Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91228
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周承復zh_TW
dc.contributor.advisorCheng-Fu Chouen
dc.contributor.author陳弘運zh_TW
dc.contributor.authorHONG-YUN CHENen
dc.date.accessioned2023-12-12T16:18:33Z-
dc.date.available2023-12-13-
dc.date.copyright2023-12-12-
dc.date.issued2023-
dc.date.submitted2023-11-06-
dc.identifier.citation[1] N. A. Abbasi, J. L. Gomez, R. Kondaveti, S. M. Shaikbepari, S. Rao, S. Abu­Surra, G. Xu, J. Zhang, and A. F. Molisch. THz Band Channel Measurements and Statistical Modeling for Urban D2D Environments. IEEE Transactions on Wireless Communications, 22(3):1466–1479, 2023.
[2] L. Bai, Z. Huang, and X. Cheng. A Non­Stationary Model With Time­Space Consistency for 6G Massive MIMO mmWave UAV Channels. IEEE Transactions on Wireless Communications, 22(3):2048–2064, 2023.
[3] A. Bazzi and M. Chafii. On Outage­Based Beamforming Design for Dual Functional Radar­Communication 6G Systems. IEEE Transactions on Wireless Communications, 22(8):5598–5612, 2023.
[4] G. Chen and Q. Wu. Fundamental Limits of Intelligent Reflecting Surface Aided Multiuser Broadcast Channel. IEEE Transactions on Communications, 71(10):5904–5919, 2023.
[5] H.­Y. Chen, M.­H. Wu, T.­W. Yang, C.­W. Huang, and C.­F. Chou. Attention­aided Autoencoder­based Channel Prediction for Intelligent Reflecting Surface­Assisted Millimeter Wave Communications. IEEE Transactions on Green Communications and Networking, pages 1–1, 2023.
[6] H.­Y. Chen, M.­H. Wu, T.­W. Yang, C.­W. Huang, and C.­F. Chou. Intelligent Reflecting Surface­Assisted Millimeter Wave Communications: Cross Attention­aided Variational Autoencoder­based Precoding Design. IEEE Transactions on Cognitive Communications and Networking, pages 1–1, 2024.
[7] M. Chu, A. Liu, V. K. N. Lau, C. Jiang, and T. Yang. Deep Reinforcement Learning Based End­to­End Multiuser Channel Prediction and Beamforming. IEEE Transactions on Wireless Communications, 21(12):10271–10285, 2022.
[8] M. Cui, L. Dai, Z. Wang, S. Zhou, and N. Ge. Near­Field Rainbow: Wideband Beam Training for XL­MIMO. IEEE Transactions on Wireless Communications, 22(6):3899–3912, 2023.
[9] F. de Oliveira Torres, V. A. de Santiago Júnior, D. B. da Costa, D. L. Cardoso, and R. C. L. de Oliveira. Throughput Maximization for a Multicarrier Cell­Less NOMA Network: A Framework Based on Ensemble Metaheuristics. IEEE Transactions on Wireless Communications, 22(1):348–361, 2023.
[10] F. Dong, F. Liu, Y. Cui, W. Wang, K. Han, and Z. Wang. Sensing as a Service in 6G Perceptive Networks: A Unified Framework for ISAC Resource Allocation. IEEE Transactions on Wireless Communications, 22(5):3522–3536, 2023.
[11] W. Du, Z. Chu, G. Chen, P. Xiao, Z. Lin, C. Huang, and W. Hao. Weighted Sum Rate and Energy Efficiency Maximization for Joint ITS and IRS Assisted Multiuser MIMO Networks. IEEE Transactions on Communications, 70(11):7351–7364, 2022.
[12] X. Du, T. Wang, Q. Feng, C. Ye, T. Tao, L. Wang, Y. Shi, and M. Chen. Multi­-Agent Reinforcement Learning for Dynamic Resource Management in 6G in­X Subnetworks. IEEE Transactions on Wireless Communications, 22(3):1900–1914, 2023.
[13] Z. M. Fadlullah, B. Mao, and N. Kato. Balancing QoS and Security in the Edge: Existing Practices, Challenges, and 6G Opportunities With Machine Learning. IEEE Communications Surveys And Tutorials, 24(4):2419–2448, 2022.
