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中文摘要 

高山和亞高山地區，矮竹優勢與氣候變遷引起的植被組成改變間的互動極具意

義。本論文深入探討矮竹的優勢及碳儲存空間變化的生態意義，內容包含兩個

主要研究的關鍵成果。 

第一個研究為首次將無人機光達技術(UAV-lidar)與線性模型結合並應用於矮

竹，以準確估算矮竹植被中的地上碳儲存（AGC）密度。其中，多變量自適應迴

歸樣條（MARS）在 AGC密度估算中優於其他模式類型，其測試資料集 RMSE為

0.15（kgC m-2）且殘差全距最短，因此所估計的 AGC密度圖可應用於管理與相

關研究。MARS模式亦顯示近冠層底部高度為關鍵變數，有別於傳統僅關注冠層

頂部高度的模式型態，另估計出的 AGC密度圖顯示出顯著空間變異，並可能與

坡度陡峭程度有關。 

第二個研究深入瞭解 AGC密度與生物及非生物因子間關係，變數包括空間聚

集類型、太陽輻射、風和微地形等影響亞高山植被的重要因子。分析結果顯

示，空間聚集類型顯著影響 AGC密度對環境變數的反應。空間聚集增強環境因

子對 AGC密度的影響。儘管空間聚集類型內的冷區不受環境因子影響，但熱區

對輻射、風型和微地形的變化則呈現出不同的反應，因相同的環境因子卻呈現

反差的反應，顯示矮竹 AGC密度對這些條件的馴化情形。 

本論文將植被 AGC密度與環境因子相互關係緊密結合，提供持續暖化的氣候

情境中優化保育和管理策略的重要資訊。 

關鍵字:矮竹、無人機光達、地上部碳儲存密度、多變量自適應迴歸樣條、空間

群聚、氣候適應 
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ABSTRACT 

In the alpine and subalpine regions, the intricate interplay between vegetation shifts 

driven by climate change and the dominant presence of dwarf bamboo holds 

paramount significance. This comprehensive research delves deeply into the 

ecological implications of dwarf bamboo's prevalence and carbon storage dynamics. 

This dissertation encapsulates the pivotal outcomes of two primary studies.  

The initial study pioneers the integration of UAV-lidar technology and linear 

models. This synergy accurately estimates aboveground carbon (AGC) density in 

dwarf bamboo vegetation. Notably, multivariate adaptive regression splines (MARS) 

outperform other models in AGC density estimation, with a root mean square error 

(RMSE) of 0.15 (kgC m-2) on test data and the shortest residual range. The model 

identified near-canopy bottom height as a crucial predictor, challenging the 

conventional focus on canopy top height. The estimated AGC density map unveiled 

substantial spatial variation, which may link to slope steepness. 

On the other hand, the intricate relationship between AGC density and various 

factors comes under scrutiny in the second study. These include spatial clustering, 

solar irradiation, wind patterns, and microtopography. Spatial clustering significantly 

shapes how AGC density responds to environmental variables. The role of spatial 

clustering is pivotal, intensifying the effect of environmental conditions on AGC 

density. While coldspots remain unresponsive, hotspots exhibit distinct reactions to 

changes in irradiation, wind patterns, and microtopography. This variation in response 

to shared environmental factors suggests acclimation to these conditions. 

This research piece weaves together a comprehensive understanding of the 
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interplay between vegetation AGC density and environmental forces. It provides 

essential information for refining conservation and management strategies amidst 

evolving climatic scenarios. 

Keywords: dwarf bamboo, AGC density, UAV-lidar, MARS, spatial clustering, 

climate adaptation.
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INTRODUCTION 

I. Alpine and subalpine bamboo influence on vegetation range shift

Climate change and alterations in water availability are driving shifts in terrestrial

vegetation distribution and diversity (Higgins et al., 2023; Pauli et al., 2012). Among the 

vegetation types extending their range to higher latitudes and elevations, bamboo stands out 

as an efficient carbon sink and provider of key ecosystem services such as food, construction 

materials, and soil erosion regulation (Yuen et al., 2017). However, the potential invasive 

tendencies of bamboo raise concerns about their impact on plant biodiversity (Xu et al., 

2020; Bai et al., 2016; Canavan et al., 2016). 

Bamboos are widespread along forest edges, forming large patches or growing beneath 

canopies in regions across South Asia, East Asia, Africa, and Central and South America 

(Guerreiro, 2014; Kudo et al., 2011; van der Hoek et al., 2019; Ye et al., 2019). Their clonal 

propagation strategy, categorized as clumping or running growth, shapes their distribution 

patterns. Clumping bamboo generates new shoots from a central clump, while running 

bamboo extends rhizomes to produce new culm shoots, contributing to its potential for 

invasive expansion (Xu et al., 2020; Takano et al., 2017).  

Bamboo significantly influences light availability, soil moisture, and herbivory, which, in 

turn, affects the survival of tree seedlings. This ecological filtering process impacts the 

composition and diversity of local floristic communities (Bona et al., 2020; Caccia et al., 

2009; Kudo et al., 2017; Larpkern et al., 2011). 

Dwarf bamboo is a group of small-sized bamboo species found expanding up to or 

gaining dominance/overdominance in subalpine and alpine areas (Kudo et al., 2011; 

Winkler et al., 2016). The expansion of dwarf bamboo in subalpine and alpine regions 
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raises concerns about its influence on local plant diversity and aboveground biomass (Kudo 

et al., 2011; Winkler et al., 2016; Gaira et al., 2022; Kudo et al., 2017, 2011; Tomimatsu et 

al., 2011). Meanwhile, the phenotypic plasticity of dwarf bamboo enables its upward 

migration and amplifies its impact on local communities and ecosystems (Kudo et al., 

2018). Dwarf bamboo also functions as an ecological filter in montane, subalpine, and 

alpine areas, affecting abundance and diversity (Itô & Hino, 2007; Kudo et al., 2017; 

Hirobe et al., 2015). Additionally, aboveground biomass (AGB) of dwarf bamboo has 

adverse relationships with the seedlings' survival rate of major tree species, while some are 

affected more profoundly than others (Itô & Hino, 2007). AGB is part of biomass, a 

measure of plant fitness to the environment, and aggregately a response of an ecosystem to 

climate change (Younginger et al., 2017). Meanwhile, aboveground carbon storage (AGC) 

can be converted from AGB with an AGB-carbon conversion coefficient from elemental 

analysis, and these two values are proportional; therefore, the trend or variation of AGC 

values also indicates that of AGB values. 

However, a significant gap exists in our understanding, as previous studies have often 

focused on bamboo's cover rather than AGB/AGC to measure dominance. This study 

addresses this gap by emphasizing the importance of estimating AGC as a comprehensive 

measure of bamboo's contribution to carbon storage. The complexities of bamboo's spatial 

structure and phenology-driven spectral variability have posed challenges for accurate AGC 

estimation using traditional optical remote sensing. 

II. Expansion of dwarf bamboo (Yushania niitakayamensis) 

Yushania niitakayamensis (Hayata) Keng f., known as Yushan cane, is a subalpine and 

alpine dwarf bamboo native to south-central China and the Philippines. This species, 

distributed across temperate eastern Asia and Malesia in Asia-tropical (POWO, 2023), 



doi:10.6342/NTU202304236

3 
 

inhabits montane and subalpine environments in Taiwan (Su, 1985). Its growth strategy 

involves running rhizomes, which produce new culm shoots from the base clump. 

Distinct short and tall forms characterize Yushania niitakayamensis, each with unique 

attributes driven by environmental factors (Wu & Kao, 2021). This variability contributes 

to the complex spatial distribution of bamboo and its relationship with neighboring 

forested areas regarding light conditions. Additionally, environmental factors such as 

wildfire frequency, aspect, soil moisture, and wind exposure might relate to two body size 

forms (Chen et al., 1992). 

Studies have highlighted the inhibitory effects of dwarf bamboo on natural 

regeneration and species diversity in forest understories (Liao et al., 2012, 2013) or 

artificial regeneration (Chang, 1981). The expansion of dwarf bamboo has been reported 

in alpine areas, impacting biodiversity and ecosystem functioning (Kuo et al., 2021). 

However, existing literature has primarily focused on bamboo's cover dominance, 

neglecting key measures such as AGC and AGB, particularly in fine scale, that provide 

deeper insights into its ecological role or potential management measures. In this study,  

I proposed hypotheses on the comparative contribution of environmental factors and 

biotic attributes of acclimation and response of the dwarf bamboo AGB or AGC density 

on the environmental gradients. 

III. Application of UAV-lidar on AGB or AGC density 

The estimation of aboveground biomass (AGB) or aboveground carbon (AGC) density 

using optical remote sensing has been widely applied (Kumar & Mutanga, 2017; Frolking 

et al., 2009). However, bamboo's intricate canopy structure and phenological variability 

hinder accurate AGC estimation using spectral features (Cao et al., 2019; Chen et al., 

2019). However, lidar (light detection and ranging) technology offers a solution by 
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leveraging three-dimensional (3D) point cloud data to improve accuracy. 

This study utilized lidar point cloud data to estimate the AGC density of dwarf bamboo 

across complex subalpine terrain. Unlike optical remote sensing, lidar captures 3D 

structural information, allowing extraction of meaningful metrics and relationships between 

lidar metrics and AGC density (Beland et al., 2019; Lefsky, Cohen, and Harding et al., 

2002; Lefsky, Cohen, and Parker et al., 2002). Airborne lidar data have been extensively 

used in ecological studies (Matasci et al., 2018; Gregoire et al., 2016; Asner et al., 2009). 

Lidar point clouds provide valuable insights for modeling canopy height, cover, basal area, 

biomass, and volume (Roussel et al., 2020). 

Unmanned aerial vehicle (UAV) lidar offers a cost-effective alternative to airborne lidar, 

producing comparable point cloud density (Beland et al., 2019). Its applications include 

AGB density estimation in various ecosystems, enhancing spatial resolution for inventory, 

and mapping (Wallace et al., 2012). UAV-lidar data enable inference of fine-scale AGB or 

AGC, valuable for understanding spatial patterns and variations, especially for non-forest 

vegetation (da Costa et al., 2021; Madsen et al., 2020; Wang et al., 2017, 2019). 

Additionally, UAV-lidar data support the creation of high-resolution digital surface 

models (DSM) and digital elevation models (DEM), facilitating micro-topographic analysis 

and downscaled climate element simulations. Combined with fine-scale AGB or AGC 

density data, these downscaled factors establish AGB/AGC-environment associations. The 

resulting relationships provide insights into understanding the subalpine ecosystems in a 

warming future. 
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IV. Dissertation overview 

This dissertation research consists of two individual and connected studies to understand 

the subalpine dwarf bamboo vegetation AGC density spatial variation and related biotic and 

abiotic factors in fine scale using UAV-lidar point cloud data. I present each study as a 

separate manuscript in the appendix, and it is submitted and under review or ready for 

journal submission. I was the main contributor to these works and co-author of these 

manuscripts, contributing to the editorial, logic, and refinement of the conceptualization. 

The first research paper (Appendix A) entitled, “Mapping aboveground carbon density of 

subtropical subalpine dwarf bamboo (Yushania niitakayamensis) vegetation using UAV-

lidar”, devoted to accurately estimating AGC density in high spatial resolution (kgC m-2) 

and evaluate the performance of five linear models of dwarf bamboo vegetation in a 

subalpine area in Central Taiwan, and map the AGC density with multivariate adaptive 

regression splines (MARS) method. Since AGC can be calculated by the AGB and AGB-

carbon conversion coefficient, the trend and spatial variation of AGC density also reflect 

that of AGB density, which measures the vegetation's fitness. Modeling AGC density, 

consequently, highlights both the carbon and fitness of the dwarf bamboo. The second 

research paper (Appendix B), entitled “Spatial clustering moderates the subalpine dwarf 

bamboo AGC density on environmental gradients in a tropical island,” hypothesized that 

vegetation spatial clustering conditions the influence of environmental factors on AGC 

density, which emphasized the canopy structure of the dwarf bamboo, contribute more to 

AGC density than abiotic factors when the dwarf bamboo is dominant species in the 

landscape, comparing to conventional emphasis on the influence of abiotic factors.   
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PRESENT STUDY 

I. Summary 

In this section, this research detail the methodology, results, and implications of our 

research. It focusses on two key aspects: (i) the accurate estimation of aboveground 

carbon (AGC) density in subalpine dwarf bamboo vegetation using UAV-lidar, and (ii) 

the exploration of spatial clustering effects on the relationship between AGC density and 

environmental factors. The summarized findings and contributions of each aspect are 

presented below. 

