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摘要

6G技術在速度、延遲和容量方面都超過了 5G，並引入了至關重要的智慧反

射面（IRS）。在微控制器的管理下，這種高性價比的無源元件陣列可通過精確操

縱傳入的無線電波來優化無線通訊，從而提高網路覆蓋、容量和能效。然而，現

實世界中 IRS的混合波束成形面臨著雜訊和干擾的困難。為了處理這個困難，我

們提出了 AAEAATT波束成形（Adversarial AutoEncoder with Additive ATTention

Beamforming）。加性注意力是一種強大的機制，用於在時域中對輸入序列中元素

全域依賴性。AAE學習到潛在空間在捕捉頻域和空間域通道內波束成形的基本特

徵扮演重要角色。在類比預編碼模組中，自動編碼器被用來優化潛空間，並忠實

地重建潛空間以匹配原始輸入通道信號資料，從而顯著提高捕捉全域特徵的準確

性。數位預編碼模組利用具有平移不變性等特徵的 2DCNN捕獲通道預編碼的基

本頻率和空間特徵，同時最大限度地減少干擾。在類比波束成形模組中，使用了

門控遞迴單元（GRU），其重定和更新門控制單元內的資訊流。這提高了特徵捕捉

的準確性。數位波束成形模組採用 1DCNN技術，善於捕捉連續資料中的局部模

式和依賴關係，因此適用於時間序列分析等任務。該模組能有效捕捉關鍵通道波

束成形特徵，同時減少干擾。實驗數值顯示和之前的研究對照，MSE、可實現速

率、泛化性和強健性都有大幅提高。

關鍵字：第六代（6G）、加性注意力、對抗自動編碼器、波束成形、毫米波、智
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慧反射面（IRS）。
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Abstract

The 6G technology, surpassing 5G in speed, latency, and capacity, introduces the cru

cial intelligent reflecting surface (IRS). Managed by a microcontroller, this costeffective

array of passive elements optimizes wireless communication by precisely manipulating in

coming radio waves, enhancing network coverage, capacity, and energy efficiency. How

ever, realworld hybrid beamforming in the IRS faces challenges from noise and interfer

ence. To tackle this issue, we present AAEAATTBeamforming (Adversarial AutoEn

coder with Additive ATTention Beamforming). Additive attention is a powerful mecha

nism for modeling global relationships among elements within an input sequence in the

time domain. AAE learned latent space plays a pivotal role in capturing essential features

for intrachannel beamforming in both frequency and spatial domains in frequency and

spatial domains. In the analog precoding module, an autoencoder is utilized to optimize

the latent space and faithfully reconstruct it to match the original input channel signal

data that significantly enhancing the accuracy of capturing global domain features. The
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digital precoding module utilizes a 2DCNN with features like translation invariance that

enabling it to capture essential frequency and spatial features for channel precoding while

minimizing interference. Within the analog beamforming module, a Gated Recurrent Unit

(GRU) is used, featuring reset and update gates that control information flow within the

cell. This enhances feature capture accuracy. The digital beamforming module employs a

1DCNN, adept at capturing local patterns and dependencies in sequential data, making it

suitable for tasks like time series analysis. This module effectively captures key channel

beamforming features while reducing interference. Numerical results demonstrate sub

stantial improvements in MSE, achievable rate, generalizability, and robustness compared

to prior research.

Keywords: Sixthgeneration (6G), additive attention, adversarial autoencoder, beam

forming, millimeterwave, Intelligent reflecting surface (IRS).
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Chapter 1 Introduction

1.1 Introduction

The demand for mobile data rates has surged, driven by advancements in wireless

communication technologies in recent years. Looking forward to the sixth generation

(6G) cellular system, there’s a strong expectation of even greater data capacity[2, 3, 10, 12,

58]. Meeting the immense data flow and connectivity needs of 6G necessitates solutions

like increased transmission bandwidth and enhanced spectral efficiency. However, the

proliferation of RF chains in 6G wireless communication systems not only escalates RF

circuit costs but also consumes additional energy.

In response to these challenges and the quest to boost spectrum and energy efficiency

while augmenting data rates, researchers are investigating the potential of Intelligent Re

flecting Surfaces (IRS). These surfaces consist of twodimensional metasurface arrays,

featuring multiple passive and reconfigurable elements. What sets these elements apart

is their capacity to dynamically redirect incident signals without any additional energy

consumption. By deploying IRS, we can significantly enhance spectrum efficiency in a

costeffective manner, reducing power consumption and network complexity by capitaliz

ing on the passive nature of these elements. IRS opens up opportunities to boost wireless

communication system performance while mitigating associated drawbacks[11, 21, 39].
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1.2 Related Work

Hybrid beamforming in wireless communication systems have recently been ex

tensively explored using both traditional methods and deep neural network (DNN) ap

proaches. In traditional methods, the following techniques were commonly employed. In

[44], the proposed approach incorporates the application of the successive convex approxi

mation (SCA) technique, a prominent iterative optimization method frequently employed

in solving complex nonconvex optimization problems for IRSaided multicell MISO

system. However, each iteration of SCA involves solving a convex subproblem that ap

proximates the original nonconvex problem. Depending on the problem’s size and com

plexity, solving these subproblems may become a bottleneck, especially in massive scale

applications. In [50], authors introduced a novel methodology that utilizes a semidefinite

programming (SDP) approach to effectively address the optimization challenges associ

ated with the spatial channel covariance matrix (CCM) estimation and beamforming for

IRSassisted mmWave communication systems. However, SDP may have a duality gap,

meaning that the optimal dual solution may not always be equal to the optimal primal solu

tion. In [60], the authors undertook a comprehensive study focusing on the simultaneous

design of active and passive beamforming techniques to facilitate powerefficient com

munication in the RISaided SWIPTenabled MIMO downlink communication network.

Leveraging the methodology of alternating optimization (AO), they proposed an effective

framework aimed at achieving enhanced power efficiency and robust communication per

formance within the considered MIMO downlink communication network incorporating

RIS technology. Nonetheless, the order in which variables are updated in AO can signif

icantly affect its convergence rate and final solution. Weak choices of variable ordering

2
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can lead to slow convergence or getting stuck in suboptimal solutions. In [59], the authors

propose the Lagrangian dual reformulation (LDR) to investigate the normalized array for

wideband THz RIS communication system. But the effectiveness of LDR can be sensitive

to algorithm parameters, such as the choice of the Lagrangian multipliers’ update rules and

convergence criteria. Poor choices can lead to slow convergence or numerical instability.

In [36], the authors considered the joint BS transmit beamforming designs for RIS as

sisted MUMISO systems with fractional programming (FP) is proposed. However, FP

problems are generally nonconvex, which means they may have multiple local optimum.

This can make it challenging to find the global optimum, and solutions obtained may not

be guaranteed to be the best possible.

As communication systems grow in complexity, traditional physical layer techniques

struggle to meet performance demands. Deep learning, particularly DNN, has emerged

as a promising approach to address these challenges. DNN have been applied to various

communication problems, including signal detection[30, 47, 63], beamforming[7, 15, 16,

23, 31, 37, 46], channel estimation[20, 26, 27, 32], and precoding [18, 25, 49, 54]. In [46],

the authors developed and formulated an advanced Long ShortTerm Memory (LSTM)

based algorithmwith the capability to intelligently and dynamically track link connections

within the context of both fixed and adaptive power constraints, focusing specifically on

the integration of analog and digital beamforming techniques. The algorithm’s design was

geared towards enhancing the adaptability and robustness of the overall system while op

timizing power consumption and ensuring efficient link tracking performance. However,

LSTM is sensitive to random weight initializations. In [23], the authors consider the use

of convolutional neural network (CNN) for channel prediction and beamforming in TDD

systems. Yet, CNNs struggle to capture global features effectively due to their limited

3
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perceptual domain. In [16], the authors propose an autoencoder CSI feedback framework

for beamforming design. However, autoencoder compression is inherently lossy, leading

to information loss during dimensionality reduction. In [37], the authors propose an atten

tion mechanisms to obtain higher gains through beamforming for mmWave MIMO CSI

feedback which achieving improved performance. However, this approach hasn’t been

explored for IRSaided MIMO systems. In our prior research[5], we addressed the issue

of insufficient attention to information in distinct representation subspaces across various

locations. Our research methodology encompassed the strategic implementation of a hy

brid approach incorporating Adversarial Autoencoder (AAE) techniques applied directly

to raw data, combined with the incorporation of additive attention mechanisms. This inte

grated strategy facilitated the extraction ofmultifacetedmapping information from various

data subspaces, enabling the revelation of intricate and concealed patterns within the com

plex dataset. Leveraging the principles of adversarial encoding within the latent space, we

meticulously preserved critical information necessary for the comprehensive capture and

analysis of global domain features across the temporal, spatial, and frequency domains.

Notably, this approach stands out significantly from existing studies[5] due to its innova

tive amalgamation of AAE methodologies and additive attention techniques, fostering a

deeper understanding of the data’s underlying structure and interrelationships. The trans

mission of electromagnetic waves over radio channels is influenced by obstacles, and our

AAE is designed to capture the relationship between channel precoding in the time, space,

and frequency domains. While CNNs, as mentioned in [23], struggle with global infor

mation perception and can lose positional information in input data due to convolutional

operations, we chose to use a denoising autoencoder instead of a hybrid CNNbased pre

coding approach to achieve higher performance.

