations of the entire dialogue history sequence, H′,
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in order to obtain a new representation for the last utterance, which we denote as h′′n .

This representation h′′n is believed to capture the maximum potential information for the

upcoming utterance, un+1.

Finally, with the representation h′′n of the last utterance un, two predictors are

employed: the Sentiment Predictor and the Dialogue Act Predictor. These predictors

use linear transformation and softmax function to utilize the representation h′′n for

forecasting the sentiment polarity and dialogue act label of the upcoming utterance un+1,

respectively.

3.3 Utterance Encoder

We employ the large pretrained language model RoBERTa to obtain contextual

representations for each token in the utterances. Then, we rely on the hidden state of

the [CLS] token from the last layer of RoBERTa to serve as the representation of each

utterance ui, denoted as e(ui). Figure 3.2 illustrates the workflow of utterance encoder.

Figure 3.2: Structure of Utterance Encoder

Given that our experimental data consists of Chinese dialogues, we opt to employ the
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Erlangshen-Roberta-110M-Sentiment model (Zhang et al., 2022) as our pretrained model.

This model is a sentiment analysis version of the Chinese RoBERTa-wwm-ext-base

model, which has been fine-tuned on eight Chinese sentiment analysis datasets,

comprising a total of 227,347 samples. We select this model as it offers a solid foundation

for extracting valuable sentimental information from each utterance. In addition, it is

worth noting that we do not fine-tune the parameters of the pretrained RoBERTa model

during the training process.

3.4 Speaker Turn Embedding Layer

In order to achieve a comprehensive understanding of dialogues that arise in

interactive environments, it is crucial to model speaker turn-taking behavior and

account for the temporal dynamics of dialogues. The majority of previous research on

this task has employed individual recurrent modules to model the information associated

with each speaker role (Wang et al., 2020; Zou et al., 2022). However, this approach

inevitably introduces a significant number of parameters that need to be trained.

Therefore, He et al. (2021) proposed a novel approach to enhance dialogue modeling

by integrating speaker turns into the encoding process of utterances. Their method

involves the introduction of dialogue-invariant speaker turn embeddings, which are

independent of any given dialogue or speaker pair and then combined with utterance

embeddings to capture the dynamics of turn changes among speakers within dialogues.

This integration enables the effective representation of semantic information within

dialogue content while considering the distinct contributions of different speakers.

Moreover, their method introduces only two global additive embedding vectors, requiring
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minimal modifications to the model and introducing only O(1) space complexity.

In line with the work of He et al. (2021), our model incorporates a Speaker

Turn Embedding Layer, to generate speaker turn representations based on the

corresponding speaker labels. These representations are then combined with the utterance

representations, yielding speaker turn aware utterance representations. To acquire the

speaker turn aware utterance representation, denoted as e′(ui), for a given utterance ui

and its binary speaker turn label si, we add the speaker turn representation f (si) to the

utterance representation e(ui). This results in the formula e′(ui) = e(ui)+ f (si), where

si ∈ {0,1}, and the symbol “+” denotes element-wise addition operator. It is worth noting

that the speaker turn representations f (si) are learnable parameters during optimization

and have the same size as the utterance representations e(ui). Figure 3.3 displays the

content of this module.

Figure 3.3: Structure of Speaker Turn Embedding Layer

By effectively combining the utterance and speaker turn information, this approach

enhances the representation of each utterance with respect to its corresponding speaker

turn. Leveraging these representations offers a simple yet effective approach to obtain

more robust and informative utterance representations.
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3.5 Dialogue Contextual Attention Module

The Dialogue Contextual Attention Module employs a multi-head attention

mechanism to effectively capture interdependent contextual information among

utterances in the dialogue. It is followed by a fully connected feed-forward network,

which applies a linear transformation with non-linear ReLU activation function at each

position to effectively reduce the dimensionality of the representations. This module

produces contextual representations for each utterance in the dialogue, represented as

H′ = [h′1,h′2, ...,h′n]. The input and output of this module are illustrated in Figure 3.4, and

the contextual representation h′i of the i-th utterance ui can be defined as follows:

hi = Attention(e′(ui), e′(u j)nj=1) = n�
j=1ai j e′(u j) (3.1)

h′i = Feed f orward(hi) = max(0, Whi+b) (3.2)

Figure 3.4: Input/Output of Dialogue Contextual Attention Module

3.6 Last Utterance Attention Module

The Last Utterance Attention Module plays a critical role in our model structure, as it

generates the representation that will be fed into the main task module. By utilizing the
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contextual representation of the last utterance, denoted as h′n, as a query, the module

employs multi-head attention on the contextual representations of the entire dialogue

history sequence, H′. This process yields a new representation for the last utterance,

referred to as h′′n . This representation h′′n is believed to capture the maximum

potential information for the upcoming utterance, un+1, for the study conducted by

Zou et al. (2022) has provided compelling evidence that distance plays a crucial role

in dialogue sentiment forecasting. Specifically, their findings indicate that the relative

impact increases as the utterance gets closer to the upcoming utterance. Additionally, it

is worth noting that the design of this module also draws inspiration from the work of

Shi et al. (2020) in their study on emotion forecasting task. The representation h′′n can be

defined as follows:

h′′n = Attention(h′n, (h′j)nj=1) = n�
j=1an j h′j (3.3)

h′′n = ReLU(h′′n ) = max(0, h′′n ) (3.4)

3.7 Multi-task Classification and Prediction

After obtaining the representations from various stages (e.g., h′ or h′′), we employ two

classifiers and two predictors to perform four distinct tasks. These tasks collaboratively

refine the underlying representations of the model with the aim of improving the

effectiveness of the main task, which refers to the sentiment forecasting task.