Appendix A: Mapping aboveground carbon density of subtropical subalpine dwarf 

bamboo (Yushania niitakayamensis) vegetation using UAV-lidar 

(Note: This manuscript has been published in Journal of Applied Earth Observation and 

Geoinformation) 

Bamboo, a widely distributed species across Asia, Central and South America, and 

Africa, holds significance as an effective carbon sequestration agent, with the potential 

for prolonged carbon fixation through its conversion into durable products like 

construction materials or furniture. While optical remote sensing has been extensively 

employed to estimate aboveground biomass (AGB) and aboveground carbon storage 

(AGC) in regional forests, the intricate spatial structure of bamboo impedes accurate 

AGC estimation using spectral features. The complexities arise from the interplay of 

factors such as the proportion of old and young bamboo affecting AGB and AGC and 

contrasting reflectance due to canopy phenology. In this context, the integration of UAV-

lidar technology emerges as a solution by harnessing three-dimensional (3D) point cloud 

data to overcome these challenges. 
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This study is an in-depth exploration of accurate AGC density estimation for 

subalpine dwarf bamboo vegetation using UAV-lidar. This research focused on a 120-

hectare research area within Tataka, Yushan National Park. By leveraging UAV-lidar 

point cloud data, I extracted essential lidar point cloud metrics, combined them with 

ground sampled data and elemental analysis, and established a robust relationship 

between lidar metrics and AGC density. This effort led to the development of the dwarf 

bamboo AGB-fresh weight relationship and the determination of a previously 

unavailable AGB-carbon conversion coefficient of 0.436 per AGB. This study employed 

five linear models to address potential multicollinearity issues among the numerous lidar 

metrics, including multiple stepwise regression, principle component regression, partial 

least square regression, elastic net regression, and multivariate adaptive regression 

spines (MARS). Dividing the 74 1x1 ground sample plots into training (80%) and 

testing (20%) sets, this study selected the MARS model based on the lowest root mean 

square error (RMSE) for testing data, highlighting its efficacy in mapping AGC density. 

Within the MARS model, predictive variables for the height distribution of the point 

cloud—zmax (maximum), zq95 (95th quantile), and zq65 (65th quantile)—were 

identified as instrumental, revealing insights into the canopy's vertical structure. Further 

analysis highlighted the significant explanatory power of zq65, underscoring the 

importance of considering height metrics near the canopy bottom. MARS, known for 

establishing piecewise linear relationships, unveiled the presence of a non-linear 

association between AGC density and predictive variables, mirroring the complexity 

observed in allometry-based AGB modeling. MARS, characterized by its variable 

selection capability without requiring prior knowledge, proved advantageous in this 

study. 

Leveraging MARS and the point cloud data from the open-field dwarf bamboo area, 
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we generated comprehensive spatial distribution and standard deviation maps of AGC 

density. This study unveiled a correlation between AGC density elevation and slope and 

terrain features by integrating contour maps and shaded relief. This research 

methodology promises to contribute significantly to a comprehensive understanding of 

the intricate spatial variability of AGC density and its potential complex interplay with 

environmental factors. 
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Appendix B: Spatial clustering moderates the subalpine dwarf bamboo 

AGC density on environmental gradients in a tropical island 

(Note: This manuscript will be submitted to Advances in Bamboo Science) 

 

This study aimed to explore the interplay between AGC density, vegetation clustering, 

and environmental gradients. Specifically, the effects of high spatial resolution solar 

radiation, wind patterns, microtopography, and AGC density data on AGC density 

response were investigated. Two hypotheses guided the investigation: (H1) Vegetation 

spatial clustering enhances the explanation of AGC density variation compared to 

environmental factors alone, and (H2) the response of AGC density to environmental 

gradients is contingent upon spatial clustering types. 

This study employed a comprehensive approach to address these hypotheses. The 

DSM and DEM derived from UAV-lidar point cloud data were harnessed to downscale 

solar irradiation, mean hourly wind speed and direction, slope, slope standard deviation, 

and aspect, all at a 1-meter resolution. Simultaneously, a hotspot analysis was conducted 

on the dwarf bamboo AGC density map from Appendix A. This analysis revealed 

clustering patterns, categorizing focal and neighboring grids as coldspots (clustering of 

low-low values), nonsignificant (clustering of low-high or high-low values), or hotspots 

(clustering of high-high values). 

A thorough investigation was then carried out, randomly sampling 500 grids for each 

spatial clustering stratum to mitigate spatial autocorrelation. Utilizing a generalized 

additive model (GAM), this research modeled the nonlinear relationship between AGC 

density and spatial clustering as well as abiotic factors. The findings underscored the 

substantial contribution of vegetation spatial clustering in enhancing AGC density 
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estimation beyond the sole influence of abiotic factors. Moreover, distinct responses 

were unveiled within different spatial clustering types, even to the same variable. For 

instance, dwarf bamboo AGC density in hotspots exhibited a linear negative correlation 

with solar irradiation while responding nonlinearly to wind direction, wind speed and 

direction interaction, slope, and slope standard deviation. Conversely, AGC density in 

coldspots exhibited a response primarily linked to clustering, with minimal influence 

from abiotic factors. Notably, identifying tall-culm bamboo clusters in hotspots and 

short-culm clusters in coldspots suggested a distinct acclimation of dwarf bamboo to 

varying environmental conditions. 

The study underscores the pivotal role of spatial clustering in shaping AGC density 

responses to environmental factors. By incorporating vegetation clustering into 

assessments, novel strategies for effective carbon sequestration and adaptation to climate 

change can be formulated. Furthermore, the findings suggest the potential of applying 

spatial clustering as indicators for monitoring floristic community compositional shifts 

in response to changing environmental conditions. 

II. Future work 

⚫ Surface fire behavior simulation 

Given the wildfire risk in the Tataka area, the next step is to integrate the AGC 

density estimates with fine-scale digital elevation models based on the AGB-carbon 

conversion coefficient from Appendix A. This step facilitates simulating surface 

fire behavior and assesses potential wildfire impacts on the dwarf bamboo and 

associated tree communities. By analyzing fire spread patterns and risk zones, 

informed fire management strategies for ecosystem conservation and trail user 
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safety along popular trails can be developed.    

⚫ Evaluation of trees and dwarf bamboo habitats selection 

The dynamic interaction between dwarf bamboo and trees in subalpine regions, 

particularly regarding habitat selection (Bazzaz, 1991), has received limited 

attention. This aspect can illuminate the spatial distribution patterns of trees and 

dwarf bamboo in the face of a changing climate. Extracting point cloud data of 

pine, fir, and spruce trees from the UAV lidar point cloud data using the method 

outlined in Appendix A, the derivation of allometry functions and AGB estimates 

based on tree attributes obtained from ground plots follows. 

This result directly compares AGB density spatial distribution between bamboo-

dominated and forested areas in the subalpine landscape. Moreover, building upon 

the techniques elucidated in Appendix B, the intricate relationship between AGB 

and environmental factors within the forested zones is explored. This investigation 

would provides a deeper understanding of the habitat preferences and potential 

competitive dynamics between these two vegetation types, offering valuable 

insights for future management and conservation efforts. 

⚫ Dynamics of dwarf bamboo-trees interface using UAV-lidar plot 

Expanding upon the AGC estimation method outlined in Appendix A, the 

research extends to the monitoring and analysis of the transitional interface 

between bamboo and forested areas, achieved through the utilization of the lidar 

plot approach (Matasci et al., 2018; Wulder et al., 2012). Initially devised for 

estimating forest attributes based on metrics from airborne lidar returns of specific 

plots and their nearest k-neighbors, this approach can be adopted to understand the 
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dynamics of the dwarf bamboo-trees interface. 

The study intends to perform periodic validation of the relationship between 

AGB/AGC and point clouds within these lidar plots at the end of each growing 

season. This ongoing assessment aims to unravel the direction and magnitude of 

variations occurring within dwarf bamboo-forest interfaces over time. Furthermore, 

these lidar plots can serve as an adequate substitute for traditional ground sample 

plots, facilitating the establishment of a robust relationship between optical remote 

sensing data and UAV lidar features, as well as AGB/AGC density measurements. 

By employing the lidar plot methodology and its application to the interface 

between dwarf bamboo and trees, this research provides a novel perspective on the 

intricate interactions shaping subalpine vegetation dynamics. The comprehensive 

analysis contributes to comprehending the dwarf bamboo-forest interface's spatial 

dynamics and ecological implications, shedding light on potential management 

strategies and conservation considerations. 

⚫ Long-term dynamics of subalpine dwarf bamboo 

Exploring long-term dynamics within subalpine dwarf bamboo ecosystems 

constitutes a pivotal avenue for comprehensive ecological insight. Leveraging the 

availability of a minimum of four distinct periods of aerial imagery within the study 

area, a detailed analysis of sub-meter level cover changes in dwarf bamboo and the 

forests becomes attainable. Furthermore, the Taiwan Climate Change Projection 

Information and Adaptation (TCCIP) database (Lin et al., 2022) provides an 

extensive historical climate dataset from 1980 to 2020 at a broader scale with a 

resolution of 2 km, making test trends of covers of dwarf bamboo and forest 
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dynamic possible. 

Building upon the method delineated in Appendix B, solar radiation and average 

wind speed are subjected to a meticulous downscaling analysis. This process 

unveils the nuanced impacts of solar radiation, wind speed, and micro-topography 

on habitat preferences and competitive interactions between dwarf bamboo and 

forested landscapes. 

This endeavor addresses a significant gap in our present understanding, 

specifically concerning the process driving habitat selection and competition 

dynamics that have been alluded to in Appendix B. By delving into the process of 

how and where dwarf bamboo attains dominance, this research will contribute to a 

refined comprehension of the intricate processes governing the long-term dynamics 

of subalpine ecosystems. 

⚫ Assessment of fog interception ability of subalpine dwarf bamboo 

The escalating impacts of climate warming have underscored the potential 

upslope shift of fog forests on mountainous terrains. The fog interception capability 

of dwarf bamboo is another water source besides the precipitation, which is 

predicted to be more contrasting between dry and wet seasons, and may influence 

the growth of the vegetation. 

In light of these considerations, we propose an assessment of the fog interception 

capacity exhibited by the forested region and the subalpine dwarf bamboo during 

distinct seasons. The AGB density map was derived from the method elucidated in 

Appendix A. This map can be used to estimate the fog interception potential of the 

two distinct ecological zones once the relationship between AGB and interception 
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is produced. This assessment unveils pivotal insights into the role of subalpine 

dwarf bamboo in intercepting fog, particularly within the evolving climatic context. 

 

III. Conclusions 

This dissertation addresses several important aspects of subalpine dwarf bamboo 

ecosystems. The methodologies employed provide insights into estimating aboveground 

carbon (AGC) density and the influence of spatial clustering and environmental factors 

on AGC variability. The first study successfully applied UAV-lidar point cloud metrics 

and linear models to estimate AGC density. The findings highlight the potential of the 

multivariate adaptive regression splines (MARS) model for AGC density prediction. 

Including near canopy bottom height as a predictor underscores the importance of 

considering height metrics in AGC density modeling. 

On the other hand, the second study investigated the influence of spatial clustering on 

AGC density and its interaction with environmental factors. The results suggest that 

spatial clustering significantly affects the response of AGC density to environmental 

gradients, emphasizing the relevance of vegetation structure in shaping dwarf bamboo's 

adaptation to varying environmental conditions. The contributions of this dissertation 

offer promising avenues for further research in the field of ecological studies and 

application in land management. The insights gained from the accurate AGC density 

estimation and consideration of spatial clustering effects can advance our understanding 

of dwarf bamboo ecosystems and potentially inform conservation strategies.  

While the implications of this research are significant for both scientific knowledge 

and practical applications, it is essential to recognize the study's limitations that the 
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dwarf bamboo data were collected when the vegetation is dominant and other biotic 

factors such as potential herbivory and interaction with forests were not considered. 

Further research and validation are needed to fully comprehend the complexities of 

subalpine dwarf bamboo ecosystems and their responses to environmental changes. 