4
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1.3 Contribution

In this paper, we introduce AAEAATTBeamforming (Adversarial AutoEncoder

with Additive ATTention Beamforming) and delve into its beamforming design. In our

innovative approach, we tackle the intricate issue of signal interference often neglected

in conventional hybrid beamforming designs. Specifically, we address the complexities

arising from the interaction of subcarriers induced by diffuse scattering during signal prop

agation, which is further exacerbated by the presence of noise and distortions prevalent in

realworld environments. To combat these challenges effectively, we leverage the power

of an adversarial autoencoder (AAE), an advanced neural network architecture that har

nesses the potential of learning a highly structured latent space. Within the AAE model,

the intricate process of encoding the channel data facilitates the transformation of raw

input data into a comprehensive latent space representation. This latent space, acquired

through the AAE’s powerful learning capabilities, empowers the model to generate re

alistic data samples that closely resemble the characteristics of the original dataset. By

leveraging the latent space knowledge gleaned from the AAE, our methodology seeks to

establish a robust and effective framework for mitigating the impact of signal interference

and enhancing the overall performance of hybrid beamforming techniques. This versa

tility is advantageous in applications like signal processing and the creation of new data

points resembling the training data. Significantly, the learned latent space assumes a cru

cial role in capturing vital features for intrachannel beamforming across both frequency

and spatial domains.

The primary contributions of this thesis are as follows:

5
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• First, our AAEAATTBeamforming addresses time and frequencyvarying inter

ference between different channels. Additive attention is a powerful mechanism

for modeling global relationships among elements within an input sequence. It op

erates without imposing rigid assumptions regarding the nature of these relation

ships, making it highly adaptable for capturing diverse dependencies. In the context

of channel data analysis, this layer assumes a crucial role by effectively capturing

interchannel features in the time domain characteristics, with a specific emphasis

on the intricate and complex interdependencies present in the channel data.

• Second, we propose AAEAATTBeamforming to tackle subcarrier channel inter

ference. In the sophisticated AAE model, the input channel data is seamlessly in

tegrated and meticulously processed through the intricate workings of an encoder,

meticulously mapping the intricate nuances of the input data into a finely tuned

latent space representation. This transformative process serves as the cornerstone

for the AAE’s exceptional capabilities, empowering the model with the distinctive

ability to generate highly realistic data samples, each meticulously crafted based

on the profound insights gleaned from the learned latent space. Leveraging this

sophisticated latent space understanding, the AAE transcends conventional limi

tations, allowing for the creation of data samples that seamlessly encapsulate the

intricate characteristics and underlying patterns inherent within the original dataset.

This process not only enables the AAE to serve as a powerful generative model

but also equips it with the unique potential to facilitate a wide array of applications

across various domains, including signal processing and the seamless generation of

data points that closely mirror the characteristics and properties of the training data.

This capability proves valuable in various applications such as signal processing

6
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and the generation of new data points resembling the training data. Importantly,

the learned latent space plays a pivotal role in capturing essential features for intra

channel beamforming in both frequency and spatial domains.

• Third, within the analog precoding module, an autoencoder is employed to opti

mize the latent space and reconstruct it as faithfully as possible to the original input

channel signal data. This intricate and carefully orchestrated process encompasses a

sophisticated transformation of feature vectors, expertly navigating the shift from a

lowerdimensional space to a meticulously crafted higherdimensional realm. This

deliberate and strategic maneuver serves as a catalyst, sparking a remarkable surge

in the model’s capability to adeptly capture and encapsulate a diverse array of global

domain features. By harnessing the power of this meticulous transformation, the

model gains a profound understanding of the intricate nuances and complexities in

herent within the global domain, thus laying the foundation for a profound and com

prehensive analysis of the underlying patterns and intricacies within the dataset. The

digital precoding module employs a 2DCNN with characteristics like local neu

ron connectivity, translation invariance, and weight sharing. This configuration is

adept at capturing crucial frequency and spatial features necessary for channel pre

coding while simultaneously reducing interference. This carefully designed analog

beamforming module incorporates a sophisticated Gated Recurrent Unit (GRU), an

advanced architectural component fortified with two intricately interwoven gating

mechanisms: the reset gate and the update gate. Operating in unison, these gates

assume a critical role in regulating the intricate flow of information within the cell,

orchestrating a delicate interplay between the retention of valuable insights from the

previous time step and the assimilation of novel and pertinent information. This in

7
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tricate dance of retention and incorporation is instrumental in shaping the network’s

decisionmaking process, enabling it to achieve a nuanced and comprehensive un

derstanding of the underlying data dynamics and temporal intricacies. By doing so,

the GRU effectively models complex temporal dependencies. Notably, the update

gate addresses the vanishing gradient problem by regulating the extent to which

the previous hidden state should be retained versus updated with new information.

This mechanism significantly enhances the accuracy of feature capture within the

analog beamforming module. And, the digital beamforming module utilizes a 1D

CNN. 1DCNN, renowned for their remarkable ability to capture intricate local pat

terns and dependencies embedded within sequential data, have emerged as a pivotal

tool for a diverse array of data analysis tasks, particularly finding their niche in the

challenging domain of time series analysis. Leveraging their inherent capacity to

discern subtle nuances and extract meaningful insights from temporal sequences,

these specialized networks stand as robust tools capable of unraveling complex tem

poral relationships and uncovering underlying trends that might otherwise remain

obscured. By tapping into their profound expertise in local feature extraction, 1D

CNNs offer a versatile and powerful solution to the intricate challenges posed by

the analysis of timevarying data, enabling a comprehensive understanding of the

dynamic interplay between various data points and the temporal evolution of criti

cal phenomena. This configuration proves advantageous in capturing the necessary

features for channel beamforming while minimizing interference.

• Our proposed AAEAATTBeamforming model undergoes a thorough assessment

of diverse system parameters, generalizability, and robustness through comparisons

with current technological methods [16, 23, 37, 46]. Numerical results exhibit

8
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Table 1.1: NOTATIONS AND THEIR DEFINITIONS

Notation Description
Nb The transmitter antennas
n Gaussian noise
NRF

b The RF chains
x Transmitted signals for user equipment
Nu The receiver antennas
yk The kth OFDM subcarrier received signal
Heff,k The kth OFDM subcarrier cascade channel
ρ The base station transmission power
G The base stationIRS signals channels
T The IRSuser equipment signals channels
s The base station transmitted signals
WBB The digital baseband combiner
WRF The RF combiner
M IRS passive elements
FRF The analog RF precoder
FBB The digital baseband precoder

substantial improvements across multiple metrics, including mean squared error

(MSE), achievable rate, generalizability, and robustness. These advancements are

particularly notable when contrasted with outcomes from prior studies [16, 23, 37,

46].

Notation: (·)∗ denote conjugate transpose operators, E(·) denote the statistical ex

pectation operation, (·)T denote transpose operators, (·)−1 denote inverse operators, I rep

resent the identity matrix, and diag{·} denote the construction of a diagonal matrix.

9
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Chapter 2 Preliminary Study

2.1 6G

The development of each new generation of wireless communication technology,

including 6G, is driven by several key factors, with the growing number of internet

connected devices, higher resolution content (e.g., 4K and 8K video streaming), and emerg

ing applications like augmented reality (AR), virtual reality (VR), and holography, there

is a significant increase in data demand. 6G aims to provide the capacity and data rates

to support these requirements. This stringent demand arises from the necessity to facil

itate swift and seamless communication and data processing, allowing for instantaneous

decisionmaking and response mechanisms in highstakes scenarios. By adhering to these

stringent latency constraints, these advanced systems can ensure realtime responsiveness

and operational precision, thereby fostering enhanced safety, efficiency, and reliability in

missioncritical operations[1, 34, 40, 51, 66]. 6G is expected to provide ultralow latency

to enable these applications. The Internet of Things (IoT) is expected to continue grow

ing with billions of connected devices. 6G is designed to support massive machinetype

communication, where devices may need to transmit small amounts of data intermittently

over long periods. To reduce the environmental impact and extend the battery life of de

vices, 6G is expected to focus on energy efficiency in both device operations and network
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infrastructure[8, 9, 38, 56, 61]. As the radio spectrum becomes increasingly congested,

6G aims to use the spectrum more efficiently, potentially utilizing higher frequencies and

advanced spectrum sharing techniques. 6G is expected to facilitate global connectivity

with consistent services, potentially bridging the digital divide by connecting remote and

underserved areas[14, 17, 35, 45, 53]. Recognizing the evolving threat landscape and the

growing concerns surrounding data privacy and cyber threats, 6G technology is designed

to incorporate resilient security protocols, multifaceted encryption mechanisms, and so

phisticated privacy safeguards, ensuring the protection of sensitive data and the preserva

tion of user confidentiality. By leveraging cuttingedge cryptographic techniques, secure

transmission protocols, and proactive threat detection systems, 6G aims to establish a ro

bust security framework that can effectively mitigate emerging cyber risks and safeguard

the integrity of critical communication networks and data transmissions[19, 57, 64]. 6G is

expected to support sustainability goals, such as reducing carbon emissions through more

efficient communication networks and enabling applications that promote environmen

tal monitoring and protection. Development of new wireless technologies and standards

drives innovation, creates economic opportunities, and supports job growth in technology

related industries. Nations and companies that lead in 6G technology development and

deployment can gain a competitive advantage in the global technology landscape[42, 43].

In summary, the need for 6Gwireless communications arises from the increasing demands

of new applications, the desire for improved performance and efficiency, and the potential

for technological innovation and economic growth. While 5G is currently being deployed

and expanded, research and development efforts for 6G are already underway to address

the future communication requirements of society and industry[13, 52].
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2.2 IRS

The architecture of an IRS typically consists of the following key components, the

core of an IRS is its reflecting elements, often called ”metasurfaces” or ”metastructures.”

These elements are composed of materials with unique electromagnetic properties that

allow them to manipulate the phase, amplitude, and polarization of incident electromag

netic waves. They can be made up of various types of materials, including metamaterials

or metamaterialinspired structures. IRS may be equipped with sensors to gather infor

mation about the environment, such as the location of users or the quality of incoming

signals. These sensors provide data that can be used to optimize the reflection patterns.

The controller is responsible for processing sensor data and making decisions about how

to configure the reflecting elements to achieve specific communication objectives. IRS

represent a transformative technology in the realm of wireless communication systems, of

fering unparalleled capabilities in the manipulation and enhancement of radio wave prop

agation. These sophisticated surfaces leverage a combination of advanced algorithms and

optimization techniques to dynamically adjust the phase shifts and angles of the individ

ual reflecting elements, enabling precise control over signal propagation and reception.