Through the implementation of this multi-task approach, our proposed model achieves

the simultaneous learning of multiple tasks, while also facilitating the sharing of certain

parameters and representations among related tasks. This design not only fosters a

complementary effect but also facilitates knowledge sharing between different tasks.
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3.7.1 Sentiment Classifier and Dialogue Act Classifier (Sequence)

Once the contextual representation h′i is obtained for each utterance ui within the

dialogue history sequence from the Dialogue Contextual Attention Module, we employ

the Sentiment Classifier and the Dialogue Act Classifier. Both classifiers leverage the

representation h′i and apply a linear transformation and softmax function to obtain the

predicted sentiment label distribution and the predicted dialogue act label distribution,

respectively. These distributions are subsequently utilized to recognize the sentiment

polarity and the type of dialogue act for each utterance ui in the dialogue history sequence.

The predicted distributions for sentiment polarity ŷs
i and the type of dialogue act ŷd

i for

the i-th utterance ui are exhibited as follows:

ŷs
i = so f tmax(W sh′i +bs) (3.5)

ŷd
i = so f tmax(W dh′i +bd) (3.6)

3.7.2 Sentiment Predictor and Dialogue Act Predictor (Upcoming)

There is another contextual representation h′′n , which is obtained for only the last

utterance un from the Last Utterance Attention Module. Upon obtaining this critical

representation h′′n , we proceed to employ the Sentiment Predictor and the Dialogue Act

Predictor. Both predictors leverage the representation h′′n and apply a linear transformation

and softmax function to obtain the predicted sentiment label distribution and the predicted

dialogue act label distribution, respectively. These distributions are subsequently utilized

to forecast the sentiment polarity and the type of dialogue act for the upcoming utterance

un+1, which has not yet appeared in the dialogue history. The predicted distributions for

sentiment polarity ŷs
n+1 and the type of dialogue act ŷd

n+1 for the upcoming utterance un+1
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are shown as follows:

ŷs
n+1 = so f tmax(W s′h′′n +bs′) (3.7)

ŷd
n+1 = so f tmax(W d′h′′n +bd′) (3.8)

3.8 Optimization

We employ cross-entropy loss function for all four tasks. The loss function for each

task is defined as follows:

L(qy) = − N�
i=1

C�
j=1yi j log ŷi j (3.9)

Here, qy represents the set of model parameters. The variables yi j and ŷi j denote the true

label and predicted label, respectively, for the i-th sample and j-th class. N refers to the

number of training samples and C represents the number of classes in each task.

3.8.1 Dynamic Loss Weighting Strategy

According to Kongyoung et al. (2020), existing multi-task learning models have not

explored the dynamic adjustment of the relative importance of different tasks during

the learning process, which could lead to the allocation of training resources towards

unnecessary tasks and negatively impact the model’s performance. To address this gap,

they introduced a new hybrid dynamic loss weighting strategy that combines Abridged

Linear Schedule (Belharbi et al., 2016) for the main task with Loss-Balanced Task

Weighting (Liu et al., 2019a) for the auxiliary tasks. This strategy automatically fine-tunes

the task weighting during learning, ensuring that the loss weights of different tasks

are adjusted based on their relative importance. They have also demonstrated the
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effectiveness of this dynamic strategy on the conversational question answering task,

where it significantly outperforms static task weighting strategies.

Regarding the loss weighting strategy of the MTSF model, we follow the hybrid

approach as Kongyoung et al. (2020) employed, with slight modifications. The specific

implementation details are provided below.

First, to prioritize the main task and prevent unnecessary allocation of resources

to other tasks, thus avoiding potential underfitting, we adopt the Evolving Weighting

Strategy with Linear Schedule (Belharbi et al., 2016). This schedule gradually increases

the loss weight of the main task during training, while gradually decreasing the loss

weights of the auxiliary tasks. By doing so, the model can increasingly devote more

attention to learning the main task. Specifically, the loss weights of the auxiliary tasks

decrease linearly with each training step, with the auxiliary loss weights l transitioning

from 1 to 0. In contrast, the loss weight of the main task increases linearly as µ equals

1−l . Importantly, assuming a predetermined total number of training steps T within

each epoch, the loss weight of the main task at step t, denoted as µt , can be calculated as

µt = t
T . The variations in the loss weights of the main task µ and auxiliary tasks l during

the training process are illustrated in Figure 3.5.

Second, we further adjust the loss weights of each auxiliary task using the

Loss-Balanced Task Weighting (LBTW) method proposed by Liu et al. (2019a). LBTW

adjusts the loss weight based on the loss ratio between the current loss and the initial

loss, giving higher priority to tasks with ratios closest to one in order to balance the

importance of auxiliary tasks. To implement LBTW for all auxiliary tasks, we first employ

a hyperparameter a to control the influence of task-specific loss weights. For each training

25



doi:10.6342/NTU202304293

Figure 3.5: Variations in the Loss Weights

epoch, the loss weight of an auxiliary task k at step t, denoted as dk,t , is computed using

the loss ratio between the loss at the current step t of the epoch, denoted as `k,t , and the

loss at the first step of the epoch, denoted as `k,0. This computation is represented as

dk,t = ( `k,t
`k,0
)a .

