請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91228完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周承復 | zh_TW |
| dc.contributor.advisor | Cheng-Fu Chou | en |
| dc.contributor.author | 陳弘運 | zh_TW |
| dc.contributor.author | HONG-YUN CHEN | en |
| dc.date.accessioned | 2023-12-12T16:18:33Z | - |
| dc.date.available | 2023-12-13 | - |
| dc.date.copyright | 2023-12-12 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-11-06 | - |
| dc.identifier.citation | [1] N. A. Abbasi, J. L. Gomez, R. Kondaveti, S. M. Shaikbepari, S. Rao, S. AbuSurra, G. Xu, J. Zhang, and A. F. Molisch. THz Band Channel Measurements and Statistical Modeling for Urban D2D Environments. IEEE Transactions on Wireless Communications, 22(3):1466–1479, 2023.
[2] L. Bai, Z. Huang, and X. Cheng. A NonStationary Model With TimeSpace Consistency for 6G Massive MIMO mmWave UAV Channels. IEEE Transactions on Wireless Communications, 22(3):2048–2064, 2023. [3] A. Bazzi and M. Chafii. On OutageBased Beamforming Design for Dual Functional RadarCommunication 6G Systems. IEEE Transactions on Wireless Communications, 22(8):5598–5612, 2023. [4] G. Chen and Q. Wu. Fundamental Limits of Intelligent Reflecting Surface Aided Multiuser Broadcast Channel. IEEE Transactions on Communications, 71(10):5904–5919, 2023. [5] H.Y. Chen, M.H. Wu, T.W. Yang, C.W. Huang, and C.F. Chou. Attentionaided Autoencoderbased Channel Prediction for Intelligent Reflecting SurfaceAssisted Millimeter Wave Communications. IEEE Transactions on Green Communications and Networking, pages 1–1, 2023. [6] H.Y. Chen, M.H. Wu, T.W. Yang, C.W. Huang, and C.F. Chou. Intelligent Reflecting SurfaceAssisted Millimeter Wave Communications: Cross Attentionaided Variational Autoencoderbased Precoding Design. IEEE Transactions on Cognitive Communications and Networking, pages 1–1, 2024. [7] M. Chu, A. Liu, V. K. N. Lau, C. Jiang, and T. Yang. Deep Reinforcement Learning Based EndtoEnd Multiuser Channel Prediction and Beamforming. IEEE Transactions on Wireless Communications, 21(12):10271–10285, 2022. [8] M. Cui, L. Dai, Z. Wang, S. Zhou, and N. Ge. NearField Rainbow: Wideband Beam Training for XLMIMO. IEEE Transactions on Wireless Communications, 22(6):3899–3912, 2023. [9] F. de Oliveira Torres, V. A. de Santiago Júnior, D. B. da Costa, D. L. Cardoso, and R. C. L. de Oliveira. Throughput Maximization for a Multicarrier CellLess NOMA Network: A Framework Based on Ensemble Metaheuristics. IEEE Transactions on Wireless Communications, 22(1):348–361, 2023. [10] F. Dong, F. Liu, Y. Cui, W. Wang, K. Han, and Z. Wang. Sensing as a Service in 6G Perceptive Networks: A Unified Framework for ISAC Resource Allocation. IEEE Transactions on Wireless Communications, 22(5):3522–3536, 2023. [11] W. Du, Z. Chu, G. Chen, P. Xiao, Z. Lin, C. Huang, and W. Hao. Weighted Sum Rate and Energy Efficiency Maximization for Joint ITS and IRS Assisted Multiuser MIMO Networks. IEEE Transactions on Communications, 70(11):7351–7364, 2022. [12] X. Du, T. Wang, Q. Feng, C. Ye, T. Tao, L. Wang, Y. Shi, and M. Chen. Multi-Agent Reinforcement Learning for Dynamic Resource Management in 6G inX Subnetworks. IEEE Transactions on Wireless Communications, 22(3):1900–1914, 2023. [13] Z. M. Fadlullah, B. Mao, and N. Kato. Balancing QoS and Security in the Edge: Existing Practices, Challenges, and 6G Opportunities With Machine Learning. IEEE Communications Surveys And Tutorials, 24(4):2419–2448, 