By intelligently manipulating the reflected signals, IRS devices can effectively steer the

direction of electromagnetic waves, optimize signal paths, and minimize signal attenua

tion and interference, thereby significantly improving the overall signal quality, coverage,

and network performance. Moreover, IRS devices are designed with integrated communi

cation interfaces that facilitate seamless integration with the broader network infrastruc

ture. These interfaces enable IRS devices to establish robust connections with various

network components, including base stations, access points, and other wireless devices.
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This interconnectedness empowers IRS technology to actively participate in the broader

communication ecosystem, facilitating coordinated signal optimization, dynamic network

management, and efficient resource allocation. By integrating seamlessly into the existing

communication framework, IRS devices contribute to the creation of more agile, adaptive,

and highperformance wireless networks capable of meeting the escalating demands for

data capacity, coverage, and reliability. This enables them to receive instructions from net

work controllers and exchange information about their status and capabilities[4, 33, 48].

IRS represent a groundbreaking advancement in wireless communication technology, of

fering a wealth of transformative capabilities that can be seamlessly integrated into exist

ing and future wireless communication networks. With the advent of 5G and the relentless

pursuit of even more sophisticated technologies in the future, the integration of IRS into

the existing infrastructure holds tremendous promise for revolutionizing the way we trans

mit and receive data. By integrating IRS into the fabric of contemporary communication

networks, we can leverage the advanced capabilities of these intelligent surfaces to en

hance the overall network performance, extend coverage, and optimize the utilization of

available resources. The incorporation of IRS technology into the existing framework can

enable the development of highly efficient and adaptable communication ecosystems that

can dynamically adapt to changing network demands, environmental conditions, and user

requirements. Furthermore, the integration of IRS into 5G and upcoming wireless com

munication networks can significantly augment the network’s capacity, improve spectral

efficiency, and reduce signal interference and propagation losses. The intelligent ma

nipulation of signal paths and the precise control over signal reflection and propagation

facilitated by IRS technology can pave the way for more reliable, secure, and highspeed

data transmission, fulfilling the mounting demands for ultrafast and seamless connectiv
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ity across a diverse array of applications and use cases. They work in conjunction with

base stations, access points, and other network elements to enhance signal transmission.

IRS devices require a power supply to operate. Depending on the deployment scenario,

they may be powered by batteries, solar panels, or other energy sources. IRS systems

rely on specialized software to manage the configuration of the reflecting elements and

optimize signal propagation. This software can incorporate machine learning algorithms,

optimization routines, and realtime feedback mechanisms. Some IRS implementations

may include antenna arrays to enhance their functionality. These arrays can help focus sig

nals in specific directions. The architecture of an IRS can vary depending on its intended

application and deployment scenario. For example, IRS used in indoor environments may

have different characteristics than those deployed in outdoor urban settings or for satellite

communication. The key is that IRS devices are programmable and can adapt to changing

communication needs dynamically, making them a versatile tool for optimizing wireless

communication[22, 29, 65]. IRS are a promising technology in the field of wireless com

munication, and they are envisioned to serve several essential purposes, IRS can enhance

the strength of wireless signals by reflecting them in a desired direction. This is partic

ularly useful in scenarios with obstacles or signal blockages. By intelligently redirecting

signals, IRS can improve signal quality and coverage. IRS can extend the coverage of

wireless networks, especially in challenging environments such as urban areas with high

rise buildings or rural areas with sparse infrastructure. It can effectively bring wireless

connectivity to areas that were previously underserved. IRS can increase the capacity of

wireless networks by focusing signals where they are needed most. This is especially

valuable in crowded environments like stadiums, airports, and urban centers where many

users are trying to connect simultaneously. By optimizing signal paths, IRS can reduce
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the power requirements of communication devices. This can lead to improved energy effi

ciency, longer battery life for mobile devices, and reduced environmental impact. IRS can

be used to create controlled communication zones. By directing signals only to specific

areas or devices, it can enhance privacy and security by limiting the risk of eavesdropping

or interference. IRS represent a pioneering technology that can significantly contribute to

the reduction of communication latency, a critical factor in the successful deployment of

a wide array of cuttingedge applications. This reduction in latency is particularly crucial

for missioncritical applications, including autonomous vehicles, remote surgery, real

time industrial automation, and other timesensitive operations that rely on instantaneous

data transmission and response. By integrating IRS into the communication infrastructure,

it becomes possible to strategically manipulate and optimize signal propagation, thereby

minimizing the delays typically encountered in data transmission. The dynamic control

and precise adjustment of signal paths facilitated by IRS technology enable the swift and

efficient redirection of signals, effectively reducing the time required for data to travel be

tween the source and the destination. This capability is especially beneficial in scenarios

where even the slightest latency can have farreaching consequences. Additionally, the

integration of IRS in communication networks allows for the implementation of advanced

signal processing and beamforming techniques, which can substantially enhance the over

all speed and efficiency of data transmission. This, in turn, translates into improved re

sponsiveness, increased reliability, and heightened levels of operational efficiency in criti

cal applications that demand instantaneous and realtime data communication. As a result,

the incorporation of IRS into the communication infrastructure promises to usher in a new

era of ultralow latency communication, revolutionizing various sectors and applications

that rely on swift and dependable data exchange. By optimizing signal paths, IRS can help
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ensure that data reaches its destination quickly. IRS can enable more efficient use of the

radio spectrum. By focusing signals precisely, it reduces interference and allows for the

reuse of spectrum in different spatial regions, effectively increasing spectral efficiency.

In some cases, IRS can be a costeffective solution for improving wireless connectivity

compared to deploying additional infrastructure or more powerful transmitters. IRS sys

tems can be reconfigured dynamically to adapt to changing communication needs or to

address specific challenges, making them a versatile solution for various scenarios. IRS

is seen as a complementary technology to 6G and future wireless standards. It can help

overcome some of the limitations of traditional network architecture. In summary, IRS

technology has emerged as a transformative innovation with the capacity to revolutionize

the landscape of wireless communication systems. Its potential to significantly enhance

the performance, expand the coverage, and optimize the overall efficiency of communi

cation networks has attracted substantial attention from both the academic and industrial

communities. One of the key advantages offered by IRS lies in its ability to dynamically

manipulate and control the propagation of electromagnetic waves, allowing for the precise

shaping and steering of signal beams. This capability contributes to the establishment of

robust and reliable communication links, resulting in improved signal strength, enhanced

coverage, and minimized signal degradation across diverse environments. Furthermore,

the integration of IRS into wireless communication systems enables the implementation of

advanced beamforming techniques, thereby facilitating the directed transmission of sig

nals to specific users or devices. This targeted signal transmission enhances the overall

efficiency of the network by reducing unnecessary signal interference and maximizing

the utilization of available bandwidth. As a result, IRS technology not only bolsters the

performance of wireless communication networks but also lays the groundwork for the
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development of highspeed, highcapacity networks capable of accommodating the ever

increasing demands for data transmission and connectivity. Moreover, the seamless inte

gration of IRS into existing communication infrastructure serves to complement and aug

ment the capabilities of conventional technologies, such as 5G and beyond. By harnessing

the full potential of IRS, wireless communication systems can achieve unprecedented lev

els of reliability, speed, and connectivity, leading to improved user experiences, enhanced

network performance, and the establishment of a solid foundation for the realization of the

full potential of future communication technologies. It is particularly valuable in scenar

ios with complex propagation environments, high user density, or stringent requirements

for privacy and security[24, 41, 55].

2.3 Channel estimation

Channel estimation is a vital component in IRS communication systems for several

critical reasons. And, to realize the full potential of spatial multiplexing, accurate knowl

edge of the channel is required. Channel estimation enables the receiver to differentiate

between the various transmitted streams, separating and decoding them effectively. In

IRS systems, signals from different transmit antennas may experience different fading

and attenuation effects as they propagate through the wireless channel. Accurate channel

estimation helps the receiver mitigate these effects by compensating for the variations in

signal amplitude and phase. This compensation is crucial for accurate signal detection

and decoding, especially in the presence of channel impairments like fading and multi

path propagation. In IRS systems, both precoding and beamforming techniques rely on

knowledge of the channel. Precoding involves shaping the transmitted signal based on the

channel characteristics to maximize data rates or minimize interference. Beamforming, on
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the other hand, focuses the reception of signals in desired directions. Channel estimation

provides the necessary information for these techniques to function optimally. In IRS

scenarios, where multiple transmitters and receivers coexist, accurate channel estimation

is crucial for interference management. By estimating the channels from each transmit

ter to the receiver, the system can apply interference mitigation techniques, such as spatial

nulling or interference cancellation, to improve communication quality and system perfor

mance. Channel estimation allows the system to adapt the modulation and coding schemes

dynamically based on the channel conditions. Adapting modulation and coding schemes

based on the channel quality is a crucial strategy employed in wireless communication

systems to ensure optimal data transmission performance across varying environmental

conditions. This adaptive approach facilitates the dynamic adjustment of the data rate and

error correction capabilities in response to the fluctuating quality of the communication

channel. When the channel quality is deemed favorable, the implementation of higher

order modulation techniques, combined with sophisticated coding schemes, becomes in

strumental in maximizing the data transmission capacity. This optimization strategy is

particularly beneficial in scenarios where highspeed data transfer and efficient bandwidth

utilization are paramount, such as multimedia streaming, highdefinition video confer

encing, or largescale data transfer applications. Conversely, when the channel conditions

deteriorate, necessitating the mitigation of potential signal impairments, lowerorder mod

ulation and coding schemes are preferred. By employing simpler modulation formats and

error correction techniques, the system can ensure reliable data transmission even in the

presence of signal fading, noise, or interference. This adaptive adjustment helps to main

tain a robust and stable link between the transmitter and receiver, minimizing the risk of

data loss or transmission errors, and ensuring the delivery of consistent and dependable
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communication services. Such an approach proves crucial in environments characterized

by challenging propagation conditions, such as urban areas with high signal attenuation,

remote regions with limited infrastructure, or environments susceptible to signal blockage

and multipath fading. The dynamic modulation and coding scheme adaptation mecha

nism serve as a cornerstone in the design and operation of modern wireless communica

tion systems, enabling the optimization of data transmission performance, the efficient

utilization of available resources, and the provision of reliable and seamless connectivity

across diverse and challenging environments. Accurate channel estimation at the user de

vices provides feedback that helps the base station optimize beamforming for each user,

enhancing spectral efficiency and overall system performance. In IRS systems, diversity

gain is achieved by exploiting multiple paths and spatial dimensions. Accurate channel

estimation allows the system to realize diversity gains by combining signals from dif

ferent antennas coherently. This diversity improves the reliability of communication in

challenging wireless environments. Channel estimation assists in intelligent resource allo

cation, such as power allocation and bandwidth allocation. For applications with stringent