Therefore, given an epoch with a total number of training steps T , the Linear Schedule

strategy calculates the loss weight of the main task at step t, represented as µt , and the

loss weight of the auxiliary tasks at step t, denoted as lt , can be defined as follows:

µt = t
T

(3.10)

lt = 1− t
T

(3.11)

Furthermore, the Loss-Balanced Task Weighting (LBTW) method calculates another

version of the loss weight for each auxiliary task. Specifically, the loss weight of a specific

auxiliary task k at step t, denoted as dk,t , can be defined as follows:

dk,t = ( `k,t

`k,0
)a (3.12)

Finally, the loss weights wm for the main task and wk for an auxiliary task, which are
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utilized to optimize the model, can be defined as follows:

wm = µt (3.13)

wk = lt ×dk,t (3.14)

3.8.2 Weighted Loss Aggregation

After obtaining the dynamic loss weight for each task, the final loss is computed as the

weighted aggregation of the losses from all tasks. Our training objective is to minimize

this aggregated loss:

L f inal = wm×Lm+ K�
k=1wk×Lk (3.15)

27



doi:10.6342/NTU202304293

Chapter 4

Domain Transfer Strategies

4.1 Domain Transfer Strategies

After training the model using the method described in the previous chapter, the

practical deployment of this model in real-world scenarios may encounter situations

where annotations are relatively sparse. For instance, there might be a lack of auxiliary

task annotations. Therefore, it becomes imperative to establish effective strategies for

applying the trained model across various domains, aligning it with practical applications.

This chapter aims to explore how to transfer the acquired knowledge learned from a given

dataset to new domains, considering different application scenarios, and efficiently utilize

data from these domains.

Depending on our understanding of a new application domain, we can choose different

methods to transfer the acquired knowledge effectively. In the following sections, we

will discuss two common downstream application scenarios and propose two distinct

approaches for knowledge transfer.
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4.2 Fine-tuning with Limited Labeled Data

In this section, we discuss the first scenario where the target domain contains labeled

data; however, the labels are incomplete, and the data quantity is extremely limited.

Specifically, in our study, we consider the case where only the main task, namely

sentiment forecasting, are labeled, while the auxiliary tasks lack annotations. In this

scenario, we can employ a fine-tuning approach on the pre-trained model.

To accomplish this, given a pretrained model, we perform further training on the

data from the target domain, focusing solely on the sentiment forecasting task. During

this fine-tuning process, we keep the parameters of the lowest layers (i.e., the Utterance

Encoder and the Speaker Turn Embedding Layer) fixed and exclude them from the

training process. Furthermore, we utilize a smaller learning rate to ensure careful

adjustments during the fine-tuning stage. The specific architecture of our method is

illustrated in Figure 4.1.

Figure 4.1: Specific Architecture of the Fine-tuning Approach
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4.3 Domain Adversarial Training with Unlabeled Data

In this section, we discuss the second scenario where the data in the target domain

lacks any form of annotation, but the quantity of data is substantial. This scenario better

reflects real-world situations where labeled data is unavailable in the target domain, but

unlabeled data may be abundant (Ramponi and Plank, 2020).

In the absence of labeled data, directly training a model to learn a specific task on the

target domain becomes infeasible. Numerous studies have proposed various approaches

to address this challenge, with the most common method being Domain Adversarial

Training (Ganin and Lempitsky, 2015; Ganin et al., 2016). The objective of Domain

Adversarial Training is to improve latent feature representations by simultaneously

training the label predictor and domain classifier. The original architecture of this method

is shown in Figure 4.2.

Figure 4.2: Original Architecture of the Domain Adversarial Training Approach

(Adopted from Ganin and Lempitsky (2015))

In our research, drawing inspiration from the concept of domain adversarial training,

we present the specific implementation details as follows: leveraging the pretrained

model, we train the main task (i.e., sentiment forecasting) again, using the labeled data
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from the source domain with a smaller learning rate. Additionally, we introduce a new

task that utilizes data from both the source and target domains. This new task involves

predicting whether a given data instance (i.e., a dialogue history sequence) belongs to the

source domain or the target domain. The input to this task is the contextual representation

h′i of each utterance ui in the dialogue history sequence. Ultimately, the losses of these

two tasks are aggregated and jointly optimized during model training. The specific

architecture of our method is illustrated in Figure 4.3.

Figure 4.3: Specific Architecture of the Domain Adversarial Training Approach
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Chapter 5

Empirical Evaluation

5.1 Data Collection

In our research, we conduct experiments using two different datasets. The first dataset

is multi-turn Chinese Personalized and Emotional Dialogue dataset, called CPED (Chen

et al., 2022). CPED is constructed from 40 Chinese TV shows, comprising 12,000

dialogues and 133,000 utterances with multi-modal context. The creators of this dataset

claim that CPED is the first Chinese personalized and emotional dialogue dataset. As a

result, it can be utilized for complex dialogue understanding tasks.

However, we believe that the data source of CPED, being from TV shows, may not

entirely align with real-world dialogue system scenarios. Therefore, in our research,

we establish another dialogue dataset called NTUBI-Diag, which is collected by our

Business Intelligence Lab at National Taiwan University. The inclusion of this dataset

is significant as it provides simulations of common real-world dialogue system scenarios,

such as customer service dialogues on e-commerce platforms. This new dataset also

includes labels for upcoming sentiment, but lacks additional annotations for the auxiliary

tasks. We believe that this dataset serves as a more practical and realistic foundation,

or starting point, for the sentiment forecasting task in real-world dialogue system
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applications. The dialogue excerpts from the two datasets are presented in Figure 5.1.

Figure 5.1: Dialogue Excerpts from CPED and NTUBI-Diag Datasets

5.1.1 Chinese Personalized and Emotional Dialogue Dataset (CPED)

CPED is a comprehensive dataset that includes multi-source knowledge, covering

3 sentiments, 13 emotions, 19 dialogue acts, gender, big five personality traits, and

other information. Table 5.1 presents a detailed description of the specific categories

for sentiment and dialogue act annotations within the CPED dataset. Meanwhile, Table

5.2 provides the detail summary statistics of the original CPED dataset.