[14] X. Fang, W. Feng, Y. Wang, Y. Chen, N. Ge, Z. Ding, and H. Zhu. NOMA Based Hybrid Satellite­UAV­Terrestrial Networks for 6G Maritime Coverage. IEEE Transactions on Wireless Communications, 22(1):138–152, 2023.
[15] Z. Gao, M. Wu, C. Hu, F. Gao, G. Wen, D. Zheng, and J. Zhang. Data­Driven Deep Learning Based Hybrid Beamforming for Aerial Massive MIMO­OFDM Systems With Implicit CSI. IEEE Journal on Selected Areas in Communications, 40(10):2894–2913, 2022.
[16] J. Guo, C.­K. Wen, and S. Jin. Deep Learning­Based CSI Feedback for Beamforming in Single­ and Multi­Cell Massive MIMO Systems. IEEE Journal on Selected Areas in Communications, 39(7):1872–1884, 2021.
[17] M. Gupta, I. P. Roberts, and J. G. Andrews. System­Level Analysis of Full Duplex Self­Backhauled Millimeter Wave Networks. IEEE Transactions on Wireless Communications, 22(2):1130–1144, 2023.
[18] Y. Hei, C. Liu, W. Li, L. Ma, and M. Lan. CNN Based Hybrid Precoding for MmWave MIMO Systems With Adaptive Switching Module and Phase Modulation Array. IEEE Transactions on Wireless Communications, 21(12):10489–10501, 2022.
[19] J. Hu, T. Shui, L. Xiang, and K. Yang. Multi­Domain Resource Scheduling for Simultaneous Wireless Computing and Power Transfer in Fog Radio Access Network. IEEE Transactions on Communications, 71(1):269–281, 2023.
[20] Q. Hu, S. Shi, Y. Cai, and G. Yu. DDPG­Driven Deep­Unfolding With Adaptive Depth for Channel Estimation With Sparse Bayesian Learning. IEEE Transactions on Signal Processing, 70:4665–4680, 2022.
[21] W. Huang, W. Ding, C. Kai, Y. Yi, and Y. Huang. Joint Placement and Beamforming Design for IRS­Enhanced Multiuser MISO Systems. IEEE Transactions on Communications, 70(10):6678–6692, 2022.
[22] Y. Huang, L. Zhu, and R. Zhang. Integrating Intelligent Reflecting Surface Into Base Station: Architecture, Channel Model, and Passive Reflection Design. IEEE Transactions on Communications, 71(8):5005–5020, 2023.
[23] J. M. J. Huttunen, D. Korpi, and M. Honkala. DeepTx: Deep Learning Beamforming With Channel Prediction. IEEE Transactions on Wireless Communications, 22(3):1855–1867, 2023.
[24] T. Ji, M. Hua, C. Li, Y. Huang, and L. Yang. Robust Max­Min Fairness Transmission Design for IRS­Aided Wireless Network Considering User Location Uncertainty. IEEE Transactions on Communications, 71(8):4678–4693, 2023.
[25] H. Jiang, Y. Lu, X. Li, B. Wang, Y. Zhou, and L. Dai. Attention­Based Hybrid Precoding for mmWave MIMO Systems. In 2021 IEEE Information Theory Workshop (ITW), pages 1–6, 2021.
[26] J. Johnston and X. Wang. Model­Based Deep Learning for Joint Activity Detection and Channel Estimation in Massive and Sporadic Connectivity. IEEE Transactions on Wireless Communications, 21(11):9806–9817, 2022.
[27] K. Kang, Q. Hu, Y. Cai, G. Yu, J. Hoydis, and Y. C. Eldar. Mixed­Timescale Deep Unfolding for Joint Channel Estimation and Hybrid Beamforming. IEEE Journal on Selected Areas in Communications, 40(9):2510–2528, 2022.
[28] V. Kumar, R. Zhang, M. D. Renzo, and L.­N. Tran. A Novel SCA­Based Method for Beamforming Optimization in IRS/RIS­Assisted MU­MISO Downlink. IEEE Wireless Communications Letters, 12(2):297–301, 2023.