QoS requirements, such as teleconferencing or internet relay chat, accurate channel esti

mation is essential. It helps ensure that the required level of service quality is maintained,

even in dynamic and changing wireless environments. In summary, channel estimation in

MIMO systems is fundamental for optimizing data rates, managing interference, enabling

advanced techniques like beamforming, and adapting to varying channel conditions. It

plays a central role in achieving the performance gains and spectral efficiency that IRS

technology promises in wireless communication.
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2.4 Precoding

Precoding is an essential technique in IRS systems for several important reasons, one

is that to simultaneously transmit multiple data streams over the same frequency band.

Precoding helps in the efficient utilization of the available spatial dimensions by shaping

and optimizing the transmitted signals. This enables spatial multiplexing, where multiple

independent data streams can be sent and received in parallel, significantly increasing the

data rate and system capacity. By carefully designing the precoding matrix, it is possible

to mitigate interference and noise, leading to improved signaltonoise ratio (SNR) and re

duced bit error rates (BER). This is especially valuable in scenarios with high interference

or when signals must travel through challenging environments. In IRS systems, signals

transmitted from multiple antennas may interfere with each other at the receiver. Precod

ing can be employed to reduce or eliminate interference between the transmitted signals,

allowing multiple users or devices to communicate simultaneously in the same frequency

band without significant degradation in performance. Precoding can be used to focus

transmitted energy in specific directions, effectively extending the coverage and range of

wireless communication systems. By directing signals towards the intended receivers, it is

possible to achieve better coverage in certain areas, especially in outdoor and longrange

communication scenarios. Precoding techniques can exploit the spatial diversity provided

by multiple antennas to improve link reliability. By transmitting redundant information

across multiple antennas, it becomes more likely that at least one of the received signals

will be of sufficient quality, reducing the likelihood of communication failures, particu

larly in fading or noisy channels. Precoding helps maximize the achievable capacity of

IRS systems. By optimizing the transmitted signals based on the channel conditions, it
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is possible to approach the theoretical capacity limits of the communication channel, re

sulting in higher data rates and spectral efficiency. The channel between transmitter and

receiver in wireless communication can vary due to factors like mobility and changing

environments. Precoding can adapt to these changing channel conditions in realtime, op

timizing signal transmission for current channel characteristics. In summary, precoding

plays a crucial role in IRS systems by enhancing data rates, signal quality, interference

management, coverage, and reliability. It is a key technology that allows MIMO systems

to fully leverage their spatial diversity and multiplexing capabilities, making it an integral

part of modern wireless communication systems.

2.5 Beamforming

Beamforming is an essential technique in IRS systems for several important reasons,

beamforming allows the transmitter to concentrate signal energy in specific directions or

toward particular receivers. This spatial focus enhances the signal strength and quality at

the intended destinations, effectively increasing the coverage area and range of wireless

communication systems. It ensures that transmitted signals reach their intended targets

with minimal wastage of energy in other directions. In IRS wireless communication sce

narios with multiple transmitters and receivers, interference between signals can be a sig

nificant challenge. Beamforming can be used to minimize interference by directing the

transmitted signal away from interfering sources or nulling them out. This interference

mitigation improves overall system performance, especially in crowded spectral environ

ments. By focusing the transmitted energy in the direction of the receiver, beamforming

increases the received signal power while minimizing noise and interference from other

directions. This results in a higher SNR, leading to improved communication reliability

22

http://dx.doi.org/10.6342/NTU202304239


doi:10.6342/NTU202304239

and reduced BER. Beamforming can be used to create directional communication links

with higher data rates. By steering transmit beams toward the receivers, the channel ca

pacity can be more effectively utilized, enabling faster data transmission and increased

spectral efficiency. Beamforming can extend the coverage area of wireless networks by

directing signals to reach locations that may be challenging to access with traditional om

nidirectional transmission. This is especially valuable in outdoor and longrange commu

nication scenarios. Focusing the transmitted signal in a specific direction reduces energy

wastage in unwanted directions. This energyefficient operation is particularly crucial in

batterypowered and energyconstrained devices, such as mobile phones and IoT sensors.

Beamforming can adapt to changing channel conditions in realtime. By continuously

monitoring the channel state and adjusting the beam direction, the system can maintain

optimal communication performance even in dynamic environments. Directional trans

mission reduces the risk of eavesdropping or interception of signals by unintended re

ceivers. Beamforming can enhance the security of wireless communication by limiting

signal exposure to potential attackers. In IRS communication systems, beamforming can

be used to establish reliable links over longer distances without the need for additional

infrastructure, such as relay stations or additional base stations. Beamforming can help

increase the capacity of cellular networks by allowing more users to share the same spec

trum concurrently. By directing signals to specific users or sectors, the system can support

a larger number of simultaneous connections. In summary, beamforming in IRS systems is

crucial for optimizing signal transmission, improving link quality, reducing interference,

extending coverage, conserving energy, and adapting to varying channel conditions. In

the IRS wireless communication systems, precoding and beamforming are two distinct

techniques used to improve the performance of data transmission. Here’s the difference
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between them, precoding is a technique used to optimize the transmitted signals from the

multiple antennas at the transmitter to improve the received signal quality at the multiple

antennas at the receiver. Precoding is typically performed at the transmitter, and it in

volves complex signal processing techniques. It focuses on spatial processing of signals

before transmission to exploit the spatial characteristics of the IRS channel, such as reduc

ing interference or increasing the SNR. Precoding can be used to transmit multiple data

streams simultaneously, improving the system’s throughput. Beamforming is a subset of

precoding and specifically refers to the process of shaping and directing the transmitted

signal in a specific direction or towards a specific receiver or set of receivers. Beam

forming can be relatively simpler than general precoding techniques and is often used

for specific applications like directional transmission. It primarily focuses on steering the

transmitted signal in a particular direction to maximize the signal power at the intended re

ceiver while minimizing interference to other receivers. For singlestream beamforming,

it is often referred to as ”singleuser beamforming.” In summary, precoding is a broader

term that encompasses various techniques to optimize signal transmission in IRS systems.

Beamforming, on the other hand, is a specific type of precoding that emphasizes directing

signals in a particular spatial direction to maximize reception at the intended receivers.

Both techniques aim to improve wireless communication performance by exploiting the

spatial characteristics of the channel. In our prior research[5, 6], we addressed the issue of

insufficient attention to information in distinct representation subspaces across various lo

cations. In the pursuit of advancing the frontiers of research in this domain, our study has

strategically leveraged a synergistic combination of advanced AAEmethodologies on raw

data, with a novel emphasis on harnessing the power of additive attention. By synergis

tically integrating these sophisticated techniques, we were able to unravel and illuminate
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previously concealed patterns embedded within the intricate layers of complex data. This

transformative approach facilitated the generation of diverse mapping information across

distinct subspaces, enabling us to glean valuable insights into the nuanced interplay of

hidden patterns and correlations that often evade conventional analysis techniques. One

of the defining features of our work lies in the integration of adversarial encoding within

the latent space, an innovative strategy aimed at meticulously preserving essential infor

mation critical for capturing comprehensive global domain features spanning space, time,

and frequency domains. This distinctive approach sets our research apart from earlier stud

ies[5, 6], establishing a novel paradigm that is poised to make significant contributions to

the overarching field of data analysis and pattern recognition. In the rigorous experimen

tal phase of our study, we meticulously curated and executed an extensive comparison of

various modules, rigorously examining and dissecting their performance in detail. This

systematic evaluation revealed compelling evidence and compellingly demonstrated the

superior efficacy and robustness of our proposed methodology. The results, meticulously

analyzed and meticulously presented, not only underscore the tangible impact of our work

but also serve as a testament to the transformative potential of our innovative framework in

reshaping and redefining the existing landscape of data analysis and interpretation. Draw

ing from these intricate analyses and results, our study lays the groundwork for a new

paradigm of data analysis that promises to unlock previously untapped insights and pave

the way for a more nuanced and comprehensive understanding of complex data dynamics.