Table 5.1: Description of Annotation Categories within the CPED Dataset

Annotation Categories

Sentiment positive, neutral, negative

Dialogue Act greeting, question, answer, statement-opinion, statement-non-opinion,
apology, command, agreement/acceptance, disagreement,
acknowledge, appreciation, interjection, conventional-closing,
thanking, quotation, reject, irony, comfort, other
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Table 5.2: Statistics of the Original CPED Dataset

Training Dev Testing

# of TV plays 26 5 9
# of dialogues 8,086 934 2,815
# of utterances 94,187 11,137 27,438
# of speakers 273 38 81
Avg. # utt. per dial. 11.6 11.9 9.7
Max # utt. per dial. 75 31 34
Avg. utt. length 8.3 8.2 8.3
Max utt. length 127 42 45
Avg. # of DAs per dial. 3.6 3.7 3.2

As mentioned, our primary research objective is to forecast users’ upcoming

sentiment, enabling the system to proactively adjust responses to users. To align with this

real-world application, we need to ensure that the “last utterance in the dialogue history

sequence (un)” and the “upcoming utterance (un+1)” are spoken by different speakers.

To achieve this, we further process the original CPED data to obtain new processed

data for model training. First, we define “speaker transitions” as situations where two

consecutive utterances are spoken by different speakers, and such speaker transitions

may occur multiple times within the same dialogue. To represent these transitions, we

use transi to denote the i-th occurrence of speaker transition within a specific dialogue.

Since each speaker transition occurs between two consecutive utterances, we further

define transi = (u j,u j+1), where u j and u j+1 are the two utterances involved in the i-th

speaker transition. Next, we check if the total number of utterances before u j (inclusive)

in the original dialogue data is greater than or equal to n, where n represents the desired

dialogue history sequence length. If it meets the condition, we extract the n preceding

utterances at u j (inclusive) as one training data sample, and consider the sentiment at u j+1

position as the target sentiment label for that sample. The statistics of the adjusted CPED
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dataset are shown in Table 5.3. Furthermore, the distribution of sentiment polarities in the

training and the testing dataset respectively is depicted in Figure 5.2. Notably, since our

experiments are conducted using a 5-fold approach on the training and testing data, we

combine the information reported in the figure and table.

Table 5.3: Statistics of the Adjusted CPED Dataset

Training + Testing Dev

# of dialogues 6,668 600
# of utterances 53,344 4,800
# of utt. per dial. 8 8
Avg. utt. length 8.6 8.4
Max utt. length 54 31
Avg. # of DAs per dial. 3.0 3.1

Figure 5.2: Distribution of Sentiment Polarities in the Training and Testing Data (CPED)

Two noteworthy aspects are worth mentioning: First, within each dialogue, the same

speaker may consecutively deliver multiple utterances, distinguishing CPED from other

dialogue datasets. Second, in cases where the original dialogue data contains numerous

utterances and speaker transitions, our processing approach may result in multiple new
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data samples.

5.1.2 Newly Collected Dialogue Dataset (NTUBI-Diag)

In order to better simulate real-world application scenarios, our research develops

a novel dataset called NTUBI-Diag, which covers various common dialogue system

applications. This dataset spans a wide range of simulated dialogue scenes, from issue

resolution in customer service platforms, reservation and compensation matters in the

service industry, to sales and bargaining in shopping scenarios. It even includes dialogues

portraying expressions of care and casual conversations between friends, making it

comprehensive in its coverage. Each scene involves two speakers engaging in the

dialogue, with roles and tasks specific to each scene. The dataset covers 14 distinct

scenes, carefully designed to cover a wide range of applications and interactions. The

specific details of these scenes are summarized in Table 5.4.

Furthermore, in each dialogue, every speaker is randomly assigned a specific

personality trait, allowing for a more authentic simulation of real-life conversational

dynamics. The detailed personality traits and their occurrence probabilities in the dataset

are presented in Table 5.5.

To generate this dataset, we collaborated with numerous individuals who engaged in

role-playing and dialogue generation within the specified scenarios. We have collected a

total of 480 dialogues, with 8 individuals taking on the role of initiating the dialogue by

finding other individuals outside the group to engage in simulated dialogues. Similar

to the adjusted CPED dataset, the collected data undergoes the same processing,

transforming it into a reasonable format for model training. The selection of dialogue

history sequence length (i.e., n) also follows the same criteria as in the adjusted CPED
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Table 5.4: Details of Simulated Dialogue Scenes

ID Scene Role Task

1 Bargaining at a holiday market Tourist / Vendor Negotiating for a lower

price or selling at the

original price

2 Bargaining on an E-commerce

platform

Customer / Seller Seeking expired discounts

or attempting to sell at the

original price

3 Dealing with return requests Customer / Seller Requesting seller or buyer

to cover shipping fee

4 Complaining in the customer

service platform

Customer / Support Requesting or refusing

compensation for product

defects

5 Regretting overpaying after

seeing new discount

Customer / Support Requesting or refusing

post-sale price difference

compensation

6 Urgently requesting restaurant

reservation

Guest / Staff Attempting reservation

or declining reservation

request

7 Handling reservation matters Staff / Guest Explaining the failed

reservation or seeking

dining rights

8 Complaining in the restaurant Guest / Manager Requesting or refusing

compensation for poor

dining experience

9 Complaining in the hotel Guest / Manager Requesting or refusing

compensation for hotel

stay issue

10 Offering a discount Salesperson / Passerby Promoting or bargaining

for a product discount

11 Complaining Student A / Student B Expressing frustration or

comforting the other

12 Emotional sharing Student A / Student B Sharing emotional issues

or supporting the other

13 Inviting for an outing Student A / Student B Persuading or refusing the

invitation

14 Discussing a weekend trip Student A / Student B Persuading or refusing

some proposal
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Table 5.5: Details of Personality Traits and Their Occurrence Probabilities

Personality Trait Probability of Occurrence (%)

Highly Stubborn and Unyielding 20%

Rationally Argumentative 25%

Willing to Listen and Communicate 25%

Empathetic and Considerate 20%

Prefers Indirect and Non-confrontational Approaches 10%

dataset. The statistical details of this dataset are presented in Table 5.6. Also, the

distribution of sentiment polarities in the training and testing data is depicted in Figure

5.3.