Additional work in this direction can shed more light on the challenges and 

opportunities related to climate change and biodiversity conservation in subalpine 

regions.
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Abstract 

Bamboo, a fast-growing vegetation with high carbon sequestration efficiency, is 

widely distributed across Asia, Central and South America, and Africa. However, 

mapping aboveground carbon (AGC) density (kgC m-2) in bamboo can be 

challenging due to the changing composition of old and new culms or the phenology 

of the canopy. In this study, we conducted a UAV-lidar survey on 120 ha of subalpine 

dwarf bamboo (Yushania niitakayamensis) vegetation in Central Taiwan. We 

destructively collected dwarf bamboo plants from seventy-four 1 × 1 m plots and 

derived 64 spatially corresponding lidar height and density distribution metrics to 

model dwarf bamboo AGC density. We applied five regression models (stepwise 

linear regression, principal component regression, partial least squares regression, 

elastic net, and multivariate adaptive regression splines [MARS]) to model dwarf 

bamboo AGC density. MARS outperformed other models by referring to model 

residuals. The metrics zmax (maximum of lidar return height distribution), zq95 (95th 

percentile), and zq65 (65th percentile) were salient variables (p < 0.001), especially 

zq65, suggesting that the conventional model specification of height percentiles of the 

canopy top might overlook that near the canopy bottom or might be due to insufficient 

point density. Finally, we used MARS to map the dwarf bamboo AGC density of the 

study area. We found that AGC spatial variation in dwarf bamboo may be related to 

topographic characteristics and/or microclimate. This study proposes a regression 

model to integrate UAV-lidar metrics for precise subalpine dwarf bamboo carbon 

density mapping, aiding regional spatial carbon-cycle monitoring. 

Keywords: aboveground biomass, biomass-carbon conversion, canopy lidar metrics, 

multivariate adaptive regression splines (MARS), topography  
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1. Introduction 

Bamboo is a fast-growing plant with high carbon-storage efficiency (Yuen et al., 

2017) that is widely distributed in Asia, Central and South America, and Africa 

(Lobovikov et al., 2007; Bystriakova et al., 2004, 2003) and ranges from lowlands to 

mountains (Scurlock et al., 2000). It can adapt to environmental change (Kudo et al., 

2011; Takano et al., 2017; Winkler et al., 2016) or rapidly recover after disturbance 

(Safford, 2001). In addition, bamboo is also an environmentally friendly material and 

sequesters carbon for a long time once it becomes a durable product or construction 

material (Kumar & Mandal, 2022; Vogtländer et al., 2010). The desirable fuel 

characteristics and short rotation of harvest also make bamboo an important bioenergy 

source compared to other biomass feedstocks (Akinlabi et al., 2017; Liu et al., 2014; 

Engler et al., 2012; Scurlock et al., 2000). 

It is challenging to map regional three-dimensional (3D) attributes (e.g., carbon 

storage) of bamboo vegetation due to the complexity of the vegetation structure (Chen 

et al., 2019). Colonial plants such as bamboo form a positive growth feedback loop 

between their above- and belowground parts. Belowground rhizomes store resources 

from aboveground shoots to extend their territory via the growth of rhizomes, which 

produce new culms (McClure, 2013). As the number of culms increases, the diameter 

of new growth tends to be smaller; as the number of culms decreases, the diameter is 

larger. In addition, the declining specific gravity of old culms decreases the AGB 

density. Hence, carbon storage fluctuates with new growth and old culms (Lobovikov 

et al., 2012). This is in contrast to arborescent forests in which carbon storage can be 

precisely modeled using stem diameter and/or canopy height (Chave et al., 2003; 

Réjou-Méchain et al., 2017). 
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Previous research efforts have used passive optical remote sensing to estimate 

bamboo aboveground biomass (AGB) (Venkatappa et al., 2020; Li et al., 2018; Wang 

et al., 2021; Patil et al., 2012), which can be converted to aboveground carbon (AGC) 

by multiplying by a biomass-carbon conversion coefficient. However, vegetation 

phenology may alter bamboo canopy reflectance, but carbon storage remains stable 

(Chen et al., 2019), limiting the use of optical remote sensing for this task. Airborne 

light detection and ranging (lidar) delineates the 3D profile of the bamboo canopy 

structure utilizing the height and intensity of pulse returns to bypass the mentioned 

issue (Cao et al., 2019). However, the approach is costly, and an unmanned aerial 

vehicle (UAV) lidar system could be an ideal alternative (Beland et al., 2019). UAV-

lidar has been applied to estimate the AGB of different vegetation types, including 

tropical forests (d’Oliveira et al., 2020; Wang et al., 2019), savannas (da Costa et al., 

2021) and grasslands with and without the presence of shrubs (Madsen et al., 2020; 

Wang et al., 2017; Zhao et al., 2021), using lidar-derived metrics. However, to our 

knowledge, no study has utilized UAV-lidar to map bamboo AGC. Therefore, the 

objective of this study is to assess the feasibility of using UAV-lidar derived canopy 

structural variables for regional mapping of the AGC density (e.g., kgC m-2) in 

bamboo vegetation. 

2. Materials and Methods 

2.1. Study area 

We conducted the study in 120 ha of dwarf bamboo vegetation (Yushania 

niitakayamensis) located on the Tataka Saddle in Yushan National Park of Central 

Taiwan (Fig.1). It is a representative subalpine vegetation in Taiwan. The annual 

precipitation and temperature are 2378 mm y-1 and 10 °C, respectively (Chiang & 
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Chang, 2010). Dwarf bamboo, Taiwan red pine (Pinus taiwanensis), and Masters pine 

(Pinus armandii var. mastersiana) are dominant on southern slopes, and hemlock 

(Tsuga chinensis var. formosana), spruce (Picea morrisonicola), and dwarf bamboo 

are present on northern slopes (Fig. 1b). The relief of the Tataka Saddle ranges from 

2610 to 2881 m a.s.l. Based on our field knowledge, the culms in dwarf bamboo 

vegetation were estimated to be approximately 1–5 years old with a culm density of 

62–276 m-2. Dwarf bamboo produces new shoots in March and April, and AGB 

reaches a maximum in August and September and slightly declines at the end of the 

growing season (November). During the growing season, the allocation of resources 

between leaves/branches and culms fluctuates. However, after November, the AGB 

stabilizes (Chen, 1983).

Fig. 1. (a) The study area Tataka located in the subtropical subalpine vegetation zone 

in (b) Central Taiwan (the yellow pentagon). White lines, yellow squares and blue 
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square dots are unmanned aerial vehicle (UAV) flight lines, sample plots, and open 

dwarf bamboo vegetation spatial distribution, respectively. (c) A scene of dwarf 

bamboo vegetation in Tataka (photograph taken by Hsiao-Lung Pan on 2021/11/17). 

2.2. UAV-lidar point-cloud acquisition 

The UAV-lidar analyses of this study consisted of lidar data acquisition, 

processing, extracting metrics, and model fitting (see Fig. 2 for the workflow and Fig. 

3a). The lidar field campaign was carried out on November 17–19, 2021. The lidar 

system (gAirHawk GS-130X, Wuhan Geosun Navigation Technology, Wuhan, 

China) was mounted on a UAV (Matrice 300, DJI, Shenzhen, China), which received 

two discrete returns. Flight lines were in a north-south direction across an east-west 

ridge, and the UAV flew along the terrain, maintaining a height of 82 meters above 

the ground based on a 20-m resolution digital elevation model (DEM) provided by 

Ministry of Digital Affairs, Taiwan with a controlling speed of 7.2–8 m s-1 (Fig. 1) so 

the lidar system can acquire dense point cloud. Moreover, we programmed the flight 

with a 30% side overlap to reduce noise in border area of swaths. 
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Fig. 2. The work process of estimating dwarf bamboo aboveground carbon (AGC) 

density through the integration of UAV-lidar and field analysis. The shaded box 

represents the final outcome of these analyses. 
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Fig. 3. (a) Lidar point-cloud processing before extracting lidar metrics of vegetation 

structural characteristics. (b) Dwarf bamboo plot lidar metrics of the 95th, 50th, and 5th 

percentiles (zq95, zq50 and zq5, respectively). (c) The metric vp is the percentage of 

lidar returns that fall between the 19th and lower equal-depth layers. 

When the GNSS (global navigation satellite system) unit of the lidar system 

received the satellite position signals, a GNSS receiver (RTK-K500, Kang Ying 

Enterprise Ltd., New Taipei City, Taiwan, with horizontal and vertical accuracies of ± 

2.5 mm + 0.5 ppm and ± 5 mm + 0.5 ppm, respectively, in a static mode) was also 

installed in the study area as a base station for lidar GNSS signal correction. After the 

completion of lidar data acquisition, a post-processed kinematic procedure was 

applied to correct the UAV-lidar GNSS signals and compute the lidar point-cloud 

coordinates. Since the height measurement of ground lidar points influences the 

quality of the DEM, we assessed the accuracy of the ground elevation of the 

processed lidar data. We surveyed the ground control points in the study area with the 

real-time kinematic (RTK) receiver with horizontal and vertical accuracies of ± 8 mm 
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+ 1 ppm and ± 15 mm + 1 ppm, respectively, in a RTK mode. The resulted average 

UAV lidar point-cloud density was 388.3 ± 66.6 points m-2, and the root mean squared 

error of the ground control point ground elevation was less than 1.5 cm. 

2.3. Field AGC density measurement 

We sampled 74 randomly distributed 1  1 m dwarf bamboo plots (Fig. 1a) right 

after the UAV-lidar acquisition; each plot was at least 6–15 m away from other plots. 

We used a polyvinyl chloride frame to outline each plot boundary, harvested all 

aboveground tissues, and weighed the fresh parts in kilograms to a second decimal 

place. We also positioned the boundary of each plot with the RTK GNSS receiver to 

extract UAV-lidar point-cloud data. We then randomly selected a subsample of 3–5 

fresh dwarf bamboo plants in each plot, stored them in a zipper-top bag, and weighed 

the fresh weights in grams to a second decimal place and oven-dried them in a 

laboratory for 72+ h at 80 °C. We then calculated the dry and fresh-weight ratio of 

each subsample, applied the ratio to the fresh weight of the plot, and calculated AGB 

density. We also randomly selected 20 individuals to estimate the carbon content of 

dwarf bamboo. Since the percentages of oven-dried weight of leaves and non-leaf 

parts (branches and culms) may be different (Chen, 1983), we ground these parts 

separately using a vibrating sample mill (TI-100, CMT Co., LTD., Fukusima, Japan) 

to pass through a 0.177-mm sieve (80 mesh). The samples were analyzed by a 

combustion method using a CHNS analyzer (Elementar vario EL III, Elementar 

Analysensysteme GmbH, Hanau-Germany) by referring to Dhaliwal et al.(2014). 

Finally, with the knowledge AGB density (kg m-2) and the AGB-carbon conversion 

coefficient, we calculated the AGC density (kgC m-2). 

2.4. Lidar point-cloud processing and metric extraction 
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In this study, we generated a comprehensive set of metrics (Table 1) to model the 

dwarf bamboo AGC density derived from UAV-lidar point-cloud data. We specially 

focused on the open dwarf bamboo vegetation found in the top-layer canopy. We used 

both first and second lidar returns to facilitate classification of the point cloud. We 

first filtered the point cloud into ground points and non-ground points using Lidar360 

v. 5 (Green Valley International, Berkeley, California, USA), which employed an 

improved progressive triangulated irregular network densification filtering algorithm 

(Zhao et al., 2016). The classified ground points were used to interpolate a 1-m DEM 

of the study area. To extract the dwarf bamboo point cloud, we classified the non-

ground points into three categories: high vegetation, low vegetation (dwarf bamboo), 

and non-vegetation. This classification was achieved using the built-in machine 

learning function (random forests) of the software. The training sample for the point 

cloud classification was manually selected from multiple 100  100 m non-ground 

point-cloud tiles containing the field plots, and each point was assigned to one of the 

three vegetation classes. After training the classification model, we applied it to the 

entire point cloud in the study area. To ensure accuracy, we thoroughly inspected and 

corrected the outcome of the point-cloud classification. Next, we normalized the 

classified point cloud by subtracting the DEM from the point cloud. This process 

provided us with the height information of vegetation and other object point clouds 

regardless of their elevations. We also mapped the dwarf bamboo vegetation spatial 

distribution by extracting the low vegetation (dwarf bamboo) from the entire 

classified point cloud and converted it to a 1-m resolution raster. This raster served as 

the mask for generating a dwarf bamboo AGC density map (Fig. 2). Finally, we 

imported the normalized point-cloud data into the R package lidR (Roussel et al., 

2020) and extracted point cloud within the boundaries of every field plot, which had 
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been measured by the RTK survey. Subsequently, we computed various lidar metrics 

in lidR. These metrics include standard statistical and cumulative percentage metrics, 

resulting in a total of 64 height- and intensity-related metrics to model the variation in 

AGC density (Table 1). 

Table 1. Lidar metrics used as model predictors and corresponding descriptions. 