2022. [14] X. Fang, W. Feng, Y. Wang, Y. Chen, N. Ge, Z. Ding, and H. Zhu. NOMA Based Hybrid SatelliteUAVTerrestrial Networks for 6G Maritime Coverage. IEEE Transactions on Wireless Communications, 22(1):138–152, 2023. [15] Z. Gao, M. Wu, C. Hu, F. Gao, G. Wen, D. Zheng, and J. Zhang. DataDriven Deep Learning Based Hybrid Beamforming for Aerial Massive MIMOOFDM Systems With Implicit CSI. IEEE Journal on Selected Areas in Communications, 40(10):2894–2913, 2022. [16] J. Guo, C.K. Wen, and S. Jin. Deep LearningBased CSI Feedback for Beamforming in Single and MultiCell Massive MIMO Systems. IEEE Journal on Selected Areas in Communications, 39(7):1872–1884, 2021. [17] M. Gupta, I. P. Roberts, and J. G. Andrews. SystemLevel Analysis of Full Duplex SelfBackhauled Millimeter Wave Networks. IEEE Transactions on Wireless Communications, 22(2):1130–1144, 2023. [18] Y. Hei, C. Liu, W. Li, L. Ma, and M. Lan. CNN Based Hybrid Precoding for MmWave MIMO Systems With Adaptive Switching Module and Phase Modulation Array. IEEE Transactions on Wireless Communications, 21(12):10489–10501, 2022. [19] J. Hu, T. Shui, L. Xiang, and K. Yang. MultiDomain Resource Scheduling for Simultaneous Wireless Computing and Power Transfer in Fog Radio Access Network. IEEE Transactions on Communications, 71(1):269–281, 2023. [20] Q. Hu, S. Shi, Y. Cai, and G. Yu. DDPGDriven DeepUnfolding With Adaptive Depth for Channel Estimation With Sparse Bayesian Learning. IEEE Transactions on Signal Processing, 70:4665–4680, 2022. [21] W. Huang, W. Ding, C. Kai, Y. Yi, and Y. Huang. Joint Placement and Beamforming Design for IRSEnhanced Multiuser MISO Systems. IEEE Transactions on Communications, 70(10):6678–6692, 2022. [22] Y. Huang, L. Zhu, and R. Zhang. Integrating Intelligent Reflecting Surface Into Base Station: Architecture, Channel Model, and Passive Reflection Design. IEEE Transactions on Communications, 71(8):5005–5020, 2023. [23] J. M. J. Huttunen, D. Korpi, and M. Honkala. DeepTx: Deep Learning Beamforming With Channel Prediction. IEEE Transactions on Wireless Communications, 22(3):1855–1867, 2023. [24] T. Ji, M. Hua, C. Li, Y. Huang, and L. Yang. Robust MaxMin Fairness Transmission Design for IRSAided Wireless Network Considering User Location Uncertainty. IEEE Transactions on Communications, 71(8):4678–4693, 2023. [25] H. Jiang, Y. Lu, X. Li, B. Wang, Y. Zhou, and L. Dai. AttentionBased Hybrid Precoding for mmWave MIMO Systems. In 2021 IEEE Information Theory Workshop (ITW), pages 1–6, 2021. [26] J. Johnston and X. Wang. ModelBased Deep Learning for Joint Activity Detection and Channel Estimation in Massive and Sporadic Connectivity. IEEE Transactions on Wireless Communications, 21(11):9806–9817, 2022. [27] K. Kang, Q. Hu, Y. Cai, G. Yu, J. Hoydis, and Y. C. Eldar. MixedTimescale Deep Unfolding for Joint Channel Estimation and Hybrid Beamforming. IEEE Journal on Selected Areas in Communications, 40(9):2510–2528, 2022. [28] V. Kumar, R. Zhang, M. D. Renzo, and L.N. Tran. A Novel SCABased Method for Beamforming Optimization in IRS/RISAssisted MUMISO Downlink. IEEE Wireless Communications Letters, 12(2):297–301, 2023. [29] C. Liao, F. Wang, and V. K. N. Lau. Optimized Design for IRSAssisted Integrated Sensing and Communication Systems in Clutter Environments. IEEE Transactions on Communications, 71(8):4721–4734, 2023. [30] C. Liu, Z. Wei, D. W. K. Ng, J. Yuan, and Y.C. Liang. Deep Transfer Learning for Signal Detection in Ambient