Table 5.6: Statistics of the NTUBI-Diag Dataset

Training + Testing Dev

# of dialogues 3,142 338
# of utterances 25,136 2,704
# of utt. per dial. 8 8
Avg. utt. length 11.0 10.8
Max utt. length 50 38
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Figure 5.3: Distribution of Sentiment Polarities (NTUBI-Diag)

5.2 Evaluation Procedure and Metrics

In order to ensure credible and fair comparisons, we choose not to utilize the original

train-dev-test splitting of the dataset. Instead, we adopt a 5-fold dataset splitting approach.

First, we keep the development data unchanged, utilizing it as a reference for selecting

hyperparameters. Subsequently, we divide the training and testing data into five subsets.

Each experiment involves training the model on 80% of the data and testing it on the

remaining 20% for five iterations, where the testing data in an iteration corresponds to

each fold. Consequently, with this 5-fold cross-validation method, the performance of

each experiment will be reported as the weighted average of each fold’s results. We opt

for using weighted averages due to the split of the dataset is based on TV series, which

is designed to prevent data leakage. Given the slight variations in data quantities among

different TV series, the use of weighted averages ensures the fairness and robustness of

our experimental results.
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Regarding the evaluation of model performance, we follow the metrics adopted in

previous studies on sentiment forecasting task (Wang et al., 2020; Zou et al., 2022),

and these metrics are also consistent with those in Chen et al. (2022) using the CPED

dataset. Specifically, we will employ precision, recall, and F1 score with macro-averaging

as our evaluation metrics. Furthermore, we conducted individual calculations for these

metrics within each sentiment polarity category, which enable us to gain a comprehensive

understanding of how each model performs differently in forecasting various sentiment

polarities. The formulations for these metrics are as follows, with polarity-i belonging to

the set {positive, neutral, negative}:

Precisionpolarity−i = # correctly predicted samples of polarity-i
# total predicted samples of polarity-i

(5.1)

Recallpolarity−i = # correctly predicted samples of polarity-i
# total annotated samples of polarity-i

(5.2)

F1polarity−i = 2 × Precisionpolarity−i× Recallpolarity−i

Precisionpolarity−i + Recallpolarity−i
(5.3)

5.3 Experimental Settings

5.3.1 Implementation Details

In our research, all experiments are implemented using the PyTorch (Paszke et al.,

2019) deep learning framework. For model optimization, we utilize the widely adopted

Adam (Kingma and Ba, 2014) optimizer for all our experiments. As for the learning

rate, we employ the Linear learning rate schedule with warm-up. Specifically, we linearly

increase the learning rate from zero to a predefined target learning rate lr during the first

3% of training steps, and gradually decrease it back to zero using a linear decay schedule
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until the final step. For the MTSF model and all benchmark models, we set the target

learning rate lr to 5×10−5. However, in the case of Transfer Learning experiments, where

we deal with limited data or fine-tuning model parameters, we adjust the target learning

rate lr to a lower value of 5×10−6.

Furthermore, we set the maximum training epochs to 300 and implement early

stopping with patience set to 50 epochs. This means that if the validation performance

of the model did not improve over the last 50 consecutive epochs, the training process

is terminated early to prevent overfitting. Additionally, throughout all experiments, we

maintain a consistent batch size of 32. Regarding the multi-head Attention settings, we

employ an 8-head multi-head attention mechanism for Dialogue Contextual Attention and

a 4-head multi-head attention for Last Utterance Attention. Finally, the hyperparameter

a , which is used to adjust the weights for auxiliary tasks, is set to 0.5, as it performs best

in the original paper’s experiments (Liu et al., 2019a).

It is noteworthy that the choice of dialogue history length (i.e., n) has been investigated

in previous studies, ranging from 3 (Wang et al., 2020) and 4 (Zou et al., 2022) to 8

(Shi et al., 2020), and even beyond. However, given the distinctive nature of the dataset

used in our experiments, where consecutive utterances by the same speaker occur, we

believe it is necessary to select a longer dialogue history length to cover information from

both speakers more comprehensively. The more detailed hyperparameter settings for our

experiments are summarized in Table 5.7.

5.3.2 Benchmark Methods

We will compare our proposed MTSF model with two existing methods:
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Table 5.7: Hyperparameter Settings

Epochs
Early stopping

epochs
Learning rate

Utterance
embedding dim.

Speaker Turn
embedding dim.

e = 300 wes = 50
lrmulti = 5e−5
lrtrans = 5e−6

du = 768 ds = 768

Batch size
Feed forward
hidden dim.

Attention head
number

Task weight
balancer

Dialogue history
length

b = 32 d f f = 128
hcont = 8
hlast = 4

a = 0.5 n = 8

• Neural Sentiment Forecasting (NSF) (Wang et al., 2020): The NSF method

focuses on simulating the next upcoming utterance and learning the influence of

context on the upcoming utterance. Specifically, they employ attention mechanism

to capture and fuse information from both “utterances spoken by the target speaker”

and the “entire historical dialogue sequence” for sentiment forecasting tasks.