Lidar metrics Description 

zmax, zmean, zmin Maximum, mean, and minimum of height of point cloud. 

zsd, zskew, zkurt, zrange 

Standard deviation, skewness, kurtosis and range of height 

distribution. 

pzabovezmean Percentage of height distribution above zmean value. 

zq95, zq90, …, zq5 95th, 90th, …, 5th percentile of height distribution. 

zpcumx 

Cumulative percentage of point cloud in xth equal depth layer of 

20, where x is 1 to 19. 

imax, imean, isd, iskew, ikurt Descriptive statistics of intensity distribution of point cloud. 

itot Sum of return intensity 

ipcumzqk 

Percentage of intensity returned below the kth percentile of height, 

where k =10, 30, 50, 70, 90. 

area, n, p1th and p2th 

Area of a plot, number of lidar returns in a plot, and percentage of 

first return and second return. 

entropysH Entropy of scaled height distribution. 

vp 

Percentage of point cloud between 19th and 13th layer. (see eq.2 

and 3) 

Rumple index The Rumple index of top surface of point cloud. 

Among these metrics, entropy, cumulative percentage of returns along canopy 
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vertical profiles (Asner et al., 2009) and a surface roughness index were utilized to 

estimate dwarf bamboo density. Due to the height variation of dwarf bamboo (from < 

1 to 5 m), the entropy of dwarf bamboo was calculated based on slices relative to its 

height rather than constant intervals. Therefore, we modified the entropy to a scaled 

height version (entropysH), which sliced the point cloud within a plot into 20 even-

depth layers, counted the number of lidar returns ni in each layer, calculated the 

entropy, and standardized the entropy with the maximum entropy. entropysH of a plot 

reaches a maximum if all layers have the same amount of returns, meaning that the 

reference proportion (pref) is 1/20 (eq.1), and was calculated by the “entropy” function 

in the lidR package (Roussel et al., 2020). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑠𝐻 =
−∑ 𝑝𝑖×log(𝑝𝑖)

20
1

−∑ 𝑝𝑟𝑒𝑓
20
1 ×log(𝑝𝑟𝑒𝑓)

 , 𝑝𝑖 =
𝑛𝑖

∑ 𝑛𝑖
20
1

 ; 𝑝𝑟𝑒𝑓 = 1/20    (1) 

Since the portion of returns in canopy of varying size may be linked to AGC 

density across plots. To determine which portion explained the AGC the best, in this 

study, we proposed a new metric “volumetric percentage of returns (vp)” in a given 

area between the 19th and a lower layer (eqs. 2 and 3, Fig. 3c). Finally, the roughness 

of the top surface of the lidar point cloud could also be related to the heterogeneity of 

the canopy structure (Karna et al., 2020), which might be able to explain the variation 

in AGC density. The Rumple index, a measure of roughness, was the quotient of the 

top surface area of the lidar point cloud and the projected ground area and was 

calculated by the “rumple” function in the lidR package. 

𝑖∗ =argmax
𝑖

[𝑐𝑜𝑟𝑟((𝑧𝑝𝑐𝑢𝑚19 − 𝑧𝑝𝑐𝑢𝑚𝑖), 𝐴𝐺𝐶)] , 𝑖 = 1,2, … ,18    (2) 

𝑣𝑝 = 𝑧𝑝𝑐𝑢𝑚19 − 𝑧𝑝𝑐𝑢𝑚𝑖∗           (3) 
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2.5. AGC density modeling 

Linear models can predict AGC density without prior knowledge on the nature of 

the relationship to be developed but they have to address predictor selection and 

issues of large variance of parameter estimates arising from the excessive number of 

predictors. When the number of predictors is greater than the sample size, it may 

decrease the AGC estimate stability (Harrell, 2015). Meanwhile, the multicollinearity 

among lidar metrics could also decrease model prediction accuracy (James et al., 

2021). Hence, we employed models that mitigate the impact of an excessive number 

of predictors and potential multicollinearity among them. These include stepwise 

linear regression (SLR), principal component regression (PCR), partial least square 

regression (PLS), the elastic net algorithm and multivariate adaptive regression 

splines (MARS). We realized that machine learning has been a prevailing tool for this 

type of application. However, the small plot size and limited sample size owing to 

intensive labor and the restricted amount of harvest in the National Park constrained 

our use of tree-based or nonparametric methods (Zeng et al., 2019; Han et al., 2019), 

and the interpretability of linear models could be relatively straightforward. Stepwise 

linear regression utilizes forward and backward selection to find the subset of 

predictors that are not highly correlated (James et al., 2021; Zhao et al., 2021). Instead 

of inclusion and exclusion of SLR, PCR and PLS use principal components as new 

predictors that are linear compositions of the original lidar metrics to reduce the 

number of predictors and multicollinearity issues (Huang et al., 2019, 2023; Lai et al., 

2021). These methods regress the response variable on the first few significant 

principal components and have been applied to reduce the dimension of predictors 

and result in a brief and accurate model for prediction (James et al., 2021). In contrast 

to composite new predictors, elastic net, a combination of ridge and LASSO 
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regression, forces most regression coefficients close to or directly to zero. Elastic net 

may lead to biased estimates of parameters, but it gains overall accuracy with a small 

subset of predictors and identifies the predictors contributing the largest prediction 

accuracy. Extending from the global linear relationship between the response variable 

and predictors, MARS comprises piecewise linear basis functions, also known as 

linear splines (Hastie et al., 2009). The basis functions of a predictor are created by 

dividing the domain of the predictor with knots. Each basis function is responsible for 

capturing the local trend of the response variable. Furthermore, MARS can 

incorporate interactions between two or more basis functions into the model to 

increase fitting performance. Thus, MARS is flexible in describing the non-linearity 

of the response variable while excluding the linear interdependency of predictors. 

These regression models all required choosing hyperparameters (numbers of 

predictors [components] for SLR, PCR, and PLS, coefficients for regularization 

penalty functions for elastic net, and number of basis functions and degree of 

interactions for MARS) with cross-validation to determine the best model that avoids 

dependency and has the highest AGC density prediction accuracy among others. We 

partitioned the 74 field AGC density samples into training (80%, n = 62) and test 

(20%, n = 12) data of similar distribution using the “caret” package in R (Kuhn et al., 

2022). We selected the root mean square error (RMSE) to determine the best-tuned 

hyperparameters. We adopted a 10-fold cross-validation in “caret” on training data to 

find the best-tuned hyperparameters for each model type. We then used the best-tuned 

hyperparameters to fit the model to the training data (Kuhn et al., 2022). The 

hyperparameter for SLR is the maximum number of predictors to include in the 

model. We followed the rule of thumb that the ratio of the number of predictors to the 

sample size is less than 1/15 (Harrell, 2015) and set the hyperparameter from 2 to 5 in 
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the “train” function in the caret package. The “train” function suggested the best value 

for the hyperparameter of SLR and returned the corresponding fitted result. PCR 

produced principal components by singular value decomposition, while PLS fit the 

model with the kernel algorithm proposed by Dayal & MacGregor (1997). The 

objective function of elastic net (eq. 4) (Hastie et al., 2021; Friedman et al., 2010) 

shows that the hyperparameter alpha controls the penalty and determines whether it is 

lasso regression (alpha = 1), ridge regression (alpha = 0), or a mixture of both, while 

lambda controls the strength of the penalty. We used the “glmnet” method in the 

training function and tuned with 20 alpha and 20 lambda values. 

min
(𝛽0,𝛽)∈ℝ𝑝+1

1

2𝑛
∑ (𝐴𝐺𝐶𝑖 − 𝛽0 − 𝛽𝑥𝑖

𝑇)2 + 𝜆[(1 − 𝛼) ∥ 𝛽 ∥2
2/2 + 𝛼 ∥ 𝛽 ∥1]

𝑛
1  where 

0 ≤ α ≤ 1, 0 ≤ λ, ∥ 𝛽 ∥2= √∑ 𝛽𝑗
2𝑝

1 , ∥ 𝛽 ∥1= |∑ 𝛽𝑗
𝑝
1 |, and 𝑥𝑖 ∈ ℝ𝑝 are 

observations                                                       (4) 

The basis functions of MARS are called terms when implemented in the caret 

package and earth package (Milborrow, 2021). It creates a full basic matrix of terms 

and their multiplication and adds one term at a time until the maximum number of 

terms is reached or the improvement saturates in the forward pass. It excludes the 

term iteratively and generates the corresponding smaller sub-models until the 

intercept is left and finds the subset with the best generalized cross-validation in the 

backward pass step. Cross-validation was applied to find the best number of terms and 

degree of interaction. 

We identified the model for future prediction by comparing the RMSEs (eq. 5, 

where i is the index number of an observation and n is the number of observations) on 

training and test datasets and selected the model with the lowest RMSE once we fitted 

models on the training dataset with respectively tuned hyperparameters (Kuhn, 2019). 
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The trained models that have relatively low RMSEs in both datasets have better bias-

variance tradeoffs and perform well in future prediction (James et al., 2021). In 

addition to RMSE, we also listed the nRMSE (normalized root mean square error, eq. 

6, where sd is the standard deviation of observations), MAE (mean absolute error, eq. 

7), and MAPE (mean absolute percentage error, eq. 8) on both training and test data. 

Apart from the overall performance metrics, we additionally compared the 

distribution of residuals on the test data to understand how well the trained models 

perform for future prediction. 

RMSE = √𝑛−1∑ (𝐴𝐺𝐶𝑖 − 𝐴𝐺𝐶�̂�)
2𝑛

1                           (5) 

nRMSE = 𝑠𝑑−1√𝑛−1∑ (𝐴𝐺𝐶𝑖 − 𝐴𝐺𝐶�̂�)
2𝑛

1         (6) 

MAE = 𝑛−1∑ |𝐴𝐺𝐶𝑖 − 𝐴𝐺𝐶�̂�|
𝑛
1           (7) 

MAPE = 𝑛−1∑
|𝐴𝐺𝐶𝑖−𝐴𝐺𝐶�̂�|

𝐴𝐺𝐶𝑖

𝑛
1 × 100%          (8) 

Once we determined the best AGC density model for the subalpine dwarf bamboo 

vegetation, we employed the vip package (Greenwell et al., 2020) to investigate the 

important UAV-lidar predictors based on model-specific importance scores. We then 

mapped the AGC density and the variation (sd) of the study region using 1  1 m 

resolution lidar returns and the “pixelmetrics” function in lidR with best model. We 

used dwarf bamboo vegetation spatial distribution map to extract the dwarf bamboo 

AGC density distribution. 

3. Results 
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3.1. Dwarf bamboo AGC 

The 74 oven-dried subsamples were used to compute the ratio of dried weight to 

fresh weight and AGB density of the plots. We also developed the regression between 

subsample fresh weight (FW) and oven-dried weight (DW) (Fig. 4, eq. 9). 

DW = 0.873 + 0.518FW𝑅𝑎𝑑𝑗
2 = 0.985                         (9) 

The sample mean (± standard error [SE]) percentage of leaf dry weight was 19.79 ± 

1.86%, and that of the non-leaf part was 80.21 ± 1.86%. The mean (± SE) carbon 

content of the leaf sample was 0.419 ± 0.002, and that of the non-leaf part was 0.44 ± 

0.001, and the carbon content of the non-leaf part was distributed more compactly 

than that of the leaf part (Fig. 4). Paired t tests showed that leaf and non-leaf carbon 

contents were significantly different (p < 0.001). The sample mean (± SE) AGB-

carbon conversion coefficient was 0.436 ± 0.01. 
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Fig. 4. (a) Relationships between dwarf bamboo fresh and oven-dried weights; (b) 

carbon content of leaves and non-leaf (branches and culms) parts. These two groups 

were significantly different (p < 0.001). 

3.2. UAV-lidar AGC density estimation models 

We set the max number of predictors in SLR to five, following the rule of thumb of 

1/15, while cross-validation suggested that the tuned number of predictors should be 

four. SLR estimates fitted with training data were significant (p < 0.01) except for the 

intercept (p = 0.412). Tuning of PCR suggested the number of PCs to be 11, which 
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explained 100% and 54.81% of the variance of all predictors and AGC density in the 

training data, respectively. In contrast, tuning the PLS resulted in explaining 100% 

and 48.78% of the variance in the predictors and AGC density, respectively, with six 

components. Tuning of elastic net showed the use of best-tuned alpha (0.10) and 

lambda (0.14) in the model, which included 31 nonzero estimates of predictors. 

Finally, the number of terms and degree of interaction for the MARS model were 4 

and 1, respectively. Comparing the best-tuned outcomes (Table 2), we conclude that 

the performance of MARS is superior to that of the other models, yielding the 

smallest RMSE and nRMSE and second lowest MAE and MAPE on the test data.  
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Table 2. Model evaluation on training (n = 62) and test data (n = 12) with 

performance measures (kgC m-2 for RMSE, nRMSE and MAE and percentage for 

MAPE). 