[29] C. Liao, F. Wang, and V. K. N. Lau. Optimized Design for IRS­Assisted Integrated Sensing and Communication Systems in Clutter Environments. IEEE Transactions on Communications, 71(8):4721–4734, 2023.
[30] C. Liu, Z. Wei, D. W. K. Ng, J. Yuan, and Y.­C. Liang. Deep Transfer Learning for Signal Detection in Ambient Backscatter Communications. IEEE Transactions on Wireless Communications, 20(3):1624–1638, 2021.
[31] C. Liu, W. Yuan, S. Li, X. Liu, H. Li, D. W. K. Ng, and Y. Li. Learning­Based Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks. IEEE Journal on Selected Areas in Communications, 40(8):2317–2334, 2022.
[32] H. Liu, Y. Zhang, X. Zhang, M. El­Hajjar, and L.­L. Yang. Deep Learning Assisted Adaptive Index Modulation for mmWave Communications With Channel Estimation. IEEE Transactions on Vehicular Technology, 71(9):9186–9201, 2022.
[33] P. Liu, Y. Li, W. Cheng, X. Dong, and L. Dong. Active Intelligent Reflecting Surface Aided RSMA for Millimeter­Wave Hybrid Antenna Array. IEEE Transactions on Communications, 71(9):5287–5302, 2023.
[34] X. Liu, Y. Deng, and T. Mahmoodi. Wireless Distributed Learning: A New Hybrid Split and Federated Learning Approach. IEEE Transactions on Wireless Communications, 22(4):2650–2665, 2023.
[35] Y. Lu and L. Dai. Near­Field Channel Estimation in Mixed LoS/NLoS Environments for Extremely Large­Scale MIMO Systems. IEEE Transactions on Communications, 71(6):3694–3707, 2023.
[36] Y. Ma, M. Li, Y. Liu, Q. Wu, and Q. Liu. Optimization for Reflection and Transmission Dual­Functional Active RIS­Assisted Systems. IEEE Transactions on Communications, 71(9):5534–5548, 2023.
[37] S. Mourya, S. Amuru, and K. K. Kuchi. A Spatially Separable Attention Mechanism for Massive MIMO CSI Feedback. IEEE Wireless Communications Letters, 12(1):40–44, 2023.
[38] X. Ou, X. Xie, H. Lu, and H. Yang. Resource Allocation in MU­MISO Rate Splitting Multiple Access With SIC Errors for URLLC Services. IEEE Transactions on Communications, 71(1):229–243, 2023.
[39] C. Pan, G. Zhou, K. Zhi, S. Hong, T. Wu, Y. Pan, H. Ren, M. D. Renzo, A. Lee Swindlehurst, R. Zhang, and A. Y. Zhang. An Overview of Signal Processing Techniques for RIS/IRS­Aided Wireless Systems. IEEE Journal of Selected Topics in Signal Processing, 16(5):883–917, 2022.
[40] H. Pan, Y. Liu, G. Sun, J. Fan, S. Liang, and C. Yuen. Joint Power and 3D Trajectory Optimization for UAV­Enabled Wireless Powered Communication Networks With Obstacles. IEEE Transactions on Communications, 71(4):2364–2380, 2023.
[41] R. H. Y. Perdana, T.­V. Nguyen, and B. An. Adaptive User Pairing in Multi­IRS Aided Massive MIMO­NOMA Networks: Spectral Efficiency Maximization and Deep Learning Design. IEEE Transactions on Communications, 71(7):4377–4390, 2023.
[42] Q. Qi, X. Chen, A. Khalili, C. Zhong, Z. Zhang, and D. W. K. Ng. Integrating Sensing, Computing, and Communication in 6G Wireless Networks: Design and Optimization. IEEE Transactions on Communications, 70(9):6212–6227, 2022.
[43] X. Qin, T. Ma, Z. Tang, X. Zhang, H. Zhou, and L. Zhao. Service­Aware Resource Orchestration in Ultra­Dense LEO Satellite­Terrestrial Integrated 6G: A Service Function Chain Approach. IEEE Transactions on Wireless Communications, 22(9):6003–6017, 2023.