Backscatter Communications. IEEE Transactions on Wireless Communications, 20(3):1624–1638, 2021. [31] C. Liu, W. Yuan, S. Li, X. Liu, H. Li, D. W. K. Ng, and Y. Li. LearningBased Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks. IEEE Journal on Selected Areas in Communications, 40(8):2317–2334, 2022. [32] H. Liu, Y. Zhang, X. Zhang, M. ElHajjar, and L.L. Yang. Deep Learning Assisted Adaptive Index Modulation for mmWave Communications With Channel Estimation. IEEE Transactions on Vehicular Technology, 71(9):9186–9201, 2022. [33] P. Liu, Y. Li, W. Cheng, X. Dong, and L. Dong. Active Intelligent Reflecting Surface Aided RSMA for MillimeterWave Hybrid Antenna Array. IEEE Transactions on Communications, 71(9):5287–5302, 2023. [34] X. Liu, Y. Deng, and T. Mahmoodi. Wireless Distributed Learning: A New Hybrid Split and Federated Learning Approach. IEEE Transactions on Wireless Communications, 22(4):2650–2665, 2023. [35] Y. Lu and L. Dai. NearField Channel Estimation in Mixed LoS/NLoS Environments for Extremely LargeScale MIMO Systems. IEEE Transactions on Communications, 71(6):3694–3707, 2023. [36] Y. Ma, M. Li, Y. Liu, Q. Wu, and Q. Liu. Optimization for Reflection and Transmission DualFunctional Active RISAssisted Systems. IEEE Transactions on Communications, 71(9):5534–5548, 2023. [37] S. Mourya, S. Amuru, and K. K. Kuchi. A Spatially Separable Attention Mechanism for Massive MIMO CSI Feedback. IEEE Wireless Communications Letters, 12(1):40–44, 2023. [38] X. Ou, X. Xie, H. Lu, and H. Yang. Resource Allocation in MUMISO Rate Splitting Multiple Access With SIC Errors for URLLC Services. IEEE Transactions on Communications, 71(1):229–243, 2023. [39] C. Pan, G. Zhou, K. Zhi, S. Hong, T. Wu, Y. Pan, H. Ren, M. D. Renzo, A. Lee Swindlehurst, R. Zhang, and A. Y. Zhang. An Overview of Signal Processing Techniques for RIS/IRSAided Wireless Systems. IEEE Journal of Selected Topics in Signal Processing, 16(5):883–917, 2022. [40] H. Pan, Y. Liu, G. Sun, J. Fan, S. Liang, and C. Yuen. Joint Power and 3D Trajectory Optimization for UAVEnabled Wireless Powered Communication Networks With Obstacles. IEEE Transactions on Communications, 71(4):2364–2380, 2023. [41] R. H. Y. Perdana, T.V. Nguyen, and B. An. Adaptive User Pairing in MultiIRS Aided Massive MIMONOMA Networks: Spectral Efficiency Maximization and Deep Learning Design. IEEE Transactions on Communications, 71(7):4377–4390, 2023. [42] Q. Qi, X. Chen, A. Khalili, C. Zhong, Z. Zhang, and D. W. K. Ng. Integrating Sensing, Computing, and Communication in 6G Wireless Networks: Design and Optimization. IEEE Transactions on Communications, 70(9):6212–6227, 2022. [43] X. Qin, T. Ma, Z. Tang, X. Zhang, H. Zhou, and L. Zhao. ServiceAware Resource Orchestration in UltraDense LEO SatelliteTerrestrial Integrated 6G: A Service Function Chain Approach. IEEE Transactions on Wireless Communications, 22(9):6003–6017, 2023. [44] J. Qiu, J. Yu, A. Dong, and K. Yu. Joint Beamforming for IRSAided MultiCell MISO System: Sum Rate Maximization and SINR Balancing. IEEE Transactions on Wireless Communications, 21(9):7536–7549, 2022. [45] I. P. Roberts, S. Vishwanath, and J. G. Andrews. LoneSTAR: Analog Beamforming Codebooks for FullDuplex Millimeter Wave Systems. IEEE Transactions on Wireless Communications, 22(9):5754–5769, 2023. [46] S. H. A. Shah and S. Rangan. LSTMAided Selective Beam Tracking in Multi-Cell Scenario for mmWave Wireless Systems. IEEE Transactions on Wireless Communications, pages 1–1, 2023. [47] L. Sun, Y. Wang, A. L. Swindlehurst, and X. Tang. GenerativeAdversarialNetwork Enabled Signal Detection for Communication Systems With Unknown Channel Models. IEEE Journal on Selected Areas in Communications, 39(1):47–60, 2021. [48] J. Tang, Z. Peng, D. K. C. So, X. Zhang, K.K. Wong, and J. A. Chambers. Energy Efficiency Optimization for a Multiuser IRSAided MISO System With SWIPT. IEEE Transactions on Communications, 71(10):5950–5962, 2023. [49] J. Tao, J. Chen, J. Xing, S. Fu, and J. Xie. Autoencoder Neural Network Based Intelligent Hybrid Beamforming Design for mmWave Massive MIMO Systems. IEEE Transactions on Cognitive Communications and Networking, 6(3):1019–1030, 2020. [50] H. Wang, J. Fang, H. Duan, and H. Li. Spatial Channel Covariance Estimation and TwoTimescale Beamforming for IRSAssisted Millimeter Wave Systems. IEEE Transactions on Wireless Communications, 22(9):6048–6060, 2023. [51] J. Wang, L. Dai, L. Yang, and B. Bai. Clustered CellFree Networking: A Graph Partitioning Approach. IEEE Transactions on Wireless Communications, 22(8):5349– 5364, 2023. [52] J. Wang, W. Zhang, Y. Chen, Z. Liu, J. Sun, and C.X. Wang. TimeVarying Channel Estimation Scheme for Uplink MUMIMO in 6G Systems. IEEE Transactions on Vehicular Technology, 71(11):11820–11831, 2022. [53] K. Wang, H. Li, Z. Ding, and P. Xiao. Reinforcement Learning Based Latency Minimization in Secure NOMAMEC Systems With Hybrid SIC. IEEE Transactions on Wireless Communications, 22(1):408–422, 2023 [54] T. Wang, C.K. Wen, S. Jin, and G. Y. Li. Deep LearningBased CSI Feeback Approach for TimeVarying Massive MIMO Channels. IEEE Wireless Communications Letters, 8(2):416–419, 2019. [55] Y. Wang, G. Wang, R. He, B. Ai, and C. Tellambura. Doppler Shift and Channel Estimation for Intelligent Transparent Surface Assisted Communication Systems on HighSpeed Railways. IEEE Transactions on Communications, 71(7):4204–4215, 2023. [56] J. Wu, S. Kim, and B. Shim. Parametric Sparse Channel Estimation for RISAssisted Terahertz Systems. IEEE Transactions on Communications, 71(9):5503–5518, 2023. [57] Z. Xie, W. Chen, and H. V. Poor. A Unified Framework for Pushing in TwoTier Heterogeneous Networks With mmWave Hotspots. IEEE Transactions on Wireless Communications, 22(1):19–31, 2023. [58] S. Xu, Y. Cao, C. Li, D. Wang, and L. Yang. Spanning Tree Method for Overthe-Air Channel Calibration in 6G CellFree Massive MIMO. IEEE Transactions on Wireless Communications, 22(8):5567–5582, 2023. [59] W. Yan, W. Hao, C. Huang, G. Sun, O. Muta, H. Gacanin, and C. Yuen. Beamforming Analysis and Design for Wideband THz Reconfigurable Intelligent Surface Communications. IEEE Journal on Selected Areas in Communications, 41(8):2306– 2320, 2023. [60] J. Yaswanth, S. K. Singh, K. Singh, and M. F. Flanagan. EnergyEfficient Beamforming Design for RISAided MIMO Downlink Communication With SWIPT. IEEE Transactions on Green Communications and Networking, 7(3):1164–1180, 2023. [61] S. Yu, W. Chen, and H. V. Poor. RealTime Monitoring With Timing Side Information. IEEE Transactions on Communications, 71(4):1953–1969, 2023. [62] Q. Yuan, H. Liu, M. Xu, Y. Wu, L. Xiao, and T. Jiang. Deep LearningBased Hybrid Precoding for Terahertz Massive MIMO Communication With Beam Squint. IEEE Communications Letters, 27(1):175–179, 2023. [63] Y. Zhang, J. Sun, J. Xue, G. Y. Li, and Z. Xu. Deep ExpectationMaximization for Joint MIMO Channel Estimation