 Predictors Training data Test data 

Model  RMSE nRMSE MAE MAPE RMSE nRMSE MAE MAPE 

SLR 4 0.166 0.700 0.133 22.22 0.169 0.542 0.119 19.34 

PCR 11 0.158 0.667 0.127 22.34 0.170 0.545 0.139 23.40 

PLS 6 0.168 0.709 0.133 23.46 0.169 0.542 0.145 26.03 

Elastic 

net 

31 0.158 0.667 0.128 21.93 0.174 0.558 0.135 22.30 

MARS 4 0.164 0.692 0.128 22.67 0.150 0.481 0.123 20.71 
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Fig. 5. (a) Distributions and statistics of residuals of the test data from the best-tuned 

models (see 2.5 for the acronyms). (b) Empirical cumulative probability distribution 

of the absolute value of residuals from MARS. 

Residuals of MARS (eq. 10) using test data were bounded within -0.18 and 0.25 

kg C m-2 (Fig. 5a), the shortest interval among models. We then used the best-tuned 

hyperparameter of MARS to fit the entire dataset and calculated the empirical 

cumulative probability function on the absolute value of residuals. The MARS 



doi:10.6342/NTU202304236

43 
 

empirical cumulative probability rose quickly (Fig. 5b) and contained 90% (95%) 

absolute residuals within 0.26 kgC m-2 (0.30 kgC m-2). 

𝐴𝐺�̂� = 0.53 − 0.49h(zmax − 1.48) + 0.77h(zq65 − 0.97) + 0.48h(zq95 − 0.79)) 

(10) 

Table 3. Coefficients and adjusted R2 values of standardized multiple linear 

regressions of using zmax, zq95, and zq65 to model canopy metrics (see Fig. 6d for 

an example). 

Canopy metric zmax zq95 zq65 Radj
2 

entropysH -1.30*** 0.71 0.56** 0.27*** 

vp -1.20*** 0.73* 0.90** 0.53*** 

Rumple index 0.54* 0.28 -0.01 0.53*** 

*** p < 0.001, ** p < 0.01, * p < 0.05 

MARS showed that AGC was mainly influenced by zmax, zq95, and zq65 (eq. 10). 

The variable importance score of zq65 was three times higher than that of zmax and 

zq95, of which the scores were identical (data not shown). Surprisingly, the three 

canopy structural metrics (entropysH, vp and the Rumple index) were not included in 

MARS, which may be explained by other MARS predictors by referring to 

standardized multiple linear regression (Table 3). Using vp as an example, we found a 

significant relationship (slope = 1, R2
ad j= 0.53) between observed and MARS 

predicted vp with zmax, zq95, and zq65 (Fig. 6d), despite weak individual linear 

relationships (Fig. 6a-c). The correlation between 64 lidar metrics showed that 1301 

pairs (65% of total pairs) of variables were correlated (p < 0.05). 
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Fig. 6. Linear relationships of vp and three salient predictors of MARS, (a) zmax (b) 

zq95 and (c) zq65. (d) Observed vp and predicted vp from zmax, zq95, and zq65. 

Gray lines indicate statistically significant (p < 0.05). 

3.3. AGC density mapping 

The dwarf bamboo AGC density map and variation (sd) derived using MARS 

(Milborrow, 2021) showed that open dwarf bamboo was mainly distributed on the 

south-facing slope and patchily scattered on the north-facing slope (Fig. 7). We found 

that the AGC density was higher in the area where valleys met the ridge. We also 
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observed that the carbon density was lower in the flatter areas or on both sides of the 

ridge. Our preliminary visual assessment indicates that the spatial variation might be 

related to the local topographic characteristics. 

 

Fig. 7. (a) Modeled dwarf bamboo AGC density and (b) standard deviation maps of 

the study site using MARS. Gray lines are elevation contour lines (unit: m), and the 

black outline is the boundary of the study region. 

4. Discussion 

4.1. AGC density modeling 

In this study, we followed a standard UAV lidar data acquisition procedure, 

including low and fixed flight height, proper side overlap, and low speed, ensuring 

accurate and dense point cloud data. The generated ground point elevations had an 
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RMSE < 1.5 cm when compared to ground control points. Abundant lidar returns and 

precise field sampling provided detailed canopy information for modeling, with the 

near canopy bottom metric being a significant predictor of dwarf bamboo AGC 

density. These acquisition practices support the reliability of our approach. For others 

such as large-sized bamboo species, adjusting field plot size may be necessary. 

Spaceborne lidar systems such as the Global Ecosystem Dynamics Investigation 

(GEDI) and terrestrial laser scanning (TLS) may not be suitable for our case. The 

footprint of GEDI is 25 m, and its along-track and cross-track spacing is 60 m and 

600 m, respectively (Dubayah et al., 2020). These coarse lidar returns do not align 

with our field plot size and the desired spatial resolution for the task. Additionally, the 

accuracy of GEDI height data is > 1 m (Adam et al., 2020), making it inadequate for 

differentiating the canopy of dwarf bamboo. On the other hand, the TLS approach 

may not be appropriate due to the dense bamboo canopies and rugged mountain 

terrain (Fig. 1c).  

This study demonstrates that UAV-lidar can precisely acquire high density point-

cloud data over a mountain landscape and applicable for dwarf bamboo AGC density 

modeling. We employed linear models to investigate the relationship between the 

AGC density and UAV-lidar derived metrics, achieving RMSEs  0.17 kgC m-2 for 

both the training and test data (Table 2). The results indicated that elastic net and PCR 

performed slightly poorer, which may be related to exploiting many more predictors 

in the training data. In contrast, SLR, PLS, and MARS were relatively more robust, 

with the exception of SLR, which produced an outlier on test data (Fig. 5a). 

According to our comprehensive analysis (Table 2), we conclude that the performance 

of MARS is superior to that of the other models. Residuals of MARS were also 
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concentrated the most (Fig. 5), indicating the robustness of the model. MARS allows 

each predictor to be divided into intervals with the corresponding breakpoints, 

capturing their unique contributions to AGC density with specific basis functions. 

This localized approach differs from other linear models, which rely on a single 

global trend, and may be feasible for delineating the unique structure of bamboo 

vegetation. MARS also indicated the non-linear nature of AGC density and percentile 

basis functions. Similar studies have specified model forms by allometric or power 

law functions that can be extended to model AGC (Asner & Mascaro, 2014; Ferraz et 

al., 2018; Xu et al., 2017), yet we showed that piecewise linear functions (basis 

functions) of lidar percentiles would be able to present the non-linearity of AGC 

density without prior knowledge of the exact form of the non-linear function. 

4.2. Salient UAV-lidar metrics for dwarf bamboo AGC mapping 

The regression model MARS (eq. 10) selected zmax, zq95 and zq65 as salient 

predictors for AGC density. Surprisingly, given the canopy structural metrics 

entropysH (entropy of dwarf bamboo in terms of scaled version of vertical profile), vp 

(volumetric percentage of returns, eqs. 2 and 3), and the Rumple index (top surface 

roughness to reflect compactness of bamboo culms), we found that vp can be 

explained by zmax, zq95, and zq65 (Table 3 and Fig. 6d), and entropysH and the 

Rumple index can also be explained by zmax or zq65, suggesting that the inherited 

multicollinearity between structural metrics and height percentiles excludes these 

canopy metrics from MARS even in forms of basis functions. The excursion means 

that these height percentiles can directly represent information on vegetation without 

canopy profiles. 

Applications of UAV or manned airborne lidar on bamboo, forest, shrubs, or 
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grassland also favor percentiles in top canopy layers as main predictors for biomass 

estimation (Cao et al., 2019; d’Oliveira et al., 2020; da Costa et al., 2021; Wang et al., 

2017; Zhao et al., 2012). In this study, we observed that zq65 is the most significant 

lidar metric, which has not been reported by previous studies. zq65 is the height of the 

top of the 13th layer, and vp is the percentage of lidar returns between the 19th and 13th 

layers, suggesting that zq65 represents the information near the bottom of the canopy 

that contributes to AGC density prediction. This also showed that conventional 

modeling approaches using top percentiles or gridded canopy height models might 

overlook the potentially important percentiles near the bottom of the canopy. 

4.3. Dwarf bamboo AGC density and topography 

We applied MARS with UAV-lidar metrics to generate a 1-m AGC density map for 

open dwarf bamboo. We found that the vegetation is predominantly located on south-

facing slopes (Fig. 1a), which is consistent with a previously conducted local field 

study (Liu, 1963). The spatial coverage also revealed that the open dwarf bamboo 

AGC density varies with slope steepness. Previous research on the dominance of open 

dwarf bamboo has focused on factors such as slope aspect, soil water content, soil 

depth, and exposure to wind (Chen et al., 1992), which showed that body size may 

also be influenced by phenotypic plasticity due to light exposure during growth (Wu 

& Kao, 2021). These factors likely contribute to the observed spatial variation in open 

dwarf bamboo AGC density across different settings. We note that here, we only 

provide preliminary analysis to highlight the potential for regional dwarf bamboo 

research with the availability of a high-spatial-resolution AGC map. More 

comprehensive analyses are required to draw more conclusive interpretations to 

further investigate the biotic and abiotic factors (topography and/or microclimate) 

shaping the spatial pattern of dwarf bamboo abundance (e.g., Lai et al. 2021).  
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5. Conclusions 

Our study highlights the feasibility of UAV-lidar point-cloud data and field 

sampling with linear models to generate a 1-m AGC density map. Issues of similar 

canopy structure among different body sizes due to the rapid growth of bamboo, 

undulating AGC density arising from the composition of new and old culms, or 

contrasting spectral reflectance corresponding to similar AGC density can be 

bypassed using UAV-lidar. Our analysis of dwarf bamboo AGC density assessment 

shows that MARS with lidar height metrics (zmax [maximum height of point cloud], 

zq95 and 65 [95th and 65th percentiles of height distribution, respectively]), 

particularly zq65, may precisely model dwarf bamboo AGC density. The regional 

estimation of the dwarf bamboo AGC map may facilitate comprehensive analysis of 

spatial patterns, which could shed some light on the factors driving carbon-content 

variation in subalpine vegetation. 
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APPENDIX B. Spatial clustering moderates the subalpine dwarf bamboo 

AGC density on environmental gradients in a tropical island 
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Abstract 

Vegetation is greatly affected by temperatures and rainfall patterns. However, complex 

terrain and the resulting light, wind, and topographical features influence vegetation 

aboveground carbon storage (AGC) density variation. Meanwhile, the spatial clustering of 

high or low AGC density that may affect the relationship between local environmental 

factors and AGC density is often not included. In this study, we used a 1-meter spatial 

resolution of AGC density map of subalpine dwarf bamboo, as well as downscaled 

radiation, wind speed and direction, and micro-topographical features, both of which were 

previously produced from UAV-lidar point cloud data. Our goal was to understand the 

influence of the spatial clustering of subalpine dwarf bamboo on AGC variation and 

explore its differing responses to the factors. We tested the hypotheses that H1: Vegetation 

spatial clustering better explains the variation of AGC density than environmental factors 

alone and H2: The various responses of AGC density on environmental gradients are 

conditioned by the spatial clustering types to understand the contribution of vegetation 

clustering on AGC variability comparing to environment factors. Our results showed that 

the spatial clustering of dwarf bamboo significantly improved the estimation of AGC 

density variation, and the influence of factors on AGC density varies significantly under 

different clustering types. AGC density in hotspots was influenced by the spring solar 

irradiation, wind direction, and interaction of wind speed and direction, the slope standard 
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deviation, and slope influence. At the same time, coldspots had no significant relationship 

with environmental factors but the clustering. The spatial clustering may be related to the 

body size and phenotypic plasticity of dwarf bamboo; therefore, we argue that the spatial 

clustering of dwarf bamboo facilitates effectively utilizing different environmental factors 

and may be less susceptible to environmental changes. 

Keywords: aboveground carbon storage, spatial clustering, solar radiation downscaling, 

wind simulation, UAV-lidar point cloud 
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1. Introduction 

Alpine and subalpine ecosystems are subject to changes in species abundance caused by 

rising temperatures and changing rainfall patterns, which alter their distribution. These 

changes also impact the amount of carbon stored locally. However, the intricate topography 

of these regions creates uneven terrain with varying elevations and depressions. This 

microtopography can cause some areas to receive less solar radiation and experience 

different wind speeds and directions, resulting in contrasting habitats(Bickford et al., 2011; 

Marquis et al., 2021). These differences in radiation, temperature, relative humidity, wind 

speed, and surface drainage due to micro-topographical differences lead to microclimate 

variations, affecting the vegetation growing in these areas. 