[44] J. Qiu, J. Yu, A. Dong, and K. Yu. Joint Beamforming for IRS­Aided Multi­Cell MISO System: Sum Rate Maximization and SINR Balancing. IEEE Transactions on Wireless Communications, 21(9):7536–7549, 2022.
[45] I. P. Roberts, S. Vishwanath, and J. G. Andrews. LoneSTAR: Analog Beamforming Codebooks for Full­Duplex Millimeter Wave Systems. IEEE Transactions on Wireless Communications, 22(9):5754–5769, 2023.
[46] S. H. A. Shah and S. Rangan. LSTM­Aided Selective Beam Tracking in Multi-Cell Scenario for mmWave Wireless Systems. IEEE Transactions on Wireless Communications, pages 1–1, 2023.
[47] L. Sun, Y. Wang, A. L. Swindlehurst, and X. Tang. Generative­Adversarial­Network Enabled Signal Detection for Communication Systems With Unknown Channel Models. IEEE Journal on Selected Areas in Communications, 39(1):47–60, 2021.
[48] J. Tang, Z. Peng, D. K. C. So, X. Zhang, K.­K. Wong, and J. A. Chambers. Energy Efficiency Optimization for a Multiuser IRS­Aided MISO System With SWIPT. IEEE Transactions on Communications, 71(10):5950–5962, 2023.
[49] J. Tao, J. Chen, J. Xing, S. Fu, and J. Xie. Autoencoder Neural Network Based Intelligent Hybrid Beamforming Design for mmWave Massive MIMO Systems. IEEE Transactions on Cognitive Communications and Networking, 6(3):1019–1030, 2020.
[50] H. Wang, J. Fang, H. Duan, and H. Li. Spatial Channel Covariance Estimation and Two­Timescale Beamforming for IRS­Assisted Millimeter Wave Systems. IEEE Transactions on Wireless Communications, 22(9):6048–6060, 2023.
[51] J. Wang, L. Dai, L. Yang, and B. Bai. Clustered Cell­Free Networking: A Graph Partitioning Approach. IEEE Transactions on Wireless Communications, 22(8):5349– 5364, 2023.
[52] J. Wang, W. Zhang, Y. Chen, Z. Liu, J. Sun, and C.­X. Wang. Time­Varying Channel Estimation Scheme for Uplink MU­MIMO in 6G Systems. IEEE Transactions on Vehicular Technology, 71(11):11820–11831, 2022.
[53] K. Wang, H. Li, Z. Ding, and P. Xiao. Reinforcement Learning Based Latency Minimization in Secure NOMA­MEC Systems With Hybrid SIC. IEEE Transactions on Wireless Communications, 22(1):408–422, 2023
[54] T. Wang, C.­K. Wen, S. Jin, and G. Y. Li. Deep Learning­Based CSI Feeback Approach for Time­Varying Massive MIMO Channels. IEEE Wireless Communications Letters, 8(2):416–419, 2019.
[55] Y. Wang, G. Wang, R. He, B. Ai, and C. Tellambura. Doppler Shift and Channel Estimation for Intelligent Transparent Surface Assisted Communication Systems on High­Speed Railways. IEEE Transactions on Communications, 71(7):4204–4215, 2023.
[56] J. Wu, S. Kim, and B. Shim. Parametric Sparse Channel Estimation for RIS­Assisted Terahertz Systems. IEEE Transactions on Communications, 71(9):5503–5518, 2023.
[57] Z. Xie, W. Chen, and H. V. Poor. A Unified Framework for Pushing in Two­Tier Heterogeneous Networks With mmWave Hotspots. IEEE Transactions on Wireless Communications, 22(1):19–31, 2023.
[58] S. Xu, Y. Cao, C. Li, D. Wang, and L. Yang. Spanning Tree Method for Over­the-Air Channel Calibration in 6G Cell­Free Massive MIMO. IEEE Transactions on Wireless Communications, 22(8):5567–5582, 2023.