and Signal Detection. IEEE Transactions on Signal Processing, 70:4483–4497, 2022. [64] Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor. Active RIS vs. Passive RIS: Which Will Prevail in 6G? IEEE Transactions on Communications, 71(3):1707–1725, 2023. [65] J. Zheng, H. Zhang, J. Kang, L. Gao, J. Ren, and D. Niyato. Covert Federated Learning via Intelligent Reflecting Surfaces. IEEE Transactions on Communications, 71(8):4591–4604, 2023. [66] F. Zhou, C. Wang, G. Wu, Y. Wu, Q. Wu, and N. AlDhahir. Accurate Spectrum Map Construction for Spectrum Management Through Intelligent FrequencySpatial Reasoning. IEEE Transactions on Communications, 71(7):3932–3945, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91228 | - |
| dc.description.abstract | 6G 技術在速度、延遲和容量方面都超過了 5G,並引入了至關重要的智慧反射面(IRS)。在微控制器的管理下,這種高性價比的無源元件陣列可通過精確操縱傳入的無線電波來優化無線通訊,從而提高網路覆蓋、容量和能效。然而,現實世界中 IRS 的混合波束成形面臨著雜訊和干擾的困難。為了處理這個困難,我們提出了 AAE-AATT-波束成形(Adversarial AutoEncoder with Additive ATTention Beamforming)。加性注意力是一種強大的機制,用於在時域中對輸入序列中元素全域依賴性。AAE 學習到潛在空間在捕捉頻域和空間域通道內波束成形的基本特徵扮演重要角色。在類比預編碼模組中,自動編碼器被用來優化潛空間,並忠實地重建潛空間以匹配原始輸入通道信號資料,從而顯著提高捕捉全域特徵的準確性。數位預編碼模組利用具有平移不變性等特徵的 2D-CNN 捕獲通道預編碼的基本頻率和空間特徵,同時最大限度地減少干擾。在類比波束成形模組中,使用了門控遞迴單元(GRU),其重定和更新門控制單元內的資訊流。這提高了特徵捕捉的準確性。數位波束成形模組採用 1D-CNN 技術,善於捕捉連續資料中的局部模式和依賴關係,因此適用於時間序列分析等任務。該模組能有效捕捉關鍵通道波束成形特徵,同時減少干擾。實驗數值顯示和之前的研究對照,MSE、可實現速率、泛化性和強健性都有大幅提高。 | zh_TW |
| dc.description.abstract | The 6G technology, surpassing 5G in speed, latency, and capacity, introduces the crucial intelligent reflecting surface (IRS). Managed by a microcontroller, this cost-effective array of passive elements optimizes wireless communication by precisely manipulating incoming radio waves, enhancing network coverage, capacity, and energy efficiency. However, real-world hybrid beamforming in the IRS faces challenges from noise and interference. To tackle this issue, we present AAE-AATT-Beamforming (Adversarial AutoEncoder with Additive ATTention Beamforming). Additive attention is a powerful mechanism for modeling global relationships among elements within an input sequence in the time domain. AAE learned latent space plays a pivotal role in capturing essential features for intra-channel beamforming in both frequency and spatial domains in frequency and spatial domains. In the analog precoding module, an autoencoder is utilized to optimize the latent space and faithfully reconstruct it to match the original input channel signal data that significantly enhancing the accuracy of capturing global domain features. The digital precoding module utilizes a 2D-CNN with features like translation invariance that enabling it to capture essential frequency and spatial features for channel precoding while minimizing interference. Within the analog beamforming module, a Gated Recurrent Unit (GRU) is used, featuring reset and update gates that control information flow within the cell. This enhances feature capture accuracy. The digital beamforming module employs a 1D-CNN, adept at capturing local patterns and dependencies in sequential data, making it suitable for tasks like time series analysis. This module effectively captures key channel beamforming features while reducing interference. Numerical results demonstrate substantial improvements in MSE, achievable rate, generalizability, and robustness compared to prior research. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:18:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-12T16:18:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 2 Preliminary Study 11 2.1 6G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 IRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Channel estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 3 System Model 27 3.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 LOS and NLOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Chapter 4 METHOD 39 4.1 Additive Attention Mechanism . . . . . . . . . . . . . . . . . . . . . 42 4.2 Adversarial Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Analog precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 Digital precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.5 Analog beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.6 Digital beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.7 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . 67 Chapter 5 Results 69 5.1 The Investigation of System Parameters . . . . . . . . . . . . . . . . 71 5.2 The Investigation of Loss Functions . . . . . . . . . . . . . . . . . . 75 5.3 The Investigation of Spectral Analysis . . . . . . . . . . . . . . . . . 77 5.4 The Investigation of Interference Analysis . . . . . . . . . . . . . . . 78 5.5 The Investigation of Generalization . . . . . . . . . . . . . . . . . . 79 5.6 The Investigation of Robustness . . . . . . . . . . . . . . . . . . . . 82 5.7 The Investigation of System Architecture Ablation . . . . . . . . . . 84 Chapter 6 Conclusions 89 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 References 91 | - |
| dc.language.iso | en | - |
| dc.subject | 第六代 (6G) | zh_TW |
| dc.subject | 加性注意力 | zh_TW |
| dc.subject | 對抗自動編碼器 | zh_TW |
| dc.subject | 波束成形 | zh_TW |
| dc.subject | 毫米波 | zh_TW |
| dc.subject | 智慧反射面 (IRS) | zh_TW |
| dc.subject | 第六代 (6G) | zh_TW |
| dc.subject | 加性注意力 | zh_TW |
| dc.subject | 對抗自動編碼器 | zh_TW |
| dc.subject | 波束成形 | zh_TW |
| dc.subject | 毫米波 | zh_TW |
| dc.subject | 智慧反射面 (IRS) | zh_TW |
| dc.subject | Intelligent reflecting surface (IRS) | en |
| dc.subject | Intelligent reflecting surface (IRS) | en |
| dc.subject | Sixth-generation (6G) | en |
| dc.subject | additive attention | en |
| dc.subject | adversarial autoencoder | en |
| dc.subject | beamforming | en |
| dc.subject | millimeter-wave | en |
| dc.subject | Sixth-generation (6G) | en |
| dc.subject | additive attention | en |
| dc.subject | adversarial autoencoder | en |
| dc.subject | beamforming | en |
| dc.subject | millimeter-wave | en |
| dc.title | 智慧反射表面輔助毫米波通信:基於加性注意力輔助對抗自編碼器的波束成型設計 | zh_TW |
| dc.title | Intelligent Reflecting Surface-Assisted Millimeter Wave Communications: Additive Attention-aided Adversarial Autoencoder-based Beamforming Design | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 廖婉君;呂政修;吳曉光;黃志煒;蔡子傑;張英超;鄭瑞光;葉士青 | zh_TW |
| dc.contributor.oralexamcommittee | Wan-Jiun Liao;Jenq-Shiou Leu;Hsiao-Kuang Wu;Chih-Wei Huang;Tzu-Chieh Tsai;Ing-Chau Chang;Ray-Guang Cheng;Shih-Ching Yeh | en |
| dc.subject.keyword | 第六代 (6G),加性注意力,對抗自動編碼器,波束成形,毫米波,智慧反射面 (IRS), | zh_TW |
| dc.subject.keyword | Sixth-generation (6G),additive attention,adversarial autoencoder,beamforming,millimeter-wave,Intelligent reflecting surface (IRS), | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202304239 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-11-07 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 6.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