The degree to which environmental factors affect plant growth and morphology depends 

on their magnitudes, gradients, and spatial distributions. Previous studies have found strong 

correlations between gradients of environmental factors such as slope, aspect, or global sky 

view factor and local plant communities' diversity and species composition. Due to the 

influence of solar incident angle and local topographic shading when solar radiation enters 

a slope, the amount of incoming radiation within a region varies spatially. The red to far-red 

light ratio (R/FR) affects plants' elongation growth (Panigrahy et al., 2020; Baskin, 2009), 

and a lower solar incident angle has a smaller R/FR ratio. Therefore, the radiation of lower 

solar incident angle, which corresponds to the dawn or dusk of a day, during the growing 

season may also be related to AGC variability. However, if the total daily irradiation is 

higher, it may create stress and decrease AGC density.  

Wind speed also affects plant growth and morphology(Schindler et al., 2012). Low wind 

speed facilitates photosynthesis and reduces heat accumulation. In contrast, high wind may 
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cause mechanical damage to the plant body and alter morphology and height (Privé & 

Allain, 2000), affecting AGC density. Prevailing wind speed and direction can explain 

differences between habitats and the effect of prevailing wind on vegetation in the same 

region. Wind field simulations can be used to estimate the local micro-environmental wind 

speed and direction produced by the prevailing wind after considering the effects of 

topography. This can be used to model AGC and evaluate the impact of wind on AGC. 

Terrain variability contributes to the variation of incident radiation and wind speed. 

Micro-topographic features such as local slope, aspect, surface roughness, and relative 

position can affect local interception of moisture, and soil moisture, thus promoting 

aboveground biomass and AGC. Therefore, incorporating micro-topographic features into 

studying environmental factors affecting AGC can supplement or replace the effects of soil 

or surface water that cannot be directly measured or simulated. 

Vegetation can also be influenced by vegetation, mainly when plants form closed canopy 

(Zellweger et al., 2020) or clusters. Scattered plants are more susceptible to environmental 

changes, but when vegetation establishes and forms clusters, microclimatic differences can 

occur within or outside the clusters. These differences can create more favorable habitats 

for plant growth and affect local AGC density. This study suggests that, besides 

environmental factors, the clustering effect plays a significant role in the spatial variation of 

AGC in established dominant vegetation. Specifically, the dominant dwarf bamboo 

vegetation in subalpine regions is more affected by spatial clustering than by environmental 

factors. Moreover, different types of clustering, such as high or low values or non-

significant clustering, can also influence the impact of environmental factors on AGC 

density. Since dwarf bamboo relies on underground stems for reproduction and above-

ground resources to maintain or expand its population, AGC density is influenced by the 
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population. 

This study used a 1-meter above-ground carbon (AGC) density map, digital elevation, 

and surface models created from UAV lidar point cloud data. AGC spatial clustering was 

classified into three types: high-value cluster, low-value cluster, and non-significant high or 

low-value cluster, which represent different types of vegetation clustering. The study also 

used environmental factors such as incident radiation, wind speed 1 meter above the 

vegetation, and microtopography features as explanatory variables. We tested two 

hypotheses: H1 - Vegetation spatial clustering explains more of the variance in AGC 

density than environmental factors and H2 - The spatial clustering types condition the 

various responses of AGC density on environmental gradients to understand the 

contribution of vegetation clustering on AGC variability comparing to environment factors. 

2. Materials and methods 

2.1 Study area 

The study area is located in the Tataka of Yushan National Park, covering an area of 

approximately 120 ha in subtropical subalpine Taiwan. The terrain mainly comprises two 

north- and south-facing slopes, with a ridge going from southwest to northeast in between. 

The elevation in the area ranges from 2600 to 2860 meters a.l.s, with soil thickness of about 

20-30 cm (preliminary on-site sampling results). Dominant species include pine trees, 

hemlocks, and dwarf bamboo, which extensively grows on the south-facing slope or small 

forms patches on the north-facing slope (Fig. 1). 

The Lulin air quality background station (LABS, 23.47°N, 120.87°E, 2862 meters a.s.l.) 

locates about 500 meters away from the study area and has been observed since 2006. 

According to the observation of LABS, the study area has an annual average rainfall of 
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2838 mm, with an average temperature of 11 degrees Celsius, and experiences a humid 

climate throughout the year. The wet season is April to September, while the frosty months 

are December to February (Fig. 2). 

 

Fig. 1. Distribution of dwarf bamboo in Tataka. Shaded relief is generated from the UAV-

lidar point cloud (acquisition date:2021/11/27). The blue dot area is dwarf bamboo, and the 

red dot area is pines and hemlocks. The red triangle is the Lulin air quality background 

station. 
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Fig. 2. Climate diagram of Tataka based on 2010-2020 observations. The dark blue shade 

indicates a wet season, while the light blue is humid. The dark blue and light blue bars 

show the possibility of frost occurrence.     

2.2 UAV-Lidar derived AGC and digital elevation model 

The response variable in this study is the 1-m spatial resolution dwarf bamboo AGC 

density, sourced from the AGC density map for the Tataka area (Pan et al., 2023) using 

UAV-lidar point cloud acquired in Nov. 2021. When downscaling the incoming solar 

radiation or wind speed and direction on a focal surface or extracting the topographical 

features for the surface, we utilized the point cloud data to generate the digital elevation 

model (DEM) and digital surface model (DEM) to best correspond to the 1-m AGC density 

map.      

To downscale solar radiation received by each grid in the dwarf bamboo AGC density 

map, we extracted classification coded as high vegetation (trees) and bare ground, 

considering the shading from topography and neighboring trees on dwarf bamboo and 
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accurate inclination angle or horizon angle of slopes for the dwarf bamboo grids, and 

produced the 1-m DSM. Another 5-m DSM generated from the point cloud of all 

classifications was used to portray the surface of vegetation and the terrain for downscaling 

winds in the study area. Lastly, the micro-topographical features were calculated using the 

1-m DEM generated from the same point cloud with classification coded as ground points 

(Fig. 3). All DSMs and DEM were produced using Lidar360 v.5 (Green Valley 

International, Berkeley, California, USA). 

 

Fig.3. The workflow of the study. Pink and blue shade boxes are for generating biotic and 

abiotic factors, respectively. 

2.3 Solar radiation downscaling 

The solar radiation data used in this study was obtained from the National Solar 

Radiation Database (National Renewable Energy Laboratory, n.d.) for the Asia, Australia, 

and Pacific regions. The NSRDB provides hourly measurements of global horizontal 

irradiance (GHI), direct normal irradiance (DNI) and diffuses horizontal irradiance (DHI), 

and surface albedo at 2 km spatial resolution. 
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The data used in this study was generated using data from the Himawari satellite and 

Physical Solar Model (PSM) V3. We divided the study area into 0.01-degree grids and 

downloaded the solar radiation data for the grid center points using the NSRDB API. We 

extracted the hourly solar radiation data for March to May during the growing season and 

generated the gridded data for DHI, DNI, and surface albedo. 

We used the generated 1-m DSM and the R package "microclima"(Maclean et al., 2019) 

to downscale the DHI and DNI raster to a resolution of 1-m. We produced the solar 

radiation raster for March, April, and May (MAM) from 6 am to 6 pm. Because the solar 

radiation received by any inclined surface of a grid in a given time is composed of direct, 

diffuse, and reflected radiation from nearby surfaces, the downscaling procedure involves 

separating the components' incoming direct and diffuse radiation from the original 2-km 

resolution solar radiation data and downscaling them to the spatial resolution of the DSM. 

These components are direct radiation, isotropic and anisotropic diffuse radiation, and 

reflected radiation from proximity. These are all affected by the topographic shading and 

proportion of visible sky from an inclined surface in a grid of DSM. 

 When direct radiation enters the inclined surface, it is shaded by neighboring surfaces if 

the sun's incident angle is lower than the horizon angle of the surface. On the other hand, 

when diffuse radiation enters an inclined surface, it is factored by the obstacles in the 360-

degree sky view around it. Meanwhile, the anisotropic radiation index calculates the 

proportion of circumsolar diffuse radiation, and the albedo decides the amount of radiation 

reflected from the neighboring surface. The "solarindex" function in the microclima 

package calculates the proportion of direct radiation for a specific time and incident angle 

to quantify the effect of topographic shadowing on direct radiation and anisotropic diffuse 

radiation. The "skyviewtopo" function calculates the non-shadowed proportion of the 
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hemisphere for any focal grid. The "shortwavetopo" function calculated the net shortwave 

radiation entering the slope and the ratio of anisotropic diffuse radiation. Because the 

NSRDB radiation data is in units of W m-2, we converted data to the unit of MJ hr-1m-2 to 

align with microclima package. 

Since an average dwarf bamboo culm have a life span of 5 years(Chen et al., 1992), the 

UAV-lidar data and AGC density data acquired in 2011, we downscaled solar radiation in 

2016-2020 and calculated the daily mean total radiation and low angle radiation (5-6 am 

and 5-6 pm) for each grid and denoted as irrad and irradlow for the analysis. 

2.4 Domain wind average simulation 

LABS is located on the top of the ridge extending to the study area and is slightly higher 

(2862 a.s.l.) than the elevations study area. Therefore, we adopted wind observations in 

LABS for that in the study area. We used LABS weather observation data to calculate 

prevailing wind characteristics and simulated wind speed since the lack of wind field data 

in the study area.  

This study used the hourly wind speed and wind direction to estimate seasonal wind 

speed and direction from 2010 to 2020 and identify the prevailing winds. We also 

considered diurnal differences and used “openair” package (Carslaw & Ropkins, 2012) in R 

to create wind roses. We calculated each season's median hourly wind speed and vector 

mean direction to determine the prevailing wind speed. We also applied the same method to 

calculate the spring prevailing wind speed and direction of 2016-2020 to match solar 

radiation data produced in 2.3 and downscale the wind. 

WindNinja is a wind diagnostic model developed and sustained by U.S. Forest Service 

Missoula Fire Sciences Laboratory (Forthofer et al., 2014) and can be used for simulating 
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mountainous terrain at a fine scale (Wagenbrenner et al., 2016). It offers conservation of 

mass and conservation of mass and momentum modes to solve the wind field, with the 

latter providing more accurate results on the lee side at the cost of longer computation time 

(Missoula Fire Sciences Laboratory, n.d.). The study area is across a central ridge and two 

major slopes, making the accuracy of the lee-side simulation critical. We used the software 

to simulate wind fields based on spring prevailing wind direction and speed from 2016-

2020. The simulation parameters in WindNinja v3.8 were mesh size 5 m, vegetation trees, 

wind observation height 10 m, and output height 0.5 m. 

2.5 Micro-topographical features extraction 

This study described micro-topography characteristics using surface roughness since we 

could not directly measure or simulate the surface precipitation or drainage. The micro-

topographic features included standard deviation of slopes in proximity (sdslope), slope in 

degrees, and aspect of a focal grid. sdslope is the standard deviation of slope within a 5x5 

window of the focal grid, and a large sdslope indicates undulating surfaces in the 

neighborhood, while small means homogenous surfaces. sdslope describes the roughness in 

the adjacent grids. We also included slope and aspect of a focal grid to illustrate the local 

micro-topography. In this study, the sdslope were calculated using the 

"StandardDeviationOfSlope" functions in Whitebox Tools version 2.3.0 (Lindsay, 2014), 

while slope and aspect were calculated using the “terrain” function in terra package in R. 

2.6 Spatial clustering of AGC and modeling with microclimatic variables  

The spatial clustering of AGC density is the biotic factor in our hypotheses. We 

converted the AGC density map into polygons of the same size and spatial extent. We then 

used the "Optimized Hot Spot Analysis" tool in ArcGIS Pro 3.1 (ESRI, Redlands, 

California, USA) to identify hot spots, cold spots, and non-significant areas of spatial 
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clustering in the study area. A hotspot indicates a grid with AGC density higher than the 

mean AGC density is surrounded by grids with similar values. In contrast, a coldspot shows 

a grid with AGC density lower than the mean AGC density is surrounded by grids of 

similar values, while the nonsignificant means otherwise. The tool finds the optimized 

bandwidth of neighbors based on incremental spatial autocorrelation, computes the Getis-

Ord Gi
* statistic (eqs. 1 and 2) of focal grids, and corrects the p-value threshold with the 

false discovering rate, which deals with issues of multiple testing. We adopted the 99% 

confidence level to determine whether a focal grid was a hotspot, nonsignificant, or 

coldspot.   

𝐺𝑖
∗ = (∑ 𝑤𝑖,𝑗𝑥𝑗 − �̅� ∑ 𝑤𝑖,𝑗

𝑛
𝑗=1

𝑛
𝑗=1 )𝑆−1 ([𝑛 − 1]−1 [𝑛∑ 𝑤𝑖,𝑗

2 − (∑ 𝑤𝑖,𝑗
𝑛
𝑗=1 )

2𝑛
𝑗=1 ])

−1/2

 (1) 

where �̅� = 𝑛−1(∑ 𝑥𝑗
𝑛
𝑗=1 )and𝑆 = (𝑛−1[∑ 𝑥𝑗

2𝑛
𝑗=1 ] − [�̅�]2)

−1/2
                 (2) 

 

We then randomly sampled 1500 points from each type of spatial clustering and 

extracted corresponding growing season (MAM) daily solar radiation, low horizontal angle 

radiation, prevailing wind speed, and micro-topographic features at the sample points. 

Based on our hypothesis, we established a corresponding generalized additive model 

(GAM) to test the hypotheses of this study. 

GAM represents the response variable as a sum of smooth functions. The advantage of 

GAM is that the smooth functions explain the non-linear relationship between the response 

variable and the explanatory variables (James et al., 2021; Wood, 2017), thereby reflecting 

the non-linear relationship between AGC density and environmental factors. To understand 

the influence of spatial clustering and environmental factors on AGC density, we propose 

the following hypotheses: H1- vegetation spatial clustering explains more variance in AGC 



doi:10.6342/NTU202304236

71 
 

density than environmental factors and H2 - the influence of environmental factors on AGC 

density varies in vegetation spatial clustering. Therefore, we specify the following GAM 

models to test the effect of spatial clustering, where a smooth function of a covariate t is in 

the form of s(t), and the error follows a normal distribution with a mean zero and a constant 

variance. We formulated H1A and H1B to compare the effect of AGC density on model 

performance with and without spatial clustering type. We also included a smooth function 

of geographical coordinates, s(x, y), to account for the spatial autocorrelation in the sample. 

Moran’s I statistics were calculated for the random sample and residuals of models with 

bandwidth from 5 to 300 m and step of 5m to assure the residuals are uncorrelated. We also 

included a tensor interaction term of wind speed and direction ( ti(speed, dir), see eq.3-5) to 

model the partial effect of two variables. 

H1A:  AGC = 𝑎1 + s(𝑥, 𝑦) + s(𝑖𝑟𝑟𝑎𝑑) + s(𝑖𝑟𝑟𝑎𝑑𝑙𝑜𝑤) + s(𝑠𝑝𝑒𝑒𝑑) + s(dir) +

ti(𝑠𝑝𝑒𝑒𝑑, 𝑑𝑖𝑟) + s(𝑠𝑑𝑠𝑙𝑜𝑝𝑒) + s(𝑠𝑙𝑜𝑝𝑒) + s(𝑎𝑠𝑝𝑒𝑐𝑡) + s(𝑥, 𝑦) + ε1             (3)   

                                                                     

H1B:  GC = 𝑎2 + s(x, y) + s(𝑖𝑟𝑟𝑎𝑑) + s(𝑖𝑟𝑟𝑎𝑑𝑙𝑜𝑤) + s(𝑠𝑝𝑒𝑒𝑑) + s(𝑑𝑖𝑟) +

ti(𝑠𝑝𝑒𝑒𝑑, 𝑑𝑖𝑟) + s(𝑠𝑑𝑠𝑙𝑜𝑝𝑒) + s(𝑠𝑙𝑜𝑝𝑒) + s(𝑎𝑠𝑝𝑒𝑐𝑡) + s(𝑥, 𝑦) + 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + ε2    (4)  

                                         

H2:  AGC = 𝑎3 + s(𝑥, 𝑦) + s(𝑖𝑟𝑟𝑎𝑑, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) + s(𝑖𝑟𝑟𝑎𝑑𝑙𝑜𝑤, 𝑐𝑙𝑢𝑠𝑒𝑡𝑟) +

s(𝑠𝑝𝑒𝑒𝑑, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) + s(𝑑𝑖𝑟, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) + ti(speed, dir, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) + s(𝑠𝑑𝑠𝑙𝑜𝑝𝑒 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) +

s(𝑠𝑙𝑜𝑝𝑒, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) + s(𝑎𝑠𝑝𝑒𝑐𝑡, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) + s(𝑥, 𝑦) + 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + ε3               (5) 

We first fitted AGC density with environmental factors derived, including MAM daily 

solar radiation (irrad), daily solar radiation of low incident angle (irradlow), wind speed 

(speed), wind direction (dir), interaction of wind speed and direction, and micro-

topographical features sdslope, slope, and aspect. (eq. 3). We then added the spatial clustering 

(cluster) in the eq. 3 to measure the effect of hotspot, nonsignificant, and coldspot (eq. 4). 

Lastly, we incorporated the clustering types into the smooth function to measure the 

interaction between the explanatory variables and the clustering type and the relationship of 
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AGC density and the explanatory variables under the clustering types.   

3. Results 

3.1 AGC density spatial clustering 

The spatial clustering of AGC density demonstrated that coldspot tends to locate on the 

northeast side of the study area. At the same time, hotspots are mainly distributed in the 

middle and the southwest of the study (Fig. 4). Comparing to Fig. 1. We found that 

coldspot also distributed in both low-slope and high-slope areas, yet hotspots distributed 

mainly on steep slopes.    

 

Fig. 4. Spatial clustering of AGC density (kgC m-2). The purple and orange shades are 

coldspot and hotspots of 99% significant level.  

3.2 Downscaled solar radiation 

The downscaled daily solar radiation in MAM in the random sample (Table 1) showed 
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that coldspot data points had higher irradiation than other clusters, while nonsignificant and 

hotspot had similar amounts. However, hotspots' low incident irradiation was more 

elevated than coldspots and nonsignificant. This outcome may be related to the lower solar 

incident angle and smaller R/FR ratio. 

3.3 Simulated wind 

Based on the analysis of wind field observations from 2010-2020 (Fig. 5), we found that 

southwest and south directions were the prevailing wind directions during spring (March-

May, MAM), summer (July-August, JJA), and winter (December-February, DJF). The 

median wind speeds during these seasons were 3.4, 2.2, and 4.5 ms-1, respectively. 

Additionally, we found prevailing wind directions and speeds in 2016-2020 are similar to 

that in 2010-2020, with spring at 216° and 3.4 ms-1, summer at 199° and 1.7 ms-1, and 

winter at 200° and 3.55 ms-1. Since we hypothesized the wind speed and direction in the 

growing season might link to the growth of dwarf bamboo, hence the AGC density, we 

simulated the spring speed and direction using WindNinja v3.8 and solved with the option 

of conservation of mass and momentum. However, the mesh resolution needed to be 

enlarged to 15 m to create a successful solution with our 5-m DSM. The statistics of the 

stratified sample (Table 1) showed that the mean wind speed of the three clusters was close, 

but the coldspot had a considerable variation. In contrast, the hotspot had a relatively steady 

variation. The wind directions of the three clusterings are distributed across all directions. 

Yet, the mean direction from coldspot to hotspot was nearly 30 degrees apart, with that of 

coldspot near the prevailing wind direction (216 degrees).     
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Fig. 5. Seasonal wind rose diagrams in 2010-2020.   

3.4 Micro-topographical features 

The micro-topographical features calculated from 1-m DEM were sdslope, slope, and 

aspect of the focal grid. The sampled sdslope of coldspot showed that the 5 x 5 m local 

terrain was much more homogenous than that of nonsignificant and hotspot. The slope of 

the coldspot was less steep, while the others were similar. The aspect of the coldspot was 

close to the prevailing wind direction, while the hotspot was nearly 60 degrees away from 

the wind direction.  
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Table 1. Summary statistics of AGC density and explanatory variables from stratified 

sampling (synonym refers to 2.6)  

Variables Coldspot Nonsignificant Hotspot 

AGC 0.6±0.1 0.8±0.3 1.2±0.4 

irrad 10.7±2.4 8.6±3.3 9.1±3 

irradlow 0.57±0.3 0.4±0.3 0.6±0.5 

speed 6.2±5 6.5±4.4 6.4±3.5 

dir 207.8±79 174.8±81.9 145.5±80.1 

sdslope 3.9±1.6 5.4±2.5 5.1±2.3 

slope 29.7±16.6 44±18.8 41.1±16.3 

aspect 198.2±95.3 178.8±94.8 146±93.3 

 

3.5 Spatial clustering and environmental factors 

We included the smooth function of the random sample's geographical coordinates, 

s(x,y), to deal with the possible spatial autocorrelation between sample points. The Moran’s 

I of the sample indicated that the highest value occurred at a bandwidth of 20 m (Moran’s I 

=0.31, p = 0.001), and the statistic values slowly declined to 0 (p=0.46) at 385 m (data not 

shown). Therefore, we chose a bandwidth of 20 m to check the residual conformance to the 

model assumption. On the other hand, the number of basis spline, k, of the coordinates 

smooth function was set to 100, and that of wind speed, direction, and the tensor interaction 

terms were 20, 50, and 10, respectively, after fine-tuning to release the residuals spatial 

autocorrelation in H1A. The setting was applied to the rest models for model comparison.   

H1A was our benchmark to test the influence of spatial clustering of vegetation on the 

AGC density of dwarf bamboo and included only the abiotic factors. These were all 

significant, except for the main effect of wind speed. However, the interaction of wind 
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speed and direction had a salient partial effect, which showed that the interaction could not 

be ignored even though the main effect had no contribution to the model. The Moran’s I 

reduced to 0.03 (p=0.06) in H1A and s(x,y) might capture the spatial relationship between 

sample points. As a result, spring daily solar irradiation and low incident angle irradiation, 

wind direction, and local terrain features around the focal grid could explain the AGC 

density. 

H1B included the spatial clustering of coldspot, nonsignificant, and hotspot, and this 

vegetation clustering significantly improved the model performance (Table 2). Meanwhile, 

residuals Moran’s I dropped to 0.01 (p=0.31). The effect of abiotic factors was reduced, 

and only the interaction of wind speed, direction, and slope remained significant. The 

apparent improvement of spatial clustering in model AIC and deviance was explained with 

much less degree of freedom (df). The AGC density increased with slope, and various 

combinations of wind speed and direction had contrasting effects on AGC density (Fig. 7).                  

We investigated the relationship between AGC density and environmental factors for 

spatial clustering with model H2. We found that the main effect of different clustering 

types remained significant, while environmental variables' contribution to AGC density 

was not significant in coldspots. This implied only the main effect of coldspot explained 

AGC density within the clustering. On the other hand, wind speed, interaction of wind 

speed and direction, and the slope linked to AGC density variation in the nonsignificant 

(Table 2). On the contrary, hotspot AGC density was related to spring irradiation, wind 

direction, the interaction of wind speed and direction, sdslope, and slope. 

Spring solar irradiation tended to decrease AGC density. However, AGC density 

increased when the wind direction was near the mean wind direction, while it decreased 
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when near the prevailing wind (Fig. 7). The varying combination of wind speed and 

direction had a contrasting influence on AGC density. The response on a slope also showed 

10 and 40 degrees AGC density reach its peaks, while a slight fall in between.   

Table 2. Model fitting results 

Model Significant covariates 
Deviance 

Explained 
AIC df 

H1A 
s(x,y)***,s(irrad)**, s(irradlow)*, s(dir)*, 

ti(speed,dir)*** s(slope)*, s(aspect)*** 
39.2% 990 94 

H1B 
s(x,y)**, Coldspot***, Nonsig***, Hotspot***, 

ti(speed,dir)*, s(slope)* 
49.1% 641 52 

H2 

Coldspot***, Nonsig***, Hotspot***,  

s(irrad):Hotspot*, s(speed):Nonsig*, 

s(dir):Hotspot***, ti(speed,dir):Nonsig*, 

ti(speed,dir):Hotspot***, s(sdslope):Hotspot**, 
s(slope):Nonsig*, s(slope):Hotspot*                        

53.2% 574 83 

s(x): cluster is interaction between specific cluster and smooth function of x    

*** p<0.001; ** p<0.01; * p<0.05 
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Fig. 6. Effect of spatial cluster types and environment factors on AGC density 

 

 

 

Fig. 7. Effect of spatial cluster types and environment factors interactions on AGC density 

4. Discussions 

4.1 Environmental factors and spatial clustering 

Mean annual precipitation and temperature depict the distribution of different biomes 
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(Whittaker, 1975), and hence the main plant communities' aboveground biomass and 

carbon storage density. However, the small vegetation habitats comprising contrasting 

environmental gradients shaped by the complex mountainous terrain in an altitudinal belt 

may require local data to describe the AGC density variation. Solar irradiance, prevailing 

wind patterns in the growing season, and micro-topographic features were assessed for the 

influence on and relationship with AGC density of dwarf bamboo vegetation. Additionally, 

we introduced the spatial clustering of AGC density as the biotic variable to assess the 

AGC density variation amount.      

We found that spatial clustering substantially influences the relationship between 

environmental factors and AGC density (Table 2). While it is commonly assumed that 

factors like solar radiation, wind speed, and micro-topography affect plant growth, 

aboveground biomass, and AGC density, this study found that incorporating spatial 

clustering into models significantly improved model performance. It shrunk the 

contribution of most environmental variables, leaving the interaction of wind speed and 

direction, and slope remained significant. Springtime wind speed and direction interaction 

were substantial in both models with or without spatial clustering of the vegetation, 

suggesting the role of wind pattern contributed to AGC density in subalpine areas. Even 

though springtime daily solar irradiation and low incident angle may affect the temperature 

and heat accumulated under contrasting settings of topography and neighbors (Fig. 1), as 

shown in the result of model H1A, the presence of spatial clustering of AGC density shrunk 

the effect of irradiation. The AGC density was estimated with lidar point cloud height 

percentile of 95th, 65th, and maximum and positively related to the top and 65th percentile; 

hence, high AGC density implies a large body size in situ. Therefore, coldspots and 

hotspots indicated the focal grids were surrounded by dwarf bamboo of similar body size.  
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Measurements and inferences of AGC density were carried out by the time when the 

dwarf bamboo stayed in a dynamic equilibrium and became dominant in the open since the 

wildfire torched in 1993, which nearly burned off dwarf bamboo and trees. Unlike the 

vegetation recovers from disturbance or newly colonized where the exposure to excessive 

solar radiation and wind may negatively impact the survival and growth of vegetation, 

establishing coldspot or hotspot clustering implies the vegetation has acclimated to the 

local environmental factors and formed its microclimate around and beneath the canopy, 

suggesting that the impact of environmental factors on AGC density in the vegetation may 

be less than the effect of vegetation spatial clustering. Although the slope standard 

deviation measures the surface roughness in the neighborhood and may be used as proxies 

for unmeasured variables of surface drainage and soil moisture, the non-significance may 

possibly be related to the microclimate created by vegetation clustering near the surface. 

4.2 Spatial clustering leads to differing responses to environmental factors 

Vegetations like forests can create a microclimate beneath their canopies and buffer or 

mitigate the impact from the macro-climate and also influence the local climate (Frenne et 

al., 2021), and closed canopy forests make the microclimate beneath relatively stable and 

slow understory community composition shifts, while open canopy forests tend to 

accelerate the shift due to warming macro-climate (Zellweger et al., 2020). The spatial 

clustering may facilitate dwarf bamboo vegetation to moderate the impact of the 

environment and response to environmental gradients. The influence of environmental 

factors on AGC density under spatial clustering (Table 2) indicates the presence of an 

interaction between environmental factors and spatial clustering types. Since spatial 

clustering, especially hotspots, results from acclimation to the environment, it could be 

viewed as the indirect effect of the environment as biomass accumulation (Michaletz et al., 

2014) and growth history.  
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Dwarf bamboo in the hotspot was large in body size, and acclimation to environmental 

gradients may mitigate the impact of unfavorable conditions and efficiently utilize 

resources. On the contrary, environmental factors have no significant effect on AGC density 

in the coldspot, meaning AGC density is only affected by its clustering, without being 

affected by springtime daily solar radiation or low incident angle radiation and wind 

pattern. Since the dwarf bamboo demonstrates contrasting changes in leaf morphological 

and physiological traits under different light conditions (Wu & Kao, 2021), dwarf bamboo 

in the coldspot with high solar irradiation (Table 1) may alter the morphological and 

physiological traits to fit the environment, making the environment much less critical to 

AGC density. Since the height percentiles of UAV-lidar returns estimate the high or low 

values of AGC density, we argue that the canopy structure is linked directly to spatial 

clustering and altered phenotypic traits. The spatial clustering types condition the various 

responses of AGC density on environmental gradients. The competition or facilitation 

between dwarf bamboo and neighboring trees was not assessed because these interactions 

happen in the interface or forest edge and are mainly located in the hotspot, these effects of 

interactions may have been mixed with irradiation and wind pattern. 

Abiotic factors such as precipitation and soil physical and chemical properties may also 

link to AGC density. However, including or upscaling the measurement of these properties 

are beyond the scope of this study. Our study area has an average annual rainfall of 2838 

mm. It is humid throughout the year (Fig. 2). Also, spatial data such as soil thickness or 

texture were unavailable. Hence, it was impossible to evaluate soil's direct influence on 

AGC density in our analysis. 

Furthermore, since bamboo is a fast-growing species and its growth season is mainly in 

spring, this study focused only on the effect of spring radiation. It did not consider the 
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possible accumulation effects of radiation in other seasons. On the other hand, herbivory 

was also not included in this study as a control variable; therefore, its influences were not 

assessed. However, from the perspective of the hypothesis proposed, locations without 

high- or low-value clusters are more salient than environmental factors. Sites of hotspots 

exhibit diverse adaptive conditions, and such vegetation clusters almost exclusively 

influence those in coldspots. Traditional studies may overestimate the contribution of 

environmental factors' contribution to AGC density without considering spatial clustering 

types, especially when dwarf bamboo cover is dominant. Hence spatially explicit 

estimation of AGC density solely based on environmental factors may have limited 

capacity to predict on a finer scale. 

5. Conclusion 

We utilized downscaled spring hourly solar radiation data, prevailing wind field 

simulation, micro topographical features, and finer-scale AGC density to understand the 

effects of vegetation clustering types and environmental factors on AGC density. We 

proposed two hypotheses: H1 - that vegetation spatial clustering explains more variance in 

AGC density than environmental factors, and H2 - vegetation spatial clustering moderates 

AGC density response on environmental gradients. We used stratified random sampling for 

spatial clustering of coldspot, nonsignificant, with 500 grids for each stratum and GAM 

models to assess our hypotheses. Our results showed that vegetation clustering types had a 

more significant influence on AGC density than other environmental factors and different 

spatial clustering types had different adaptive mechanisms for environmental factors. This 
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indicates that the impact of spatial clustering should not be ignored when evaluating or 

estimating AGC density using environmental factors. 

Acknowledgments 

We appreciate the field assistance provided by Wen-Tiao Liao and Ciou-Hui Wu. This 

work was supported by the National Science and Technology Council (111-2121-M-002-

001-), Taiwan Forestry Research Institute (111AS-7.1.2-FI-G1), National Taiwan 

University (NTU-107L9010) and the Research Center for Future Earth, the Featured Areas 

Research Center Program, the Higher Education Sprout Project, and the Ministry of 

Education (MOE) in Taiwan. 

Declaration of interest statement 

The corresponding author confirms on behalf of all authors that there have been no 

involvements that might raise the question of bias in the work reported or in the 

conclusions, implications, or opinions stated. 

Author contributions statement 

Hsiao-Lung Pan: Formal analysis, Data curation, Resources, Conceptualization, 

Methodology, Investigation, Resources, Data curation, Writing - original draft, 

Visualization, Project administration, Funding acquisition 

Cho-ying Huang: Conceptualization, Methodology, Investigation, Resources, Data 

curation, Writing - original draft, Writing - review & editing, Visualization, Supervision, 

Funding acquisition 



doi:10.6342/NTU202304236

84 
 

Data availability statement 

The data that support the findings of this study will be openly available in Zenodo upon 

the acceptance of the manuscript.  

  



doi:10.6342/NTU202304236

85 
 

References 

Baskin, J. M. (2009). Death of bamboo triggers regeneration of overstory tree in a southern 

beech forest. New Phytologist, 181(4), 749–750. https://doi.org/10.1111/j.1469-

8137.2009.02757.x 

Bickford, C., Hunt, J., & Heenan, P. (2011). Microclimate characteristics of Southern Alps 

bluff ecosystems and implications for plant growth. New Zealand Journal of 

Ecology, 35, 273–279. 

Carslaw, D. C., & Ropkins, K. (2012). openair—An R package for air quality data analysis. 

Environmental Modelling & Software, 27–28, 52–61. 

https://doi.org/10.1016/j.envsoft.2011.09.008 

Forthofer, J., Butler, B., & Wagenbrenner, N. (2014). A comparison of three approaches for 

simulating fine-scale surface winds in support of wildland fire management. Part I. 

Model formulation and comparison against measurements. International Journal of 

Wildland Fire, 23. https://doi.org/10.1071/WF12089 

Frenne, P., Lenoir, J., Luoto, M., Scheffers, B., Zellweger, F., Aalto, J., Ashcroft, M., 

Christiansen, D., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., 

Hampe, A., Jucker, T., Klinges, D., Koelemeijer, I., Lembrechts, J., Marrec, R., & 

Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers 

and future research agenda. Global Change Biology, 27. 

https://doi.org/10.1111/gcb.15569 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical 

Learning: With Applications in R (Hardcover) (Second). Springer. 

https://www.statlearning.com/ 

Lindsay, J. (2014). The Whitebox Geospatial Analysis Tools project and open-access GIS. 

Maclean, I. M. D., Mosedale, J. R., & Bennie, J. J. (2019). Microclima: An r package for 

modelling meso- and microclimate. Methods in Ecology and Evolution, 10(2), 280–

290. https://doi.org/10.1111/2041-210X.13093 

Marquis, B., Bergeron, Y., Simard, M., & Tremblay, F. (2021). Disentangling the effect of 

topography and microtopography on near-ground growing-season frosts at the 

boreal-temperate forest ecotone (Québec, Canada). New Forests, 52(6), 1079–1098. 

https://doi.org/10.1007/s11056-021-09840-7 



doi:10.6342/NTU202304236

86 
 

Michaletz, S. T., Cheng, D., Kerkhoff, A. J., & Enquist, B. J. (2014). Convergence of 

terrestrial plant production across global climate gradients. Nature, 512(7512), 

Article 7512. https://doi.org/10.1038/nature13470 

Missoula Fire Sciences Laboratory. (n.d.). WindNinja Tutorials. Retrieved May 3, 2023, 

from https://weather.firelab.org/windninja/tutorials/ 

National Renewable Energy Laboratory. (n.d.). NSRDB. Retrieved July 7, 2023, from 

https://nsrdb.nrel.gov/ 

Panigrahy, M., Majeed, N., & Panigrahi, K. C. S. (2020). Low-light and its effects on crop 

yield: Genetic and genomic implications. Journal of Biosciences, 45(1), 102. 

https://doi.org/10.1007/s12038-020-00070-1 

Privé, J.-P., & Allain, N. (2000). Wind reduces growth and yield but not net leaf 

photosynthesis of primocane-fruiting red raspberries ( Rubus idaues L.) in the 

establishment years. Canadian Journal of Plant Science, 80(4), 841–847. 

https://doi.org/10.4141/P99-170 

Schindler, D., Bauhus, J., & Mayer, H. (2012). Wind effects on trees. European Journal of 

Forest Research, 131(1), 159–163. https://doi.org/10.1007/s10342-011-0582-5 

Wagenbrenner, N. S., Forthofer, J. M., Lamb, B. K., Shannon, K. S., & Butler, B. W. 

(2016). Downscaling surface wind predictions from numerical weather prediction 

models in complex terrain with WindNinja. Atmospheric Chemistry and Physics, 

16(8), 5229–5241. https://doi.org/10.5194/acp-16-5229-2016 

Whittaker, R. H. (1975). Communities and ecosystems. 

Wood, S. N. (2017). Generalized Additive Models: An Introduction with R, Second Edition 

(2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315370279 

Wu, K.-S., & Kao, W.-Y. (2021). Phenotypic plasticity and genetic variation in leaf traits of 

Yushania niitakayamensis (Bambusoideae; Poaceae) in contrasting light 

environments. Journal of Plant Research. https://doi.org/10.1007/s10265-021-

01327-y 

Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-

Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., Van Calster, H., 

Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, 

B., Kopecký, M., Máliš, F., … Coomes, D. (2020). Forest microclimate dynamics 

drive plant responses to warming. Science, 368(6492), 772–775. 



doi:10.6342/NTU202304236

87 
 

https://doi.org/10.1126/science.aba6880 

 