[59] W. Yan, W. Hao, C. Huang, G. Sun, O. Muta, H. Gacanin, and C. Yuen. Beamforming Analysis and Design for Wideband THz Reconfigurable Intelligent Surface Communications. IEEE Journal on Selected Areas in Communications, 41(8):2306– 2320, 2023.
[60] J. Yaswanth, S. K. Singh, K. Singh, and M. F. Flanagan. Energy­Efficient Beamforming Design for RIS­Aided MIMO Downlink Communication With SWIPT. IEEE Transactions on Green Communications and Networking, 7(3):1164–1180, 2023.
[61] S. Yu, W. Chen, and H. V. Poor. Real­Time Monitoring With Timing Side Information. IEEE Transactions on Communications, 71(4):1953–1969, 2023.
[62] Q. Yuan, H. Liu, M. Xu, Y. Wu, L. Xiao, and T. Jiang. Deep Learning­Based Hybrid Precoding for Terahertz Massive MIMO Communication With Beam Squint. IEEE Communications Letters, 27(1):175–179, 2023.
[63] Y. Zhang, J. Sun, J. Xue, G. Y. Li, and Z. Xu. Deep Expectation­Maximization for Joint MIMO Channel Estimation and Signal Detection. IEEE Transactions on Signal Processing, 70:4483–4497, 2022.
[64] Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor. Active RIS vs. Passive RIS: Which Will Prevail in 6G? IEEE Transactions on Communications, 71(3):1707–1725, 2023.
[65] J. Zheng, H. Zhang, J. Kang, L. Gao, J. Ren, and D. Niyato. Covert Federated Learning via Intelligent Reflecting Surfaces. IEEE Transactions on Communications, 71(8):4591–4604, 2023.
[66] F. Zhou, C. Wang, G. Wu, Y. Wu, Q. Wu, and N. Al­Dhahir. Accurate Spectrum Map Construction for Spectrum Management Through Intelligent Frequency­Spatial Reasoning. IEEE Transactions on Communications, 71(7):3932–3945, 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91228-
dc.description.abstract6G 技術在速度、延遲和容量方面都超過了 5G,並引入了至關重要的智慧反射面(IRS)。在微控制器的管理下,這種高性價比的無源元件陣列可通過精確操縱傳入的無線電波來優化無線通訊,從而提高網路覆蓋、容量和能效。然而,現實世界中 IRS 的混合波束成形面臨著雜訊和干擾的困難。為了處理這個困難,我們提出了 AAE-AATT-波束成形(Adversarial AutoEncoder with Additive ATTention Beamforming)。加性注意力是一種強大的機制,用於在時域中對輸入序列中元素全域依賴性。AAE 學習到潛在空間在捕捉頻域和空間域通道內波束成形的基本特徵扮演重要角色。在類比預編碼模組中,自動編碼器被用來優化潛空間,並忠實地重建潛空間以匹配原始輸入通道信號資料,從而顯著提高捕捉全域特徵的準確性。數位預編碼模組利用具有平移不變性等特徵的 2D-CNN 捕獲通道預編碼的基本頻率和空間特徵,同時最大限度地減少干擾。在類比波束成形模組中,使用了門控遞迴單元(GRU),其重定和更新門控制單元內的資訊流。這提高了特徵捕捉的準確性。數位波束成形模組採用 1D-CNN 技術,善於捕捉連續資料中的局部模式和依賴關係,因此適用於時間序列分析等任務。該模組能有效捕捉關鍵通道波束成形特徵,同時減少干擾。實驗數值顯示和之前的研究對照,MSE、可實現速率、泛化性和強健性都有大幅提高。zh_TW
dc.description.abstractThe 6G technology, surpassing 5G in speed, latency, and capacity, introduces the crucial intelligent reflecting surface (IRS). Managed by a microcontroller, this cost-effective array of passive elements optimizes wireless communication by precisely manipulating incoming radio waves, enhancing network coverage, capacity, and energy efficiency. However, real-world hybrid beamforming in the IRS faces challenges from noise and interference. To tackle this issue, we present AAE-AATT-Beamforming (Adversarial AutoEncoder with Additive ATTention Beamforming). Additive attention is a powerful mechanism for modeling global relationships among elements within an input sequence in the time domain. AAE learned latent space plays a pivotal role in capturing essential features for intra-channel beamforming in both frequency and spatial domains in frequency and spatial domains. In the analog precoding module, an autoencoder is utilized to optimize the latent space and faithfully reconstruct it to match the original input channel signal data that significantly enhancing the accuracy of capturing global domain features. The digital precoding module utilizes a 2D-CNN with features like translation invariance that enabling it to capture essential frequency and spatial features for channel precoding while minimizing interference. Within the analog beamforming module, a Gated Recurrent Unit (GRU) is used, featuring reset and update gates that control information flow within the cell. This enhances feature capture accuracy. The digital beamforming module employs a 1D-CNN, adept at capturing local patterns and dependencies in sequential data, making it suitable for tasks like time series analysis. This module effectively captures key channel beamforming features while reducing interference. Numerical results demonstrate substantial improvements in MSE, achievable rate, generalizability, and robustness compared to prior research.