Through this work, we aim to contribute significantly to the advancement of the field and

pave the way for further explorations and applications in diverse domains.
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Chapter 3 System Model

3.1 Channel Model

We study a IRSassisted mmwave MIMO OFDM system comprising of a base sta

tion with NRF
t transmit radio frequency (RF) chains and Nt transmitting antennas, also

a user with NRF
r receive RF chains and Nr receiving antennas, assisted by an IRS with

M reflecting elements as shown in Fig. 3.1. The OFDM is a modulation and multiplex

ing approach utilized in digital communication systems. It is broadly adopted in various

technologies, including 4G LTE, 5G, 6G, and digital television broadcasting. OFDM is

known for its efficiency in handling high data rates and mitigating issues related to multi

path interference. OFDM divides the available bandwidth into multiple subcarriers, also

known as tones or bins. These subcarriers are closely spaced in frequency and are or

thogonal to each other, meaning they do not interfere with each other. Each subcarrier

can be thought of as a separate narrowband channel. The orthogonality of subcarriers is

a critical feature of OFDM. Because the subcarriers do not overlap in frequency and are

orthogonal, they can be transmitted simultaneously without causing interference between

them. OFDM transmits data in parallel by modulating each subcarrier with its own data

symbol. This parallel transmission increases the overall data throughput. OFDM includes

guard intervals between symbols or subcarriers to deal with multipath interference, which
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can cause intersymbol interference (ISI). The guard intervals provide a protection period

against delayed versions of the transmitted signal. OFDM is particularly effective in envi

ronments with multipath propagation, where signals take multiple paths due to reflection

and scattering. The guard intervals and the orthogonality of subcarriers help mitigate the

effects of multipath fading. OFDM is known for its spectral efficiency, as it can effi

ciently use available frequency bands. The closely spaced subcarriers allow for efficient

utilization of the frequency spectrum. OFDM systems can adapt the modulation and cod

ing scheme (MCS) for each subcarrier independently, based on channel conditions. This

adaptability ensures that OFDM can provide high data rates while maintaining robustness

in challenging channel conditions. OFDM is used in 5G NR (New Radio), 6G, digital

television broadcasting (DVBT, ATSC), and many other wireless communication tech

nologies. Overall, OFDM has become a fundamental technology for highspeed wireless

communication due to high spectral efficiency, and adaptability to changing environments.

In OFDM, the IFFT and the addition of the cyclic prefix (CP) are essential components

of the modulation scheme. They play crucial roles in the transmission and reception of

OFDM signals. In the OFDM system, data symbols are typically modulated onto multi

ple subcarriers, each representing a specific frequency. These subcarriers are orthogonal

to each other, meaning they don’t interfere with each other. However, to transmit data

over a channel, we need to convert these frequencydomain symbols into a timedomain

signal. The IFFT performs this conversion. It takes the data symbols on each subcarrier

and combines them to create a complex timedomain signal. The result is a timedomain

waveform that represents the composite OFDM symbol. The IFFT operation ensures that

the subcarriers’ frequencies are orthogonal in the time domain, allowing for simultaneous

transmission and avoiding interference. The addition of a cyclic prefix is a technique used
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to combat the effects of multipath interference in wireless communication channels. When

a signal travels through a channel, it can experience reflections and delays, leading to in

tersymbol interference (ISI). ISI occurs when parts of one symbol overlap with subsequent

symbols, making it challenging to correctly demodulate the received signal. The cyclic

prefix is a copy of the end of the OFDM symbol that is appended to the beginning. It’s a

guard interval, consisting of the last part of the symbol, copied and added to the front. By

adding the cyclic prefix, the OFDM symbol’s cyclically extended version contains enough

information to fill in the delayed or distorted portions caused by multipath propagation.

This mitigates ISI, making it easier for the receiver to recover the original data. The cyclic

prefix simplifies the equalization process at the receiver. Overall, IFFT and cyclic prefix

work together to convert data symbols from the frequency domain to the time domain and

protect the transmitted signal against the adverse effects of multipath propagation in the

channel. This combination of techniques makes OFDM a robust and efficient modulation

scheme for highspeed data transmission in various wireless communication systems, such

as WiFi and 4G/5G/6G cellular networks. After IFFT and adding cyclic prefix, the BS

uses an analog RF precoder FRF ∈ CNt×NRF
t , analog beamforming BRF ∈ CNt×NRF

t , and

each pilot frame with OFDM symbols of K subcarriers. In OFDM, subcarriers are indi

vidual carriers or tones within the total bandwidth allocated for data transmission. OFDM

divides the available frequency spectrum into numerous subcarriers, each of which can be

thought of as a narrowband signal. These subcarriers are spaced at specific frequencies,

and they collectively carry data. Subcarriers are orthogonal to each other. This orthogo

nality is achieved by ensuring that the frequency spacing between subcarriers is such that

the sinc function of one subcarrier is zero at the frequency position of another subcar

rier. This orthogonality minimizes interference between subcarriers, allowing them to be
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transmitted simultaneously without mutual interference. Each subcarrier can be used to

carry data, such as binary symbols, QAM (Quadrature Amplitude Modulation) symbols,

or other digital modulation formats. The data on each subcarrier is typically modulated

separately before being transmitted. OFDM systems can dynamically allocate subcarriers

to different users, services, or purposes, making it a flexible modulation scheme. For ex

ample, in a multiuser environment, different subcarriers can be assigned to different users

based on their channel conditions and data rate requirements. In some OFDM systems,

certain subcarriers at the edges of the frequency spectrum are reserved as guard bands.

These guard bands are not used for data transmission but serve as a buffer to prevent in

terference with adjacent communication systems or to provide protection against spectral

leakage. OFDM’s use of subcarriers is particularly effective in combating the effects of

frequencyselective fading in wireless channels. When some subcarriers experience fad

ing or interference, others may remain unaffected, allowing for the reconstruction of the

transmitted data. OFDM systems can adapt the number of subcarriers based on the avail

able bandwidth and the specific application. For example, WiFi standards like 802.11a/

g/n/ac/ax use varying numbers of subcarriers depending on the channel bandwidth. Over

all, subcarriers are a fundamental component of OFDMmodulation, enabling the efficient

transmission of data over a wide range of communication channels, including wired and

wireless systems.

3.2 Signal Model

The transmitted signal from the BS is s[k], where s[k] ∈ CNs represents OFDM

symbols, FBB[k] ∈ CNRF
t ×Ns represents digital baseband precoder, BBB[k] ∈ CNRF

t ×Ns

represents digital beamforming, and it is assumed that power constraint is satisfied by
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Figure 3.1: Scenario diagram of IRSassisted MIMO OFDM system.

E[s[k]sH [k]] = KNsINs . The UE removes the cyclic prefix and performs anN point FFT

frequency transformation, the UE applies an analog combinerWRF ∈ CNr×NRF
r and digital

combiner WBB ∈ CNRF
r ×Ns in Fig. 3.2. Then, the received signals at the UE at the kth

subcarrier can be written as

y[k] = s[k]FBB[k]BBB[k]FRFBRFHeff[k]WRFWBB[k] + n[k]. (3.1)

where Heff[k] ∈ CNr×Nt denote the signals vector, the BS communicates Ns sequential

signals to the UE through k subcarriers, and n ∼ CN (0, σ2INt) and n[k] ∈ CNr are the

Guassian noise. The channel model used in this paper is the SalehValenzuela model as

the channel model for the BSIRS and IRSUser links. Heff[k] ≜ G[k]ΘT [k] represent the

equivalent channels from the BS to the UE, andΘ = diag
(
ejθ1 , ejθ2 , · · · , ejθNs

)
denotes

a phase shifter and θn is the nth element of IRS, and the channel matrix G[k] is modeled

as

31

http://dx.doi.org/10.6342/NTU202304239


doi:10.6342/NTU202304239

Figure 3.2: Schematic diagram of the IRSassisted beamforming design architecture with
mmwave MIMO OFDM system.

G[k] =

√
NtLx × Lz

MNt

Lg∑
lg=1

gBIlg alg
(
θBI,lg , ϕBI,lg

)
bHlg
(
θBI,lg

)
, (3.2)

where alg
(
θBI,lg , ϕBI,lg

)
and blg

(
θBI,lg

)
represents the array response vectors of the lgth

propagation paths at the BS and IRS,
(
θBI,lg , ϕBI,lg

)
represents the azimuth and elevation

of AoA, gBIlg represents the complex channel gain, the array response vectors can be written

as

alg
(
θlg , ϕlg

)
=

1√
Lx × Lz

[
1 · · · eȷ�λ2πf(lx sin(θlg) sin(ϕlg)+lz cos(ϕlg)) · · ·

]T
, (3.3)

blg
(
θlg
)
=

1√
NT

[
1 eȷ�λ2πf sin(θlg) · · · eȷ�λ(NT−1) sin(θlg)

]T
, (3.4)

where f represents the carrier frequency, Lx represents the number of reflecting elements

of the IRS on horizontal plane, λ represents the antenna spacing, and Lz represents the

number of reflecting elements of the IRS on vertical plane. Similarly, the channel vector
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T[k] is modeled as

T[k] =
√

LIRS

MNr

Lt∑
lt=1

tIUlt alt

(
θIU,k, ϕIU,k

)
, (3.5)

where tIUk represents the complex channel gain, Lt represents the number of propaga

tion paths, θIU,k and ϕIU,k represents the azimuth and elevation of AoD, respectively, and

alt

(
θAoDIU,k , ϕ

AoD
IU,k
)
represents the array response vector of the ltth propagation paths at the

IRS and UE. The AoA refers to the direction from which a signal, such as an electromag

netic wave or sound wave, arrives at a receiver or antenna. In various fields, including

telecommunications, radar, acoustics, and astronomy, AoA is typically measured in de

grees or radians. In degrees, it often ranges from 0° to 360°, where 0° represents a signal

coming from the north direction, 90° from the east, 180° from the south, and 270° from

the west. In some cases, it may be measured relative to other reference points. AoA esti

mation is commonly used in antenna arrays, where multiple antennas are used to receive

signals. By analyzing the phase differences of signals received at different antennas, it’s

possible to estimate the angle of arrival of a signal source. This technique is known as

spatial signal processing. In wireless communication, it can help optimize beamforming

to direct signals toward specific users or avoid interference. In acoustics, it aids in locat

ing sound sources. When there are multiple sources of signals arriving at a receiver, AoA

estimation can help distinguish between them. This is crucial for scenarios like multiuser

wireless communication or radar systems tracking multiple targets. The geometry and

arrangement of antennas in an array play a significant role in AoA estimation. Different

array configurations, such as uniform linear arrays (ULA), uniform planar array (UPA),

or more complex geometries, can provide varying levels of AoA accuracy. Advanced al

gorithms and signal processing methods are often employed to mitigate these challenges.

Overall, AoA estimation is a valuable tool in many fields where the direction of signal
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sources needs to be determined. It enables better spatial awareness and optimization of

various systems and technologies. The AoD is the complementary concept to the AoA.

While AoA refers to the direction from which a signal arrives at a receiver or antenna,

AoD refers to the direction in which a signal departs from a transmitter or antenna. Just

as AoA helps determine the direction from which a signal arrives at a receiver, AoD helps

determine the direction in which a signal is transmitted from a source or antenna. AoA

and AoD are often used together to describe the full spatial characteristics of signal propa

gation. AoD is typically measured in degrees or radians, similar to AoA. AoD estimation

is important in various applications, including wireless communication systems. Know

ing the AoD is crucial for beamforming, which involves directing signals toward specific

angles or directions to optimize communication links. In beamforming, the transmitter

adjusts the phase and amplitude of signals transmitted from an antenna array to steer the

signal in a specific direction. The AoD is a key parameter used to control the direction of

the transmitted beam. In systems with multiple transmit antennas, such as IRS systems,

AoD estimation helps determine the angles at which signals are transmitted from each an

tenna. This information is used to achieve spatial diversity and multiplexing in wireless

communication. By estimating the AoD of signals received at multiple receiver locations,

it’s possible to triangulate the source’s position. AoD estimation often involves signal

processing techniques similar to those used in AoA estimation, such as beamforming, and

other spatial signal processing methods. Estimating AoD accurately can be challenging

due to factors like noise, multipath propagation, and interference. Advanced algorithms

and techniques are used to enhance AoD estimation performance. And, AoD is an impor

tant parameter in wireless communication, radar, and localization systems, as it describes

the direction in which signals are transmitted from a source or antenna. Accurate AoD
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estimation is crucial for optimizing communication links and spatial awareness in various

applications.

Figure 3.3: Illustration of the structure of the proposed additive attentionaided adversarial
autoencoder beamforming design.

3.3 LOS and NLOS

In the practical network deployment of mobile communication, LOS and NLOS are

terms commonly used in the context of wireless communication and radio propagation to

describe whether there is a direct, unobstructed path between a transmitter and a receiver.

LOS conditions are often characterized by minimal signal attenuation and are desirable
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for many wireless communication systems because they typically result in strong and reli

able signal reception. LOS is commonly encountered in scenarios like pointtopoint mi

crowave links, satellite communication, and optical communication. NLOS, on the other

hand, refers to scenarios where there is no clear, unobstructed path between the transmit

ter and the receiver. In NLOS conditions, obstacles, such as buildings, terrain features,

trees, or other structures, obstruct or scatter the signal path. NLOS conditions often lead to

signal reflection, diffraction, and multiple signal paths (multipath propagation) due to the

scattering of signals off surfaces. NLOS conditions can result in signal attenuation, sig

nal fading, and increased susceptibility to interference, making wireless communication

more challenging. NLOS conditions are commonly encountered in urban environments,

indoor wireless communication, and scenarios where the direct line of sight is blocked.

Understanding whether a wireless communication link is LOS or NLOS is crucial for

designing and optimizing wireless networks and selecting appropriate technologies. In

NLOS scenarios, additional techniques like beamforming, signal processing, and the use

of reflectors (e.g., IRS) may be employed to improve signal quality and reliability. When

LOS condition exists, the wireless signals are transmitted in a straight line between the

transmitter and receiver without any obstruction, the channel coefficients are composed

of LOS and NLOS, the NLOS is still modeled as a complex Gaussian distribution, and the

LOS is modeled as a channel gain which can be modeled as

G[k] =
√
κd−α

B,m[k]

√
R̂

1 + R̂
hLoSB,m[k], (3.6)

T[k] =
√

κd−α
m,k[k]

√
R̂

1 + R̂
hLoSm,k[k] +

√
1

1 + R̂
hNLOSm,k [k], (3.7)
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where d represents the distance, R̂ represents the Rician factor, α represents the path loss

exponent, Ĥeff[k] represents the NLOS component,κ represents the channel gain, H̃k
eff rep

resents the LOS component.
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Chapter 4 METHOD

Our proposed AAEAATTBeamforming model is a comprehensive system consist

ing of several key components: additive attention, AAE (Adversarial Autoencoder), ana

log precoding module, digital precoding module, analog beamforming module, and digital

beamforming module. This system operates as follows: The channel signal originates at

the base station and is transmitted to the IRS, and then reflect to the user equipment (UE).

The UE acts as the receiver, receiving the transmitted signal, and it serves as the input

channel for further processing in Fig. 4.1. A central processing center gathers power

measurements from BS and employs them for two primary purposes: firstly, to determine

which BS is hosting the UE and roughly estimate its distance. Once the hosting cell is

identified, the cell is further divided into threesector sites, each offering 120degree cov

erage. Secondly, these power measurements, primarily from the downlink signal, assist in

identifying the sector to which the UE belongs. This Sector ID identification significantly

reduces the search space for the Angle of Arrival (AoA), allowing the base station to effi

ciently utilize beamforming techniques. By steering the array’s beam in the specific direc

tion corresponding to the UE’s sector, the base station optimizes the achievable data rate

performance for that UE. The input channel data first passes through a additive attention

layer. Additive attention is capable of modeling global relationships between elements in

the input sequence. It doesn’t make strong assumptions about the type of relationships that
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exist, allowing it to capture a wide range of dependencies.This layer plays a pivotal role in

capturing important channel features, particularly focusing on the intricate interdependen

cies in the channel data. Following the additive attention layer, the channel data enters the

AAE model. Here, an encoder maps the input data to a latent space representation. AAE

can generate realistic data samples from a learned latent space. This makes them useful for

tasks like signal processing, and generating new data points that are similar to the training

data. to optimize the model parameters. The learned latent space is instrumental in cap

turing crucial features for the subsequent beamforming processes. The analog precoding

module employs an autoencoder to minimize the latent space and reconstruct it as closely

as possible back to the original input channel signal data. This process entails the transfor

mation of bottleneck features, leading to a substantial enhancement in the accuracy of cap

turing global domain features. The digital precoding module utilizes 2DCNN equipped

with local neuron connectivity, translation invariance, and weight sharing. This configura

tion aids in capturing frequency and spatial features essential for channel precoding while

minimizing interference. Analog beamforming module use Gated Recurrent Unit (GRU)

that have two gating mechanisms, namely the reset gate and the update gate, serve as cru

cial elements for governing the information flow within the cell. These gates provide the

network with the capability to determine which information from the previous time step

to forget, and which to update and retain. The analog beamforming module employs an

GRU to helps in modeling complex temporal dependencies effectively. The update gate in

GRU allows the model to decide howmuch should be updated with new information. This

helps mitigate the vanishing gradient problem by preventing gradients from becoming too

small during backpropagation, significantly enhancing analog beamforming module fea

ture capture accuracy. The digital beamforming module utilizes 1DCNN equipped with
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local neuron connectivity. 1DCNN excel at capturing local patterns and dependencies

within sequential data. They can automatically learn features such as time series analysis.

This configuration aids in capturing frequency and spatial features essential for channel

beamforming while minimizing interference. By knowing which sector the UE belongs

to, the base station can employ beamforming techniques to steer the antenna array’s beam

in the precise direction of the UE. This optimization enhances the achievable data rate and

performance for the UE, providing a more reliable and efficient wireless communication

experience.

Figure 4.1: Scenario of the proposed beamforming design.

Through this hybrid beamforming process in the proposedAAEAATTBeamforming

model, we aim to identify shared relationships and informative patterns within wireless

channel data. Themodel incorporates additive attention andAAE techniques to learn these

valuable patterns, capturing spatial, temporal, and structural information. Consequently,

the model can efficiently optimize precoders, beamformers, and combiners to maximize

the achievable data rate within the constraints of the hardware. The primary goal behind

IRS beamforming design is to optimize the achievable rate Ra at the user over the IRS
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channel, Ra is given by

Ra =
1

K

K∑
k=1

log2
(
1 + P

σ2
n

∥∥FBB[k]FH
BB[k]BBB[k]×

BH
BB[k]FRFFH

RFBRFBH
RFHeff[k]HH

eff[k]Λ[k]−1
∥∥), (4.1)

where Λ[k] = WRFWH
RFWBB[k]WH

BB[k] ∈ CNS×NS corresponds to the noise term in (4.1).

The design of hybrid beamforming can be expressed as an optimization problem given

below

P1: maximize
K∑
k=1

log2(1+ SINRk) (4.2a)

s.t. ∥BRFBBB[k]∥2B ≤ Pmax(SID : 1, 2, 3) (4.2b)

|Θm| = 1,∀m = 1, 2, · · · ,M. (4.2c)

where BRF and WRF are the sets of feasible beamformers and combiners that follow the

restriction of having unitmodulus constraints. Our main goal is to build a more accurate

and efficient beamforming design model by extracting and obtaining multidimensional

relationships and features.

4.1 Additive Attention Mechanism

The model’s primary operations commence with the adept utilization of an additive

attention mechanism, strategically employed to efficiently condense the intricate input

query sequence into a comprehensive global query vector. This critical initial step sets the
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Algorithm 1 Proposed AAEAATTBeamforming model
Input: x, G[k], T[k], Heff[k],Θ.
1: Determines which specific BS is hosting the UE.
2: Provides an estimate of the user’s distance from BS.
3: Cell is further subdivided into threesector sites.
4: Each sector offering 120degree coverage.
5: Identifying the Sector ID.
6: Initialize the channel complex value input Heff[k] .
7: Convert the Heff[k] into a real and imaginary value of Hest[k].
8: Repeat :
9: Channel prediction :
10: Calculate the proper query Q, key K, and value V.
11: Obtain the output Hest

att[k] of the additive attention by using (4.4), (4.6).
12: Compute AAE encoder and decoder parameters.
13: Calculate the Ĥest

AAE of AAE is then constructed fromHest
AAE by using (4.10), (4.11).

14: Attain the best channel prediction matrix Hest
att[k] by using (4.10).

15: Analog precoding :
16: Input the AAE Hest

AAE into the Ĥest
AE by the encoder.

17: Iteratively update the weightW,W′ and bias values b, b′ by using (4.14), (4.15).
18: Calculate the AE difference between H̃est

AE and Ĥest
AE by using (4.15).

19: Obtain the optimal H̃est
AE by using (4.15).

20: Retrieve the best analog precoding matrix F RF by using (4.15).
21: Digital precoding :
22: Input the AE’s latent space output H̄est

AE into 2DCNN by using (4.15).
23: Calculate the 2DCNN difference between H̃est

2D−CNN and the Ĥest
2D−CNN until con

vergence. Seize the best digital precoding matrix FBB.
24: Analog beamforming :
25: Input the 2DCNN output channel signals H̄est

2D−CNN into the GRU by using (4.20).

26: Calculate the GRU difference between H̃est
GRU and Ĥest

GRU until convergence.
27: Digital beamforming :
28: Input the GRU output channel signals H̄est

GRU into the 1DCNN by using (4.22).
29: Calculate the 1DCNN difference between the H̃est

1D−CNN and the Ĥest
1D−CNN until

convergence by using (4.19), (4.20), (4.21), (4.22), (4.23).
30: BS apply beamforming techniques to steer the array’s beam.
Output: y[k], F BB[k], F RF, BRF, BBB[k],WRF, andWBB[k]

foundation for the subsequent intricate interactions that follow, facilitating a sophisticated

analysis of the underlying data. With the groundwork laid by the global query vector, the

system seamlessly transitions into capturing the intricate and nuanced interplay between

the global query vector and attention keys. Through a meticulously orchestrated process

involving elementwise multiplication, the system successfully encapsulates the intricate
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relationships and dependencies within the data, contributing to a comprehensive and holis

tic understanding of the input sequence. Building upon this foundation, the system further

advances its analytical capabilities by meticulously summarizing the keys, leveraging the

powerful additive attentionmechanism to derive a comprehensive and cohesive global key

vector. This critical step marks a significant milestone in the process, allowing the system

to holistically comprehend the intricate network of dependencies and interactions embed

ded within the data. Following the comprehensive analysis of the global key vector, the

system seamlessly progresses into an advanced stage where it further explores the multi

faceted relationships between the global key and attention values. Through a meticulous

interplay of elementwise multiplication and a carefully tailored linear transformation, the

system adeptly cultivates a comprehensive set of global contextaware attention values,

each imbued with a nuanced understanding of the intricate contextual nuances embedded

within the data. Finally, armed with this extensive reservoir of contextaware values, the

system synthesizes a final output by carefully integrating these values with the attention

query, allowing for a comprehensive and nuanced understanding of the underlying data.

This intricate process, designed to streamline computational complexity while effectively

capturing the nuanced contextual intricacies within the input sequence, represents a sig

nificant breakthrough in the field of data analysis and processing. Furthermore, the initial

phase of our comprehensivemodel involves ameticulously designed and orchestrated con

version of the input embedding matrix into a sophisticated set of query, key, and value se

quences, establishing a strong and robust foundation for the subsequent stages of analysis

and comprehension. Their meticulous orchestration and arrangement within the broader

framework of the input matrix play a pivotal role in shaping the subsequent stages of data

processing and analysis. As the system progresses through its intricate operations, the
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data undergoes a transformative process, culminating in the establishment of the attention

query, key, and value matrices, denoted as Q,K,V ∈ RN×d. These matrices represent a

significant advancement in the system’s analytical capabilities, offering a comprehensive

and nuanced understanding of the data’s underlying nuances, intricacies, and complexi

ties. Theirmeticulous construction and careful arrangement of elements within the broader

framework of the data enable the system to delve deeper into the data’s intricate relation

ships, dependencies, and patterns, laying the groundwork for more sophisticated analy

ses and insights. Diving into the specific characteristics of these matrices, we encounter

the comprehensive composition of the attention query matrix Q, meticulously crafted to

encapsulate the critical elements and aspects of the data that require further analysis and

examination. Complementing this, the keymatrixK plays a pivotal role in shaping the sys

tem’s understanding of the data’s underlying relationships and dependencies, contributing

to a comprehensive and nuanced understanding of the data’s intricacies. Simultaneously,

the value matrix V offers a comprehensive and nuanced perspective, encapsulating the

critical elements and nuances embedded within the data, facilitating a comprehensive and

holistic understanding of the data’s underlying patterns, trends, and dependencies. Col

lectively, the attention query, key, and value matrices play a critical role in shaping the

system’s understanding of the data, laying the groundwork for more sophisticated analy

ses and insights in the subsequent stages of the data processing pipeline. Embarking on an

intricate journey through the intricate mechanisms of data processing, we encounter the

concept of additive attention—an instrumental mechanism renowned for its unparalleled

ability to efficiently summarize critical information within a sequence, all while maintain

ing linear computational complexity. This pivotal mechanism serves as a cornerstone for

the subsequent stages of data analysis, offering a comprehensive and nuanced perspective
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on the underlying patterns, trends, and relationships embedded within the data. In the ini

tial phases of data processing, the system deftly employs the additive attention mechanism

to condense the complex and multifaceted query matrix into a concise and informative

global query vector, denoted as q ∈ Rd. This global query vector serves as a focal point,

encapsulating the comprehensive contextual information embedded within the broader at

tention query. By carefully summarizing the critical components of the attention query,

the global query vector lays the groundwork for more sophisticated analyses and insights,

enabling the system to glean valuable and actionable information from the intricate data at

hand. As we delve deeper into the intricacies of the system’s operations, we uncover the

intricate computational processes that underlie the determination of the attention weight

αi for the ith query vector. This intricate computation involves a meticulous analysis of

the contextual relevance and significance of each component within the attention query,

culminating in the determination of the attention weight—a critical metric that signifies

the relative importance and relevance of each component within the broader context of

the data. This process of determining the attention weight serves as a pivotal step in the

system’s quest to distill critical insights and glean valuable information from the complex

and multifaceted data. And, the attention weight αi can be written as:

αi =
exp(wT

q qi/
√
d)∑N

j=1 exp(wT
q qj/

√
d)
, (4.3)

where N denote the sequence length, wq ∈ Rd is a parameter vector and d denote the

hidden dimension. The global attention query can be written as:

q =
N∑
i=1

αiqi. (4.4)
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Subsequently, our analytical journey propels us into the realm of indepth exploration,

where we systematically leverage the power of elementwise product operations to metic

ulously dissect and model the intricate interplay between the globally significant query

vector and individual key vectors. Harnessing the power of this analytical framework, we

embark on a meticulous exploration of the data, carefully applying mathematical princi

ples and methodologies to scrutinize the interplay between the global query vector and

individual key vectors. This exploration culminates in the formation of a global context

aware key matrix, a critical artifact that encapsulates and synthesizes the dynamic and

multifaceted relationships embedded within the data. Denoted as pi = qki, this matrix

serves as a cornerstone artifact, offering profound insights into the data’s intricate nuances

and facilitating amore comprehensive and nuanced understanding of the complex relation

ships and dependencies that underlie the data. Moreover, to streamline and optimize our

analytical process, we judiciously leverage the efficiency and computational advantages

afforded by the additive attention mechanism. This mechanism plays a crucial role in dis

tilling and summarizing the key insights embedded within the global contextaware key

matrix, offering a concise and comprehensive overview of the data’s overarching patterns

and relationships. The process of deriving the additive attention weight for the ith vector

involves a meticulous and calibrated calculation, characterized by a profound understand

ing of the data’s underlying patterns and dependencies. This intricate computation culmi

nates in the determination of the additive attention weight, serving as a critical artifact that

underpins the data’s overarching narrative and offers profound insights into its intricate

tapestry. The additive attention weight βi can be written as:

βi =
exp(wT

k pi/
√
d)∑N

j=1 exp(wT
k pj/

√
d)
, (4.5)
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where wk ∈ Rd is the parameter vector. The global key vector k ∈ Rd can be written as:

k =
N∑
i=1

βipi. (4.6)

In the final phase of our data processing journey, we delve into the intricate nuances

of modeling the dynamic and multifaceted interaction between the attention value matrix

and the globally significant key vector—an endeavor that significantly bolsters and am

plifies our context modeling efforts, enabling us to gain a comprehensive dependencies

embedded within the data. To facilitate a meticulous exploration of this dynamic interac

tion, we adopt a strategic and methodical approach, mirroring the principles and method

ologies employed during the querykey interaction modeling phase. Leveraging the pro

found insights and valuable lessons gleaned from our previous endeavors, we embark on

a journey through the complex web of relationships and dependencies that underscore the

data, unveiling critical patterns and trends that underlie the data’s intricate tapestry. As we

traverse this intricate web, we meticulously engage in a series of elementwise product op

erations, meticulously applying mathematical principles and methodologies to dissect and

analyze the complex interplay between the global key vector and individual value vectors.

Through this meticulous analysis, we uncover a wealth of information and insights, each

contributing to a more comprehensive and nuanced understanding of the data’s underly

ing patterns and relationships. The culmination of this meticulous exploration yields the

keyvalue interaction vector, denoted as ui = kvi, a critical artifact that encapsulates the

dynamic and multifaceted relationship between the globally significant key vector and the

individual value vectors. This interaction vector serves as a key artifact, offering profound

insights into the data’s intricate nuances and facilitating a more comprehensive and nu

anced understanding of the complex relationships and dependencies that underlie the data.
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Moreover, to further enhance our understanding and uncover deeper insights, we subject

each keyvalue interaction vector to a transformative journey through a carefully cali

brated linear transformation layer. This transformative journey yields a resulting matrix,

which encapsulates the hidden representation of each keyvalue interaction vector, offer

ing profound insights and nuanced perspectives that contribute to a more comprehensive

and nuanced understanding of the intricate relationships embedded within the data.