• Emotion-Assisted Sentiment Forecasting (EASF) (Zou et al., 2022): Similar

to NSF, the EASF method also utilizes attention mechanism to capture and

fuse information from “utterances spoken by the target speaker” and the “entire

historical dialogue sequence.” However, they further consider the incorporation of

emotion features to assist in sentiment forecasting tasks.

It is essential to note that, to ensure result comparability and fairness, we use the

same pretrained RoBERTa model, as employed in our research, to generate the underlying

utterance embeddings when replicating these benchmark methods. Additionally, as our

study uses a different dataset from the original research of these benchmark methods, we

adopt the hyperparameter settings consistent with those listed in Table 5.7 in cases where

the original papers did not provide explicit details on hyperparameter selection.
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These two benchmark methods presented in this section provide valuable insights

into the current landscape of sentiment forecasting in dialogue systems, and serve as

benchmarks for evaluating the effectiveness of our proposed MTSF model.

5.4 Evaluation Results

In this section, we present a comprehensive performance evaluation of our proposed

MTSF model and compare it with the two benchmark methods, namely NSF and EASF.

The evaluation results are summarized in Table 5.8, where we report the macro F1 score,

macro precision, and macro recall for each method.

Table 5.8: Comparison of Benchmarks and Our Proposed MTSF Method (on CPED Dataset)

Method Macro F1 Macro Precision Macro Recall

NSF (Wang et al., 2020) 36.47% 41.23% 37.96%

EASF (Zou et al., 2022) 37.89% 38.09% 38.00%

MTSF 41.26% 41.65% 41.60%

As shown in Table 5.8, our proposed MTSF method demonstrates superior

performance across all three metrics compared to those attained by the benchmark

methods. The bold texts denote the best performance in each evaluation criterion.

Specifically, the macro F1 score of MTSF is 41.26%, indicating a significant improvement

over both NSF (36.47%) and EASF (37.89%). Similarly, the macro precision of MTSF

stands at 41.65%, outperforming both NSF (41.23%) and EASF (38.09%).

Moreover, MTSF achieves an impressive macro recall of 41.60%, surpassing the

performance of NSF (37.96%) and EASF (38.00%). These results suggest that our

proposed MTSF method strikes a better balance between precision and recall, making

it well-suited for the sentiment forecasting task.
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For a more detailed analysis of the performance of MTSF across different sentiment

polarities, please refer to Table 5.9. In that table, we provide a comprehensive breakdown

of the precision, recall, and F1 scores for each sentiment class, enabling a thorough

understanding of each method’s efficacy in capturing diverse sentiment patterns.

Table 5.9: Comparison of Performance Across Different Sentiment Polarities (on CPED Dataset)

Method

Negative Positive Neutral

F1 Precision Recall F1 Precision Recall F1 Precision Recall

NSF 69.60% 59.01% 84.83% 14.91% 28.33% 10.12% 24.91% 36.35% 18.95%

EASF 62.31% 60.78% 63.91% 22.13% 20.82% 23.62% 29.24% 32.66% 26.47%

MTSF 63.67% 62.50% 64.89% 28.09% 25.08% 31.92% 32.02% 37.36% 28.01%

Starting with the negative sentiment class, NSF achieves the highest F1 score,

indicating a good balance between precision and recall. While NSF significantly

outperforms the other methods in recall, our proposed MTSF method exhibits a slightly

better precision, indicating a stronger ability to correctly forecast negative sentiment

instances.

Moving on to the positive sentiment class, the results show that our proposed MTSF

method achieves the highest F1 score, significantly outperforming both NSF and EASF.

Moreover, MTSF exhibits the highest recall, surpassing NSF and EASF. This indicates

that MTSF is more effective in forecasting positive sentiment instances.

Regarding the neutral sentiment class, our proposed MTSF method also achieves

the highest F1 score, significantly surpassing both NSF and EASF. Moreover, MTSF

demonstrates better precision and recall compared to those of NSF and EASF. This

indicates that MTSF strikes a better balance between precision and recall for forecasting

neutral sentiment instances.

In summary, the detailed performance evaluation reveals that our proposed MTSF
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method outperforms the benchmark methods in forecasting positive and neutral sentiment,

while still demonstrating a competent ability to forecast negative sentiment. This also

suggests that MTSF achieves a well-balanced performance, making it suitable for the

sentiment forecasting task.

5.5 Additional Evaluation Results

5.5.1 Effectiveness of Auxiliary Tasks

One of the most significant advantages of our proposed MTSF method lies in its

effective utilization of a multi-task framework, which enhances the overall performance of

the sentiment forecasting task. We firmly believe that learning to recognize dialogue acts

and sentiments within the dialogue history sequence can provide valuable information

and clues for improving the performance of sentiment forecasting. Similarly, the ability

to predict upcoming dialogue acts can also offer insights that benefit the sentiment

forecasting task. Motivated by this rationale, we incorporated the auxiliary tasks

discussed in Chapter 3.7 into our proposed MTSF model structure, empowering the model

to acquire more robust sentiment representations.

In the following experiments, we conduct a comparative analysis of the effectiveness

of our proposed method by selectively excluding one or more auxiliary tasks. Specifically,

we systematically remove the loss corresponding to certain auxiliary tasks from the total

loss function to observe their impact on the forecast effectiveness of the main task. The

ablation results are presented in Table 5.10, and for a more detailed analysis of the

effectiveness of different auxiliary tasks across different sentiment polarities, please refer

to Table 5.11. Note that the “w/o” prefix denotes the exclusion of specific auxiliary tasks
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from the model training.

Table 5.10: Effectiveness of Different Auxiliary Tasks (on CPED Dataset)

Method Macro F1 Macro Precision Macro Recall

w/o All Auxiliary Tasks 38.02% 38.29% 38.04%

w/o DA(Seq) & Sentiment(Seq) 38.81% 39.52% 38.83%

w/o DA(Upcoming) & Sentiment(Seq) 38.83% 39.43% 39.14%

w/o DA(Upcoming) & DA(Seq) 39.57% 39.53% 39.70%

w/o Sentiment(Seq) 39.68% 40.17% 39.92%

w/o DA(Seq) 39.88% 40.26% 39.79%

w/o DA(Upcoming) 40.02% 40.16% 39.95%

MTSF 41.26% 41.65% 41.60%

Table 5.11: Effectiveness of Auxiliary Tasks Across Different Sentiment Polarities (on CPED Dataset)

Method
Negative Positive Neutral

F1 Precision Recall F1 Precision Recall F1 Precision Recall

w/o All Auxiliary Tasks 63.34% 60.22% 66.81% 21.24% 22.35% 20.24% 29.46% 32.31% 27.07%

w/o DA(Seq) & Sentiment(Seq) 64.87% 60.26% 70.25% 21.39% 24.55% 18.94% 30.18% 33.74% 27.29%
w/o DA(Upcoming) & Sentiment(Seq) 64.26% 60.24% 68.87% 25.34% 24.67% 26.04% 26.89% 33.39% 22.52%
w/o DA(Upcoming) & DA(Seq) 60.92% 61.57% 60.28% 25.54% 24.03% 27.25% 32.27% 32.99% 31.58%

w/o Sentiment(Seq) 64.44% 60.96% 68.33% 26.22% 25.34% 27.16% 28.40% 34.21% 24.27%
w/o DA(Seq) 64.04% 60.98% 67.43% 24.93% 26.85% 23.27% 30.66% 32.95% 28.67%
w/o DA(Upcoming) 61.64% 61.68% 61.61% 25.51% 26.84% 24.31% 32.92% 31.95% 33.94%

MTSF 63.67% 62.50% 64.89% 28.09% 25.08% 31.92% 32.02% 37.36% 28.01%

The experimental results in Table 5.10 clearly demonstrate that the exclusion of any

auxiliary task leads to a decline in the overall effectiveness of the sentiment forecasting

task, and removing all auxiliary tasks (w/o all auxiliary tasks) leads to a noticeable drop

in performance. This observation highlights the importance of the auxiliary tasks in

contributing to the overall effectiveness of our sentiment forecasting method.

From the experimental results in the Table 5.11, it is evident that different auxiliary

tasks contribute differently to the forecasting of sentiment in various sentiment categories.

Specifically, for the forecast of “negative” samples, the auxiliary task of forecasting

upcoming dialogue act “DA(Upcoming)” exhibits the most significant improvement. On
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the other hand, for the prediction of “positive” samples, both tasks related to recognizing

sentiments and dialogue acts within the dialogue history sequence demonstrate substantial

benefits. Meanwhile, in the case of predicting “neutral” samples, the task of recognizing

sentiments within the dialogue history sequence proves to be the most crucial. These

findings suggest that each auxiliary task focuses on extracting distinct emotional features

relevant to the specific sentiment categories.

Furthermore, the experimental results also reveal that incorporating all auxiliary

tasks simultaneously leads to a significant performance improvement in forecasting

“positive” samples. Although the performance on “negative” and “neutral” samples

may not reach its optimum, it closely approaches the performance achieved by the

best-performing task combination. This observation implies that incorporating all

auxiliary tasks simultaneously provides a more stable overall forecasting performance

across different sentiment categories.

Through the evaluation of our method’s performance under various scenarios of

auxiliary task exclusion, we have gained valuable insights into the contribution of each

auxiliary task to the overall effectiveness of sentiment forecasting. This analysis has

allowed us to understand the significance of each auxiliary task in refining sentiment

representations and effectively complementing the primary sentiment forecasting task.

In summary, our experimental findings demonstrate that each auxiliary task plays a

meaningful role in enhancing the method’s ability to perform sentiment forecasting

effectively. By adopting the multi-task framework and incorporating these auxiliary tasks,

our proposed MTSF model achieves superior performance, highlighting the importance of

leveraging diverse sources of information to achieve more accurate sentiment forecasting
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results.

5.5.2 Experiments on Domain Transfer

To ensure the applicability of our proposed method in real-world scenarios, we

conduct domain transfer experiments on the newly collected NTUBI-Diag dataset, as

described in Chapter 4. These experiments aim to evaluate the method’s ability to

generalize across different domains or application contexts. Specifically, we explore two

distinct domain transfer methods as follows:

• Domain Adversarial Training with CPED-Pretrained MTSF Model (DaNN):

We first train the MTSF model on the CPED dataset, and then adapt it to the newly

collected NTUBI-Diag dataset through domain adversarial training, without any

labeled data on the NTUBI-Diag dataset.

• Fine-tuning with CPED-Pretrained MTSF Model (Fine-tuning): We first train

the MTSF model on the CPED dataset, and then fine-tune it using the newly

collected NTUBI-Diag dataset, assuming that we have access to labeled data for

the sentiment forecasting task on the NTUBI-Diag dataset.

Furthermore, to validate the effectiveness of our chosen domain transfer methods, we

compare the results with two baseline approaches:

• Direct Testing with CPED-Pretrained MTSF Model (Direct Testing): We

directly apply the MTSF model trained on the CPED dataset to the newly collected

NTUBI-Diag dataset for testing.

• Training from Scratch with NTUBI-Diag Data (Training from Scratch): We

exclusively construct the MTSF model using the newly collected NTUBI-Diag
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dataset for both training and testing, and only consider the sentiment forecasting

task.

The experimental results are presented in Table 5.12 and Table 5.13, showcasing the

performance of each domain transfer method and the baselines. From the experimental

results, it is evident that our proposed Fine-tuning method outperforms the baseline

approaches on the newly collected NTUBI-Diag dataset. This method not only achieves

better overall performance but also demonstrates more consistent performance across

different sentiment categories. These results highlight the effectiveness of fine-tuning

in transferring knowledge learned from the CPED dataset to the new domain.

On the other hand, the DaNN method, which utilizes unlabeled data from the new

application domain for training, exhibits inferior performance compared to Fine-tuning

and Training from Scratch, as expected. However, it still outperforms the Direct Testing

baseline, indicating its ability to leverage the unlabeled data from the new domain to

acquire more general knowledge for sentiment forecasting.

Table 5.12: Domain Transfer Experiments (on NTUBI-Diag Dataset)

Method Macro F1 Macro Precision Macro Recall

Direct Testing 38.41% 44.73% 40.48%

Training from Scratch 46.81% 48.85% 46.15%

DaNN 40.27% 41.81% 41.23%

Fine-tuning 48.36% 49.65% 47.67%
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Table 5.13: Domain Transfer Experiments Across Different Sentiment Polarities (on NTUBI-Diag Dataset)

Method
Negative Positive Neutral

F1 Precision Recall F1 Precision Recall F1 Precision Recall

Direct Testing 28.68% 57.74% 19.08% 32.79% 32.55% 33.04% 53.75% 43.88% 69.33%

Training from Scratch 52.11% 48.65% 56.11% 40.71% 51.24% 33.78% 47.59% 46.67% 48.55%

DaNN 51.38% 43.08% 63.66% 32.57% 37.84% 28.59% 36.84% 44.50% 31.43%
Fine-tuning 51.49% 51.38% 51.60% 43.98% 50.48% 38.96% 49.62% 47.10% 52.44%
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Chapter 6

Conclusion

6.1 Conclusion

In this research, we have addressed the task of sentiment forecasting in dialogue

and proposed a novel method called MTSF, which is based on the architecture of

multi-task learning. Our proposed method incorporates multiple auxiliary tasks, including

sentiment and dialogue act recognition within dialogue history sequences, as well as

predicting the dialogue act of the upcoming utterance. With these auxiliary tasks, our

method effectively extracts informative sentiment features by leveraging diverse sources

of information, thereby optimizing the performance of the main sentiment forecasting

task. The experimental results have demonstrated the superiority of our proposed MTSF

method compared to two salient benchmarks. Moreover, through the ablation studies, we

have extensively explored the contribution of each auxiliary task to the main sentiment

forecasting task.

To ensure the real-world applicability of our model, we also collected a new dialogue

dataset that simulates various common dialogue scenarios. After, considering different

data annotation situations in real-world scenarios, including both labeled and unlabeled,

we demonstrated different domain transfer methods. The results further validate the
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effectiveness of our proposed domain transfer methods, solidifying the potential for

practical deployment in diverse application domains.

In conclusion, our research findings highlight the importance of multi-task learning

and domain transfer techniques in the context of sentiment forecasting in dialogue. With

our proposed model architecture and dataset, we have demonstrated the potential to

achieve more accurate sentiment forecasting results in various practical dialogue system

scenarios. Our research paves the way for developing more sophisticated sentiment

analysis techniques in real-world applications and contributes to the advancement of

dialogue systems for improved user experiences.

6.2 Future Works

In terms of future works, beyond forecasting the sentiment elicited in the user by

system response, a more practical solution would involve generating candidate system

responses first and subsequently performing sentiment forecasting. However, due to

the current limitations stemming from insufficient data availability, training a response

generation model that is suitably robust remains a challenge. Thus, we propose that future

works could focus on this direction and try to overcome these limitations, to enhance

the applicability of the task of sentiment forecasting in dialogue. Furthermore, future

works may also delve into exploring the extent to which our proposed MTSF method’s

effectiveness is sensitive to the length of dialogue history.

In the pursuit of advancing sentiment forecasting in dialogue, there are also several

promising avenues for further research and exploration. First, a fruitful direction involves

investigating additional auxiliary tasks. By incorporating more diverse and relevant tasks,
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we can potentially uncover new insights and enhance the model’s ability to capture

sentiment-related information within dialogues. Another critical aspect to explore is the

adoption of other advanced model architectures specifically tailored for this task. By

delving into alternative architectures, we can better leverage the context and structure of

dialogues to achieve more accurate sentiment forecasting results.

Furthermore, extending the scope of research from “sentiment forecasting” to

“emotion forecasting” represents a significant opportunity. Fine-grained emotion

forecasting task holds immense potential in enabling more nuanced understanding and

analysis of sentiments within dialogues. In addition to sentiment and emotion forecasting,

extending research into other sentiment-related tasks within dialogues can also be

fruitful. For instance, exploring such research tasks as “emotion-cause pair extraction

in dialogues” or “quit intention detection in dialogues” would offer valuable insights and

contribute to a deeper understanding of sentiment dynamics in the conversational context.

By addressing these research directions, we can push the boundaries of sentiment analysis

in dialogues and pave a way for more sophisticated and context-aware dialogue systems

with enhanced sentiment forecasting and understanding capabilities.
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