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:18:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-12T16:18:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2 Preliminary Study 11
2.1 6G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 IRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Channel estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 3 System Model 27
3.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 LOS and NLOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Chapter 4 METHOD 39
4.1 Additive Attention Mechanism . . . . . . . . . . . . . . . . . . . . . 42
4.2 Adversarial Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Analog precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Digital precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Analog beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Digital beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . 67
Chapter 5 Results 69
5.1 The Investigation of System Parameters . . . . . . . . . . . . . . . . 71
5.2 The Investigation of Loss Functions . . . . . . . . . . . . . . . . . . 75
5.3 The Investigation of Spectral Analysis . . . . . . . . . . . . . . . . . 77
5.4 The Investigation of Interference Analysis . . . . . . . . . . . . . . . 78
5.5 The Investigation of Generalization . . . . . . . . . . . . . . . . . . 79
5.6 The Investigation of Robustness . . . . . . . . . . . . . . . . . . . . 82
5.7 The Investigation of System Architecture Ablation . . . . . . . . . . 84
Chapter 6 Conclusions 89
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References 91
-
dc.language.isoen-
dc.subject第六代 (6G)zh_TW
dc.subject加性注意力zh_TW
dc.subject對抗自動編碼器zh_TW
dc.subject波束成形zh_TW
dc.subject毫米波zh_TW
dc.subject智慧反射面 (IRS)zh_TW
dc.subject第六代 (6G)zh_TW
dc.subject加性注意力zh_TW
dc.subject對抗自動編碼器zh_TW
dc.subject波束成形zh_TW
dc.subject毫米波zh_TW
dc.subject智慧反射面 (IRS)zh_TW
dc.subjectIntelligent reflecting surface (IRS)en
dc.subjectIntelligent reflecting surface (IRS)en
dc.subjectSixth-generation (6G)en
dc.subjectadditive attentionen
dc.subjectadversarial autoencoderen
dc.subjectbeamformingen
dc.subjectmillimeter-waveen
dc.subjectSixth-generation (6G)en
dc.subjectadditive attentionen
dc.subjectadversarial autoencoderen
dc.subjectbeamformingen
dc.subjectmillimeter-waveen
dc.title智慧反射表面輔助毫米波通信:基於加性注意力輔助對抗自編碼器的波束成型設計zh_TW
dc.titleIntelligent Reflecting Surface-Assisted Millimeter Wave Communications: Additive Attention-aided Adversarial Autoencoder-based Beamforming Designen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee廖婉君;呂政修;吳曉光;黃志煒;蔡子傑;張英超;鄭瑞光;葉士青zh_TW
dc.contributor.oralexamcommitteeWan-Jiun Liao;Jenq-Shiou Leu;Hsiao-Kuang Wu;Chih-Wei Huang;Tzu-Chieh Tsai;Ing-Chau Chang;Ray-Guang Cheng;Shih-Ching Yehen
dc.subject.keyword第六代 (6G),加性注意力,對抗自動編碼器,波束成形,毫米波,智慧反射面 (IRS),zh_TW
dc.subject.keywordSixth-generation (6G),additive attention,adversarial autoencoder,beamforming,millimeter-wave,Intelligent reflecting surface (IRS),en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202304239-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-11-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf6.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved