請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91303
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃倬英 | zh_TW |
dc.contributor.advisor | Cho-ying Huang | en |
dc.contributor.author | 潘孝隆 | zh_TW |
dc.contributor.author | Hsiao-Lung Pan | en |
dc.date.accessioned | 2023-12-20T16:24:00Z | - |
dc.date.available | 2024-01-31 | - |
dc.date.copyright | 2023-12-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-09-20 | - |
dc.identifier.citation | References
Asner, G. P., Flint Hughes, R., Varga, T. A., Knapp, D. E., & Kennedy-Bowdoin, T. (2009). Environmental and Biotic Controls over Aboveground Biomass Throughout a Tropical Rain Forest. Ecosystems, 12(2), 261–278. https://doi.org/10.1007/s10021-008-9221-5 Bai, S., Wang, Y., Conant, R. T., Zhou, G., Xu, Y., Wang, N., Fang, F., & Chen, J. (2016). Can native clonal moso bamboo encroach on adjacent natural forest without human intervention? Scientific Reports, 6(1), Article 1. https://doi.org/10.1038/srep31504 Bazzaz, F. A. (1991). Habitat Selection in Plants. The American Naturalist, 137, S116–S130. https://doi.org/10.1086/285142 Beland, M., Parker, G., Sparrow, B., Harding, D., Chasmer, L., Phinn, S., Antonarakis, A., & Strahler, A. (2019). On promoting the use of lidar systems in forest ecosystem research. Forest Ecology and Management, 450, 117484. https://doi.org/10.1016/j.foreco.2019.117484 Bona, K., Purificação, K. N., Vieira, T. B., & Mews, H. A. (2020). Fine-scale effects of bamboo dominance on seed rain in a rainforest. Forest Ecology and Management, 460, 117906. https://doi.org/10.1016/j.foreco.2020.117906 Caccia, F. D., Chaneton, E. J., & Kitzberger, T. (2009). Direct and indirect effects of understorey bamboo shape tree regeneration niches in a mixed temperate forest. Oecologia, 161(4), 771–780. https://doi.org/10.1007/s00442-009-1412-z Canavan, S., Richardson, D. M., Visser, V., Roux, J. J. L., Vorontsova, M. S., & Wilson, J. R. U. (2016). The global distribution of bamboos: Assessing correlates of introduction and invasion. AoB Plants, plw078. https://doi.org/10.1093/aobpla/plw078 Cao, L., Coops, N. C., Sun, Y., Ruan, H., Wang, G., Dai, J., & She, G. (2019). Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 114–129. https://doi.org/10.1016/j.isprsjprs.2018.12.006 Chang, M.-H. (1981). Ecology and control of Yushan cane [Master Thesis]. National Taiwan University. Chen, Y., JY, L., & CK, W. (1992). Ecological research on high-mountain vegetation in Taiwan (II)—The variation in growth form in Yushan cane. Yushania, 6, 117–143. Chen, Y., Li, L., Lu, D., & Li, D. (2019). Exploring Bamboo Forest Aboveground Biomass Estimation Using Sentinel-2 Data. Remote Sensing, 11(1), Article 1. https://doi.org/10.3390/rs11010007 da Costa, M. B. T., Silva, C. A., Broadbent, E. N., Leite, R. V., Mohan, M., Liesenberg, V., Stoddart, J., do Amaral, C. H., de Almeida, D. R. A., da Silva, A. L., Ré Y. Goya, L. R., Cordeiro, V. A., Rex, F., Hirsch, A., Marcatti, G. E., Cardil, A., de Mendonça, B. A. F., Hamamura, C., Corte, A. P. D., … Klauberg, C. (2021). Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data. Forest Ecology and Management, 491, 119155. https://doi.org/10.1016/j.foreco.2021.119155 Frolking, S., Palace, M. W., Clark, D. B., Chambers, J. Q., Shugart, H. H., & Hurtt, G. C. (2009). Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysical Research: Biogeosciences, 114(G2). https://doi.org/10.1029/2008JG000911 Gaira, K. S., Pandey, A., Sinha, S., Badola, H. K., Lepcha, J., Dhyani, P. P., & Chettri, N. (2022). Maling bamboo (Yushania maling) overdominance alters forest structure and composition in Khangchendzonga landscape, Eastern Himalaya. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-08483-8 Gregoire, T. G., Næsset, E., McRoberts, R. E., Ståhl, G., Andersen, H.-E., Gobakken, T., Ene, L., & Nelson, R. (2016). Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sensing of Environment, 173, 98–108. https://doi.org/10.1016/j.rse.2015.11.012 Guerreiro, C. (2014). Flowering cycles of woody bamboos native to southern South America. Journal of Plant Research, 127(2), 307–313. https://doi.org/10.1007/s10265-013-0593-z Higgins, S. I., Conradi, T., & Muhoko, E. (2023). Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends. Nature Geoscience, 16(2), Article 2. https://doi.org/10.1038/s41561-022-01114-x Hirobe, M., Miyamoto, S., Sakamoto, K., Kondo, J., Otoda, T., Akaji, Y., & Yamanaka, N. (2015). The spatial distributions of understory trees in relation to dwarf bamboo cover in a cool-temperate deciduous broadleaf forest in Japan. Journal of Forest Research, 20(3), 357–362. https://doi.org/10.1007/s10310-015-0480-7 Itô, H., & Hino, T. (2007). Dwarf bamboo as an ecological filter for forest regeneration. Ecological Research, 22(4), 706–711. https://doi.org/10.1007/s11284-006-0066-0 Kudo, G., Amagai, Y., Hoshino, B., & Kaneko, M. (2011). Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: Pattern of expansion and impact on species diversity. Ecology and Evolution, 1(1), 85–96. https://doi.org/10.1002/ece3.9 Kudo, G., Aoshima, Y., Miyata, R., & Winkler, D. E. (2018). Altered morphologies and physiological compensation in a rapidly expanding dwarf bamboo in alpine ecosystems. Arctic, Antarctic, and Alpine Research, 50(1), e1463733. https://doi.org/10.1080/15230430.2018.1463733 Kudo, G., Kawai, Y., Amagai, Y., & Winkler, D. E. (2017). Degradation and recovery of an alpine plant community: Experimental removal of an encroaching dwarf bamboo. Alpine Botany, 127(1), 75–83. https://doi.org/10.1007/s00035-016-0178-2 Kumar, L., & Mutanga, O. (2017). Remote Sensing of Above-Ground Biomass. Remote Sensing, 9(9), Article 9. https://doi.org/10.3390/rs9090935 Kuo, C.-C., Su, Y., Liu, H.-Y., & Lin, C.-T. (2021). Assessment of climate change effects on alpine summit vegetation in the transition of tropical to subtropical humid climate. Plant Ecology, 222(8), 933–951. https://doi.org/10.1007/s11258-021-01152-2 Larpkern, P., Moe, S. R., & Totland, Ø. (2011). Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia, 165(1), 161–168. https://doi.org/10.1007/s00442-010-1707-0 Lefsky, M. A., Cohen, W. B., Harding, D. J., Parker, G. G., Acker, S. A., & Gower, S. T. (2002). Lidar remote sensing of above-ground biomass in three biomes. Global Ecology and Biogeography, 11(5), 393–399. https://doi.org/10.1046/j.1466-822x.2002.00303.x Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar Remote Sensing for Ecosystem Studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience, 52(1), 19–30. https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 Liao, M.-C., Chiu, C.-A., Lin, H.-C., Tseng, Y.-H., Tzeng, H.-Y., & Lu, K.-C. (2012). Understory vegetation diversity at Abies kawakamii (Hayata) Ito forest in Mt. Shei. Quarterly Journal of Forest Research, 34(3), 179–192. Liao, M.-C., Tsai, S.-T., Wang, W., Tzeng, H.-Y., & Ou, C.-H. (2013). Study on population structure of Abies kawakamii (Hayata) Ito in East Xue Trail of Xue Mountain. Quarterly Journal of Forest Research, 35(1), 1–14. Lin, L.-Y., Lin, C.-T., Chen, Y.-M., Cheng, C.-T., Li, H.-C., & Chen, W.-B. (2022). The Taiwan Climate Change Projection Information and Adaptation Knowledge Platform: A Decade of Climate Research. Water, 14(3), Article 3. https://doi.org/10.3390/w14030358 Madsen, B., Treier, U. A., Zlinszky, A., Lucieer, A., & Normand, S. (2020). Detecting shrub encroachment in seminatural grasslands using UAS LiDAR. Ecology and Evolution, 10(11), 4876–4902. https://doi.org/10.1002/ece3.6240 Matasci, G., Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., Hobart, G. W., & Zald, H. S. J. (2018). Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots. Remote Sensing of Environment, 209, 90–106. https://doi.org/10.1016/j.rse.2017.12.020 Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J. L. B., Coldea, G., Dick, J., Erschbamer, B., Calzado, R. F., Ghosn, D., Holten, J. I., Kanka, R., Kazakis, G., Kollár, J., Larsson, P., Moiseev, P., Moiseev, D., Molau, U., … Grabherr, G. (2012). Recent Plant Diversity Changes on Europe’s Mountain Summits. Science, 336(6079), 353–355. https://doi.org/10.1126/science.1219033 POWO. (2023). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Plants of the World Online. http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:426782-1 Roussel, J.-R., Auty, D., Coops, N. C., Tompalski, P., Goodbody, T. R. H., Meador, A. S., Bourdon, J.-F., de Boissieu, F., & Achim, A. (2020). lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment, 251, 112061. https://doi.org/10.1016/j.rse.2020.112061 Su, S. J. (1985). Studies on the climate and vegetation types of the natural forests in Taiwan.(III). A scheme of geographical climatic regions. Quarterly Journal of Chinese Forestry, 18(3), 33–44. Takano, K. T., Hibino, K., Numata, A., Oguro, M., Aiba, M., Shiogama, H., Takayabu, I., & Nakashizuka, T. (2017). Detecting latitudinal and altitudinal expansion of invasive bamboo Phyllostachys edulis and Phyllostachys bambusoides (Poaceae) in Japan to project potential habitats under 1.5°C–4.0°C global warming. Ecology and Evolution, 7(23), 9848–9859. https://doi.org/10.1002/ece3.3471 Tomimatsu, H., Yamagishi, H., Tanaka, I., Sato, M., Kondo, R., & Konno, Y. (2011). Consequences of forest fragmentation in an understory plant community: Extensive range expansion of native dwarf bamboo. Plant Species Biology, 26(1), 3–12. https://doi.org/10.1111/j.1442-1984.2010.00310.x van der Hoek, Y., Emmanuel, F., Eckardt, W., Kwizera, I., Derhé, M., Caillaud, D., Stoinski, T. S., & Tuyisingize, D. (2019). Recent decline in vegetative regeneration of bamboo (Yushania alpina), a key food plant for primates in Volcanoes National Park, Rwanda. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-49519-w Wallace, L., Lucieer, A., Watson, C., & Turner, D. (2012). Development of a UAV-LiDAR System with Application to Forest Inventory. Remote Sensing, 4(6), 1519–1543. https://doi.org/10.3390/rs4061519 Wang, D., Wan, B., Qiu, P., Zuo, Z., Wang, R., & Wu, X. (2019). Mapping Height and Aboveground Biomass of Mangrove Forests on Hainan Island Using UAV-LiDAR Sampling. Remote Sensing, 11(18), Article 18. https://doi.org/10.3390/rs11182156 Wang, D., Xin, X., Shao, Q., Brolly, M., Zhu, Z., & Chen, J. (2017). Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar. Sensors (Basel, Switzerland), 17(1). https://doi.org/10.3390/s17010180 Winkler, D. E., Amagai, Y., Huxman, T. E., Kaneko, M., & Kudo, G. (2016). Seasonal dry-down rates and high stress tolerance promote bamboo invasion above and below treeline. Plant Ecology, 217(10), 1219–1234. https://doi.org/10.1007/s11258-016-0649-y Wu, K.-S., & Kao, W.-Y. (2021). Phenotypic plasticity and genetic variation in leaf traits of Yushania niitakayamensis (Bambusoideae; Poaceae) in contrasting light environments. Journal of Plant Research. https://doi.org/10.1007/s10265-021-01327-y Wulder, M. A., White, J. C., Bater, C. W., Coops, N. C., Hopkinson, C., & Chen, G. (2012). Lidar plots — a new large-area data collection option: Context, concepts, and case study. Canadian Journal of Remote Sensing, 38(5), 600–618. https://doi.org/10.5589/m12-049 Xu, Q.-F., Liang, C.-F., Chen, J.-H., Li, Y.-C., Qin, H., & Fuhrmann, J. J. (2020). Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes +. Global Ecology and Conservation, 21, e00787. https://doi.org/10.1016/j.gecco.2019.e00787 Ye, X.-Y., Ma, P.-F., Yang, G.-Q., Guo, C., Zhang, Y.-X., Chen, Y.-M., Guo, Z.-H., & Li, D.-Z. (2019). Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Mountains. Journal of Biogeography, 46(12), 2678–2689. https://doi.org/10.1111/jbi.13723 Younginger, B. S., Sirová, D., Cruzan, M. B., & Ballhorn, D. J. (2017). Is biomass a reliable estimate of plant fitness?1. Applications in Plant Sciences, 5(2). https://doi.org/10.3732/apps.1600094 Yuen, J. Q., Fung, T., & Ziegler, A. D. (2017). Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. Forest Ecology and Management, 393, 113–138. https://doi.org/10.1016/j.foreco.2017.01.017 Appendix A References Adam, M., Urbazaev, M., Dubois, C., & Schmullius, C. (2020). Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sensing, 12(23), Article 23. https://doi.org/10.3390/rs12233948 Akinlabi, E. T., Anane-Fenin, K., & Akwada, D. R. (2017). Bamboo as Fuel. In E. T. Akinlabi, K. Anane-Fenin, & D. R. Akwada (Eds.), Bamboo: The Multipurpose Plant (pp. 149–178). Springer International Publishing. https://doi.org/10.1007/978-3-319-56808-9_4 Asner, G. P., Flint Hughes, R., Varga, T. A., Knapp, D. E., & Kennedy-Bowdoin, T. (2009). Environmental and Biotic Controls over Aboveground Biomass Throughout a Tropical Rain Forest. Ecosystems, 12(2), 261–278. https://doi.org/10.1007/s10021-008-9221-5 Asner, G. P., & Mascaro, J. (2014). Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sensing of Environment, 140, 614–624. https://doi.org/10.1016/j.rse.2013.09.023 Beland, M., Parker, G., Sparrow, B., Harding, D., Chasmer, L., Phinn, S., Antonarakis, A., & Strahler, A. (2019). On promoting the use of lidar systems in forest ecosystem research. Forest Ecology and Management, 450, 117484. https://doi.org/10.1016/j.foreco.2019.117484 Bystriakova, N., Kapos, V., Lysenko, I., & Stapleton, C. M. A. (2003). Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific Region. Biodiversity & Conservation, 12(9), 1833–1841. https://doi.org/10.1023/A:1024139813651 Bystriakova, N., Kapos, V., Lysenko, I., UNEP World Conservation Monitoring Centre, & International Network for Bamboo and Rattan. (2004). Bamboo biodiversity: Africa, Madagascar and the Americas. Cambridge, United Kingdom : UNEP-WCMC ; Beijing : INBAR. http://archive.org/details/bamboobiodiversi04byst Cao, L., Coops, N. C., Sun, Y., Ruan, H., Wang, G., Dai, J., & She, G. (2019). Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 114–129. https://doi.org/10.1016/j.isprsjprs.2018.12.006 Chang, M.-H. (1981). Ecology and control of Yushan cane [Master Thesis]. National Taiwan University. Chave, J., Condit, R., Lao, S., Caspersen, J. P., Foster, R. B., & Hubbell, S. P. (2003). Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. Journal of Ecology, 91(2), 240–252. https://doi.org/10.1046/j.1365-2745.2003.00757.x Chen, C.-F. (1983). Resource allocation of Yushania niitakayamensis [Master Thesis]. National Taiwan University. Chen, Y., JY, L., & CK, W. (1992). Ecological research on high-mountain vegetation in Taiwan (II)—The variation in growth form in Yushan cane. Yushania, 6, 117–143. Chen, Y., Li, L., Lu, D., & Li, D. (2019). Exploring Bamboo Forest Aboveground Biomass Estimation Using Sentinel-2 Data. Remote Sensing, 11(1), Article 1. https://doi.org/10.3390/rs11010007 Chiang, W., & Chang, S. (2010). The Analyses of Mt. Lulin Background Station Monitoring Data from 2006 to 2009. In Bulletin of Environmental Monitoring and Information Techniques (Vol. 5, pp. 20–34). Department of Environmental Monitoring and Information management, Environmental Protection Administration, Executive Yuan, R.O.C (Taiwan). https://sites.google.com/site/twepal01/zhai-yao5-2 d’Oliveira, M., Broadbent, E., Oliveira, L., Almeida, D., Papa, D., Ferreira, M., Zambrano, A., Silva, C., Avino, F., Prata, G., Mello, R., Figueiredo, E., Jorge, L., Junior, L., Albuquerque, R., Brancalion, P., Wilkinson, B., & Oliveira-da-Costa, M. (2020). Aboveground Biomass Estimation in Amazonian Tropical Forests: A Comparison of Aircraft- and GatorEye UAV-borne LiDAR Data in the Chico Mendes Extractive Reserve in Acre, Brazil. Remote Sensing, 12(11), 1754. https://doi.org/10.3390/rs12111754 da Costa, M. B. T., Silva, C. A., Broadbent, E. N., Leite, R. V., Mohan, M., Liesenberg, V., Stoddart, J., do Amaral, C. H., de Almeida, D. R. A., da Silva, A. L., Ré Y. Goya, L. R., Cordeiro, V. A., Rex, F., Hirsch, A., Marcatti, G. E., Cardil, A., de Mendonça, B. A. F., Hamamura, C., Corte, A. P. D., … Klauberg, C. (2021). Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data. Forest Ecology and Management, 491, 119155. https://doi.org/10.1016/j.foreco.2021.119155 Dayal, Bhupinder. S., & MacGregor, J. F. (1997). Improved PLS algorithms. Journal of Chemometrics, 11(1), 73–85. https://doi.org/10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-# Dhaliwal, G. S., Gupta, N., Kukal, S. S., & Meetpal-Singh. (2014). Standardization of Automated Vario EL III CHNS Analyzer for Total Carbon and Nitrogen Determination in Plants. Communications in Soil Science and Plant Analysis, 45(10), 1316–1324. https://doi.org/10.1080/00103624.2013.875197 Dubayah, R., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., Armston, J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P. L., Qi, W., & Silva, C. (2020). The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Science of Remote Sensing, 1, 100002. https://doi.org/10.1016/j.srs.2020.100002 Engler, B., Schoenherr, S., Zhong, Z., & Becker, G. (2012). Suitability of Bamboo as an Energy Resource: Analysis of Bamboo Combustion Values Dependent on the Culm’s Age. International Journal of Forest Engineering, 23(2), 114–121. https://doi.org/10.1080/14942119.2012.10739967 Ferraz, A., Saatchi, S., Xu, L., Hagen, S., Chave, J., Yu, Y., Meyer, V., Garcia, M., Silva, C., Roswintiart, O., Samboko, A., Sist, P., Walker, S., Pearson, T. R. H., Wijaya, A., Sullivan, F. B., Rutishauser, E., Hoekman, D., & Ganguly, S. (2018). Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environmental Research Letters, 13(9), 095001. https://doi.org/10.1088/1748-9326/aad782 Friedman, J. H., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33, 1–22. https://doi.org/10.18637/jss.v033.i01 Greenwell, B., Boehmke, B., & Gray, B. (2020). vip: Variable Importance Plots (0.3.2). https://CRAN.R-project.org/package=vip Han, L., Yang, G., Dai, H., Xu, B., Yang, H., Feng, H., Li, Z., & Yang, X. (2019). Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods, 15(1), 10. https://doi.org/10.1186/s13007-019-0394-z Harrell, F. E. (2015). Multivariable Modeling Strategies. In Jr. Harrell Frank E. (Ed.), Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis (pp. 63–102). Springer International Publishing. https://doi.org/10.1007/978-3-319-19425-7_4 Hastie, T., Qian, J., & Tay, K. (2021, November 1). An Introduction to `glmnet`. An Introduction to Glmnet. https://glmnet.stanford.edu/articles/glmnet.html#ref-glmnet Hastie, T., Tibshirani, R., & Friedman, J. (2009). Additive Models, Trees, and Related Methods. In T. Hastie, R. Tibshirani, & J. Friedman (Eds.), The Elements of Statistical Learning: Data Mining, Inference, and Prediction (pp. 295–336). Springer. https://doi.org/10.1007/978-0-387-84858-7_9 Huang, C., Liu, H.-C., Hu, K.-T., Chung, C.-H., & Wang, J. (2023). Variation of seasonal litterfall in subtropical montane cloud forests to typhoon severity and environmental factors. Biotropica, 55(1), 132–144. https://doi.org/10.1111/btp.13166 Huang, C., Wei, H.-L., Rau, J.-Y., & Jhan, J.-P. (2019). Use of principal components of UAV-acquired narrow-band multispectral imagery to map the diverse low stature vegetation fAPAR. GIScience & Remote Sensing, 56(4), 605–623. https://doi.org/10.1080/15481603.2018.1550873 James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning: With Applications in R (Hardcover) (Second). Springer. https://www.statlearning.com/ Karna, Y. K., Penman, T. D., Aponte, C., Hinko-Najera, N., & Bennett, L. T. (2020). Persistent changes in the horizontal and vertical canopy structure of fire-tolerant forests after severe fire as quantified using multi-temporal airborne lidar data. Forest Ecology and Management, 472, 118255. https://doi.org/10.1016/j.foreco.2020.118255 Kudo, G., Amagai, Y., Hoshino, B., & Kaneko, M. (2011). Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: Pattern of expansion and impact on species diversity. Ecology and Evolution, 1(1), 85–96. https://doi.org/10.1002/ece3.9 Kuhn, M. (2019). 5 Model Training and Tuning | The caret Package. http://topepo.github.io/caret/model-training-and-tuning.html#custom Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., & Hunt, T. (2022). caret: Classification and Regression Training (6.0-93). https://CRAN.R-project.org/package=caret Kumar, D., & Mandal, A. (2022). Review on manufacturing and fundamental aspects of laminated bamboo products for structural applications. Construction and Building Materials, 348, 128691. https://doi.org/10.1016/j.conbuildmat.2022.128691 Lai, G.-Y., Liu, H.-C., Chung, C.-H., Wang, C.-K., & Huang, C. (2021). Lidar-derived environmental drivers of epiphytic bryophyte biomass in tropical montane cloud forests. Remote Sensing of Environment, 253, 112166. https://doi.org/10.1016/j.rse.2020.112166 Li, Y., Han, N., Li, X., Du, H., Mao, F., Cui, L., Liu, T., & Xing, L. (2018). Spatiotemporal Estimation of Bamboo Forest Aboveground Carbon Storage Based on Landsat Data in Zhejiang, China. Remote Sensing, 10(6), Article 6. https://doi.org/10.3390/rs10060898 Liu, Z., Fei, B., Jiang, Z., Cai, Z., & Liu, X. (2014). Important properties of bamboo pellets to be used as commercial solid fuel in China. Wood Science and Technology, 48(5), 903–917. https://doi.org/10.1007/s00226-014-0648-x Lobovikov, M., Paudel, S., Piazza, M., Hong Ren, Junqi Wu, & Forestry Economics and Policy Division. (2007). World bamboo resources: A thematic study prepared in the framework of the Global Forest Resources Assessment 2005. FAO. https://www.fao.org/publications/card/en/c/116d1258-a4cb-5527-926b-8b4911f44781/ Lobovikov, M., Schoene, D., & Yping, L. (2012). Bamboo in climate change and rural livelihoods. Mitigation and Adaptation Strategies for Global Change, 17(3), 261–276. https://doi.org/10.1007/s11027-011-9324-8 McClure, F. A. (2013). The Bamboos: A Fresh Perspective. In The Bamboos. Harvard University Press. https://doi.org/10.4159/harvard.9780674428713 Milborrow, S. (2021). earth: Multivariate Adaptive Regression Splines (5.3.1). https://CRAN.R-project.org/package=earth Ministry of Digital Affairs, Taiwan. (n.d.). Taiwan 20M DEM. Government Open Data. Retrieved June 8, 2023, from https://data.gov.tw/dataset/35430 Patil, P., Singh, S., & Dadhwal, V. K. (2012). Above Ground Forest Phytomass Assessment in Southern Gujarat. Journal of the Indian Society of Remote Sensing, 40(1), 37–46. https://doi.org/10.1007/s12524-011-0121-3 Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. (2017). biomass: An r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163–1167. https://doi.org/10.1111/2041-210X.12753 Roussel, J.-R., Auty, D., Coops, N. C., Tompalski, P., Goodbody, T. R. H., Meador, A. S., Bourdon, J.-F., de Boissieu, F., & Achim, A. (2020). lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment, 251, 112061. https://doi.org/10.1016/j.rse.2020.112061 Safford, H. D. (2001). Brazilian Páramos. III. Patterns and Rates of Postfire Regeneration in the Campos de Altitude1. BIOTROPICA, 33(2), 282–302. https://doi.org/10.1646/0006-3606(2001)033[0282:BPRIPA]2.0.CO;2 Scurlock, J. M. O., Dayton, D. C., & Hames, B. (2000). Bamboo: An overlooked biomass resource? Biomass and Bioenergy, 19(4), 229–244. https://doi.org/10.1016/S0961-9534(00)00038-6 Takano, K. T., Hibino, K., Numata, A., Oguro, M., Aiba, M., Shiogama, H., Takayabu, I., & Nakashizuka, T. (2017). Detecting latitudinal and altitudinal expansion of invasive bamboo Phyllostachys edulis and Phyllostachys bambusoides (Poaceae) in Japan to project potential habitats under 1.5°C–4.0°C global warming. Ecology and Evolution, 7(23), 9848–9859. https://doi.org/10.1002/ece3.3471 Liu, T. (1963). Ecological study on the high mountain meadow of Mt.Hsiao-Hsueh. Taiwan Forestry Research Institute. Venkatappa, M., Anantsuksomsri, S., Castillo, J. A., Smith, B., & Sasaki, N. (2020). Mapping the Natural Distribution of Bamboo and Related Carbon Stocks in the Tropics Using Google Earth Engine, Phenological Behavior, Landsat 8, and Sentinel-2. Remote Sensing, 12(18), Article 18. https://doi.org/10.3390/rs12183109 Vogtländer, J., van der Lugt, P., & Brezet, H. (2010). The sustainability of bamboo products for local and Western European applications. LCAs and land-use. Journal of Cleaner Production, 18(13), 1260–1269. https://doi.org/10.1016/j.jclepro.2010.04.015 Wang, D., Wan, B., Qiu, P., Zuo, Z., Wang, R., & Wu, X. (2019). Mapping Height and Aboveground Biomass of Mangrove Forests on Hainan Island Using UAV-LiDAR Sampling. Remote Sensing, 11(18), Article 18. https://doi.org/10.3390/rs11182156 Wang, D., Xin, X., Shao, Q., Brolly, M., Zhu, Z., & Chen, J. (2017). Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar. Sensors (Basel, Switzerland), 17(1). https://doi.org/10.3390/s17010180 Wang, J., Du, H., Li, X., Mao, F., Zhang, M., Liu, E., Ji, J., & Kang, F. (2021). Remote Sensing Estimation of Bamboo Forest Aboveground Biomass Based on Geographically Weighted Regression. Remote Sensing, 13(15), Article 15. https://doi.org/10.3390/rs13152962 Winkler, D. E., Amagai, Y., Huxman, T. E., Kaneko, M., & Kudo, G. (2016). Seasonal dry-down rates and high stress tolerance promote bamboo invasion above and below treeline. Plant Ecology, 217(10), 1219–1234. https://doi.org/10.1007/s11258-016-0649-y Wu, K.-S., & Kao, W.-Y. (2021). Phenotypic plasticity and genetic variation in leaf traits of Yushania niitakayamensis (Bambusoideae; Poaceae) in contrasting light environments. Journal of Plant Research. https://doi.org/10.1007/s10265-021-01327-y Xu, L., Saatchi, S. S., Shapiro, A., Meyer, V., Ferraz, A., Yang, Y., Bastin, J.-F., Banks, N., Boeckx, P., Verbeeck, H., Lewis, S. L., Muanza, E. T., Bongwele, E., Kayembe, F., Mbenza, D., Kalau, L., Mukendi, F., Ilunga, F., & Ebuta, D. (2017). Spatial Distribution of Carbon Stored in Forests of the Democratic Republic of Congo. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/s41598-017-15050-z Yuen, J. Q., Fung, T., & Ziegler, A. D. (2017). Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. Forest Ecology and Management, 393, 113–138. https://doi.org/10.1016/j.foreco.2017.01.017 Zeng, N., Ren, X., He, H., Zhang, L., Zhao, D., Ge, R., Li, P., & Niu, Z. (2019). Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm. Ecological Indicators, 102, 479–487. https://doi.org/10.1016/j.ecolind.2019.02.023 Zhao, F., Guo, Q., & Kelly, M. (2012). Allometric equation choice impacts lidar-based forest biomass estimates: A case study from the Sierra National Forest, CA. Agricultural and Forest Meteorology, 165, 64–72. https://doi.org/10.1016/j.agrformet.2012.05.019 Zhao, X., Guo, Q., Su, Y., & Xue, B. (2016). Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 79–91. https://doi.org/10.1016/j.isprsjprs.2016.03.016 Zhao, Y., Liu, X., Wang, Y., Zheng, Z., Zheng, S., Zhao, D., & Bai, Y. (2021). UAV-based individual shrub aboveground biomass estimation calibrated against terrestrial LiDAR in a shrub-encroached grassland. International Journal of Applied Earth Observation and Geoinformation, 101, 102358. https://doi.org/10.1016/j.jag.2021.102358 Appendix B References Baskin, J. M. (2009). Death of bamboo triggers regeneration of overstory tree in a southern beech forest. New Phytologist, 181(4), 749–750. https://doi.org/10.1111/j.1469-8137.2009.02757.x Bickford, C., Hunt, J., & Heenan, P. (2011). Microclimate characteristics of Southern Alps bluff ecosystems and implications for plant growth. New Zealand Journal of Ecology, 35, 273–279. Carslaw, D. C., & Ropkins, K. (2012). openair—An R package for air quality data analysis. Environmental Modelling & Software, 27–28, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008 Forthofer, J., Butler, B., & Wagenbrenner, N. (2014). A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements. International Journal of Wildland Fire, 23. https://doi.org/10.1071/WF12089 Frenne, P., Lenoir, J., Luoto, M., Scheffers, B., Zellweger, F., Aalto, J., Ashcroft, M., Christiansen, D., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D., Koelemeijer, I., Lembrechts, J., Marrec, R., & Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27. https://doi.org/10.1111/gcb.15569 James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning: With Applications in R (Hardcover) (Second). Springer. https://www.statlearning.com/ Lindsay, J. (2014). The Whitebox Geospatial Analysis Tools project and open-access GIS. Maclean, I. M. D., Mosedale, J. R., & Bennie, J. J. (2019). Microclima: An r package for modelling meso- and microclimate. Methods in Ecology and Evolution, 10(2), 280–290. https://doi.org/10.1111/2041-210X.13093 Marquis, B., Bergeron, Y., Simard, M., & Tremblay, F. (2021). Disentangling the effect of topography and microtopography on near-ground growing-season frosts at the boreal-temperate forest ecotone (Québec, Canada). New Forests, 52(6), 1079–1098. https://doi.org/10.1007/s11056-021-09840-7 Michaletz, S. T., Cheng, D., Kerkhoff, A. J., & Enquist, B. J. (2014). Convergence of terrestrial plant production across global climate gradients. Nature, 512(7512), Article 7512. https://doi.org/10.1038/nature13470 Missoula Fire Sciences Laboratory. (n.d.). WindNinja Tutorials. Retrieved May 3, 2023, from https://weather.firelab.org/windninja/tutorials/ National Renewable Energy Laboratory. (n.d.). NSRDB. Retrieved July 7, 2023, from https://nsrdb.nrel.gov/ Panigrahy, M., Majeed, N., & Panigrahi, K. C. S. (2020). Low-light and its effects on crop yield: Genetic and genomic implications. Journal of Biosciences, 45(1), 102. https://doi.org/10.1007/s12038-020-00070-1 Privé, J.-P., & Allain, N. (2000). Wind reduces growth and yield but not net leaf photosynthesis of primocane-fruiting red raspberries ( Rubus idaues L.) in the establishment years. Canadian Journal of Plant Science, 80(4), 841–847. https://doi.org/10.4141/P99-170 Schindler, D., Bauhus, J., & Mayer, H. (2012). Wind effects on trees. European Journal of Forest Research, 131(1), 159–163. https://doi.org/10.1007/s10342-011-0582-5 Wagenbrenner, N. S., Forthofer, J. M., Lamb, B. K., Shannon, K. S., & Butler, B. W. (2016). Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmospheric Chemistry and Physics, 16(8), 5229–5241. https://doi.org/10.5194/acp-16-5229-2016 Whittaker, R. H. (1975). Communities and ecosystems. Wood, S. N. (2017). Generalized Additive Models: An Introduction with R, Second Edition (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315370279 Wu, K.-S., & Kao, W.-Y. (2021). Phenotypic plasticity and genetic variation in leaf traits of Yushania niitakayamensis (Bambusoideae; Poaceae) in contrasting light environments. Journal of Plant Research. https://doi.org/10.1007/s10265-021-01327-y Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., Van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., … Coomes, D. (2020). Forest microclimate dynamics drive plant responses to warming. Science, 368(6492), 772–775. https://doi.org/10.1126/science.aba6880 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91303 | - |
dc.description.abstract | 高山和亞高山地區,矮竹優勢與氣候變遷引起的植被組成改變間的互動極具意義。本論文深入探討矮竹的優勢及碳儲存空間變化的生態意義,內容包含兩個主要研究的關鍵成果。
第一個研究為首次將無人機光達技術(UAV-lidar)與線性模型結合並應用於矮竹,以準確估算矮竹植被中的地上碳儲存(AGC)密度。其中,多變量自適應迴歸樣條(MARS)在AGC密度估算中優於其他模式類型,其測試資料集RMSE為0.15(kgC m-2)且殘差全距最短,因此所估計的AGC密度圖可應用於管理與相關研究。MARS模式亦顯示近冠層底部高度為關鍵變數,有別於傳統僅關注冠層頂部高度的模式型態,另估計出的AGC密度圖顯示出顯著空間變異,並可能與坡度陡峭程度有關。 第二個研究深入瞭解AGC密度與生物及非生物因子間關係,變數包括空間聚集類型、太陽輻射、風和微地形等影響亞高山植被的重要因子。分析結果顯示,空間聚集類型顯著影響AGC密度對環境變數的反應。空間聚集增強環境因子對AGC密度的影響。儘管空間聚集類型內的冷區不受環境因子影響,但熱區對輻射、風型和微地形的變化則呈現出不同的反應,因相同的環境因子卻呈現反差的反應,顯示矮竹AGC密度對這些條件的馴化情形。 本論文將植被AGC密度與環境因子相互關係緊密結合,提供持續暖化的氣候情境中優化保育和管理策略的重要資訊。 | zh_TW |
dc.description.abstract | In the alpine and subalpine regions, the intricate interplay between vegetation shifts driven by climate change and the dominant presence of dwarf bamboo holds paramount significance. This comprehensive research delves deeply into the ecological implications of dwarf bamboo's prevalence and carbon storage dynamics. This dissertation encapsulates the pivotal outcomes of two primary studies.
The initial study pioneers the integration of UAV-lidar technology and linear models. This synergy accurately estimates aboveground carbon (AGC) density in dwarf bamboo vegetation. Notably, multivariate adaptive regression splines (MARS) outperform other models in AGC density estimation, with a root mean square error (RMSE) of 0.15 (kgC m-2) on test data and the shortest residual range. The model identified near-canopy bottom height as a crucial predictor, challenging the conventional focus on canopy top height. The estimated AGC density map unveiled substantial spatial variation, which may be linked to slope steepness. On the other hand, the intricate relationship between AGC density and various factors comes under scrutiny in the second study. These include spatial clustering, solar irradiation, wind patterns, and microtopography. Spatial clustering significantly shapes how AGC density responds to environmental variables. The role of spatial clustering is pivotal, intensifying the effect of environmental conditions on AGC density. While coldspots remain unresponsive, hotspots exhibit distinct reactions to changes in irradiation, wind patterns, and microtopography. This variation in response to shared environmental factors suggests acclimation to these conditions. This research piece weaves together a comprehensive understanding of the interplay between vegetation AGC density and environmental forces. It provides essential information for refining conservation and management strategies amidst evolving climatic scenarios. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:24:00Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-12-20T16:24:00Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Table of Content
論文口試委員會審定書 i 謝辭 iv 中文摘要 v ABSTRACT vi INTRODUCTION 1 I. Alpine and subalpine bamboo influence on vegetation range shift 1 II. Expansion of dwarf bamboo (Yushania niitakayamensis) 2 III. Application of UAV-lidar on AGB or AGC density 3 IV. Dissertation overview 5 PRESENT STUDY 6 I. Summary 6 II. Future work 10 III. Conclusions 14 REFERENCES 16 APPENDIX A. Mapping aboveground carbon density of subtropical subalpine dwarf bamboo (Yushania niitakayamensis) vegetation using UAV-lidar 22 Abstract 23 1. Introduction 24 2. Materials and Methods 25 3. Results 37 4. Discussion 45 5. Conclusions 49 Acknowledgments 49 Declaration of interest statement 50 Author contributions statement 50 Data availability statement 50 Declaration of Generative AI and AI-assisted technologies in the writing process 50 References 51 APPENDIX B. Spatial clustering moderates the subalpine dwarf bamboo AGC density on environmental gradients in a tropical island 58 Abstract 59 1. Introduction 61 2. Materials and methods 63 3. Results 72 4. Discussions 78 5. Conclusion 82 Acknowledgments 83 Declaration of interest statement 83 Author contributions statement 83 Data availability statement 84 References 85 | - |
dc.language.iso | en | - |
dc.title | 亞熱帶亞高山矮竹地上部碳儲存量空間變異及影響因子 | zh_TW |
dc.title | Subtropical dwarf bamboo aboveground carbon storage spatial variation and influencing factors in subalpine Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 溫在弘;莊昀叡;鍾智昕;林政道 | zh_TW |
dc.contributor.oralexamcommittee | Tzai-Hung Wen;Ray Y. Chuang;Chih-hsin chung;Cheng-Tao Lin | en |
dc.subject.keyword | 矮竹,無人機光達,地上部碳儲存密度,多變量自適應迴歸樣條,空間群聚,氣候適應, | zh_TW |
dc.subject.keyword | dwarf bamboo,AGC density,UAV-lidar,MARS,spatial clustering,climate adaptation, | en |
dc.relation.page | 87 | - |
dc.identifier.doi | 10.6342/NTU202304236 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-09-21 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地理環境資源學系 | - |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 4.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。