Figure 4.2: The architecture of the proposed adversarial autoencoder design.

4.2 Adversarial Autoencoder

Within the intricate framework of adversarial autoencoders, the fundamental chal

lenge of data generation is elegantly reframed as an intricate, highstakes minimax adver

sarial game. Central to this conceptualization are two critical players: the discriminator
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D and the generator G, each wielding unique capabilities and roles within the complex

framework of data generation and synthesis. Together, these pivotal networks engage in

a dynamic and nuanced dance, each striving to outmaneuver the other in a relentless pur

suit of data generation excellence and fidelity. Embarking on this transformative journey,

the generator network assumes the mantle of an innovative architect, drawing upon a so

phisticated function G(z) to seamlessly bridge the gap between input samples Hest
AAE and

a carefully curated ensemble of samples sourced from a carefully calibrated prior distri

bution p(z). In doing so, the generator deftly orchestrates a delicate symphony, lever

aging its strategic understanding of data structures and distributions to craft an intricate

and nuanced tapestry of data points that mirror and echo the complex dynamics embed

ded within the original data space. In stark contrast, the discriminator D(z) assumes a

more discerning role, adroitly sifting through a diverse array of data samples to discern

the subtle, yet crucial, nuances that demarcate the authentic data distribution from the

meticulously crafted ensemble generated by our ingenious generative model. Armed with

a sophisticated understanding of the data’s underlying intricacies and patterns, the dis

criminator brings to bear its discerning gaze, meticulously scrutinizing each data point

and discerning the minute markers and distinctive traits that set the actual data distribu

tion apart from the simulated ensemble of data samples meticulously constructed by the

generator. In this highstakes, cutthroat adversarial game, the two networks engage in a

relentless duel of wits and strategies, each seeking to outmaneuver and outsmart the other

in a relentless pursuit of data generation excellence and fidelity. As the game unfolds, the

generator and discriminator deftly navigate the complex and multidimensional data land

scape, each striving to assert its dominance and prowess in the pursuit of data generation

perfection. In our AAE model, the overarching objective of the enigmatic function G(z)
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assumes a crucial and pivotal role, serving as a cunning and shrewd architect meticulously

orchestrating a symphony of data points designed to confound and beguile the discerning

discriminator. As this intricate interplay between generator and discriminator unfurls, a

mesmerizing adversarial game of epic proportions ensues, each network steadfastly vying

for the upper hand and seeking to assert its dominance in the realm of data generation and

synthesis. Central to the foundation of our AAE model lie the twin pillars of the encoder

and decoder network, intricately woven together to form the backbone of our sophisticated

autoencoder framework. Within this meticulously crafted structure, the encoder operates

as a perceptive and discerning observer, deftly extracting the subtle nuances and underly

ing patterns embedded within the data fabric and distilling them into a refined and compact

representation. On the other hand, the decoder assumes the role of a skilled artisan, adeptly

leveraging its strategic understanding of the latent space to reconstruct and reimagine the

data points in a faithful and accurate manner, meticulously breathing life into the latent

representations and weaving them into a coherent and immersive narrative that closely

mirrors the original data distribution. In a masterful stroke of innovation and ingenuity,

we seamlessly integrate the output Hest
att from the additive attention module into the input

Hest
AAE of the AAEmodule, forging a seamless and cohesive bridge between the two pivotal

components. This strategic integration ensures a harmonious synergy between the vari

ous elements of our model, facilitating a smooth and fluid transition of data points across

the intricate and dynamic landscape of the autoencoder framework. As a result, the AAE

model emerges as a powerful and versatile tool, capable of generating data samples that

seamlessly mimic and reflect the complex dynamics and underlying patterns embedded

within the original data distribution. For the input Hest
AAE, and the encoder can be written
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as

C = Fenc(Hest
AAE), (4.7)

where C is the codeword. Then, the decoder transforms the code back into the raw input

data, and the decoder of a autoencoder can be written as

Ĥest
AAE = Fdec(C). (4.8)

Further analysis of the solutions to the minmax adversarial game reveals insights

into the dynamics of the training process, shedding light on the convergence properties of

GAN and their stability during training is represented as:

min
G

max
D

EHest
AAE∼pd [logD(Hest

AAE)] + Ez∼p(z)[log(1−D(G(z))]. (4.9)

Our AAE network unfolds as a captivating tale of interwoven complexities, where the

very essence of an autoencoder undergoes a transformative metamorphosis, emerging as

a powerful and dynamic generative model that transcends the boundaries of traditional

data synthesis and reconstruction. At the heart of this metamorphosis lies the ingenious

integration of an adversarial process seamlessly interwoven into the intricate fabric of the

autoencoder framework, breathing life into a novel and unprecedented paradigm of data

generation and representation. Through the dexterous and artful orchestration of a care

fully orchestrated interplay between the traditional reconstruction error criterion and an

adversarial training criterion inspired by the groundbreaking concepts of GAN, the AAE

model becomes imbued with an unparalleled capacity to not only faithfully reconstruct

the input data but also to imbue it with a unique and compelling perspective, seamlessly
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fusing the essence of the original data distribution with the nuanced intricacies of an ar

bitrary prior distribution. Within this transformative framework, the latent code vector z

assumes a pivotal and central role, serving as the conduit through which the essence of the

input data is distilled and channeled into a refined and distilled representation that encap

sulates the very essence and intricacies of the underlying data distribution. Additionally,

the encoder q(z|Hest
AAE), traditionally entrusted with the solemn duty of encoding input data

within the confines of an autoencoder framework, now assumes a dual and multifaceted

role, deftly navigating the intricate interplay between data representation and generation

within the broader context of the adversarial framework. It is within this intricate inter

play and seamless fusion of diverse and multifaceted elements that the AAE model finds

its true essence and purpose, transcending the boundaries of traditional data synthesis and

representation, and ushering in a new era of data generation and reconstruction that seam

lessly marries the nuances of the original data distribution with the boundless creativity

and imagination of the generative model. And, the latent code vector z assumes a pivotal

role as it serves as the intermediary representation that encapsulates the essential charac

teristics of the input Hest
AAE. This latent space representation acts as the bridge between

the input data domain and the generative model’s output, enabling the AAE to effectively

reconstruct the input data while maintaining the underlying data distribution pd(Hest
AAE).

Furthermore, the encoder q(z|Hest
AAE), which typically plays the role of encoding input

data in an AE framework, takes on a dual role here. The encoder’s critical role within the

AAE is reflected in its ability to facilitate the establishment of the aggregate posterior dis

tribution q(z), which represents the synthesized latent code vectors corresponding to the

input data distribution. This aggregate posterior distribution embodies the amalgamation

of the encoded latent space representations and serves as the basis for guiding the genera
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tive process toward the creation of synthetic data samples that align with the desired data

distribution properties can be written as:

q(z) =
∫
Hest
AAE

q(z|Hest
AAE)pd(Hest

AAE)d(Hest
AAE). (4.10)

Within the intricate framework of the AAE, the prior distribution p(z) assumes a piv

otal role as a guiding principle for the latent code vector z. This prior distribution serves as

a critical anchor, imparting structure and coherence to the generative process by delineat

ing the overarching characteristics that the synthesized latent code vectors should embody.

By enforcing this prior distribution on the latent space, the AAE framework ensures that

the generated data samples maintain fidelity to the predefined statistical properties and

structural nuances, thereby facilitating the creation of synthetic data that accurately repre

sents the underlying data distribution. The role of the encoder function q(z|Hest
AAE) within

the generatorG is multifaceted and multifunctional. Acting as the cornerstone of the gen

erative model, the encoder function assumes the critical responsibility of extracting and

condensing the essential information from the input data, thereby enabling the accurate

representation and synthesis of the latent code vectors. Through its intricate encoding

process, the encoder function captures the salient features and key attributes of the input

data, facilitating the translation of this information into the latent space representation. By

establishing a robust and coherent connection between the input data distribution and the

synthesized latent code vectors, the encoder function ensures that the generative process

remains aligned with the desired data distribution properties, thereby enabling the AAE to

produce synthetic data samples that faithfully mirror the statistical and structural essence

of the original data. The dynamic interplay between the prior distribution, the latent code

vector, and the encoder function within the AAE framework underscores the intricate na
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Table 4.1: COMPUTATIONAL COMPLEXITY OF THE DIFFERENT RESEARCH
METHODS

Algorithm Computational complexity

Proposed AAEAATTBeamforming O(4di(NtNr(4(NtNr + 1)(4(NtNr · 4(NtNr))

+(di((NtNr)NtNr))NtNr
∑Lc

ϵ=1Nϵ−1Nϵ)

DAECNNATTBeamforming O(4d2i (NtNr(4(NtNr + 1)(4(NtNr · 4(NtNr))

+(d2i (4NtNr)NtNr)
∑Lc

ϵ=1 Nϵ−1Nϵ)

DAECNNBeamforming O(4(NtNr(4(NtNr + 1)(4(NtNr · 4(NtNr))

4(NtNr) +NtNr
∑Lc

ϵ=1Nϵ−1Nϵ)

DAEBeamforming O(((4NtNr)NtNr((4NtNr + 1)((4NtNr · (4NtNr))

LSTMDAEBeamforming O(4(NtNr(4(NtNr + 1)(4(NtNr · 4(NtNr))
4(NtNr) + (Td2h(NtNr) + Tdhdi(NtNr)))

T is sequence length, Nϵ−1 represent the numbers of input feature of the ϵ th layer, Nϵ

represent the numbers of output feature of the ϵ th layer, di is input dimensionality, Lc is
number of convolutional layers, and dh is hidden state.

ture of the generative process, highlighting the significance of maintaining fidelity to the

underlying data distribution properties while synthesizing coherent and realistic data sam

ples. Hence, the intricate optimization process of the encoder revolves around the careful

calibration and finetuning of the latent code vector z to align with the distribution q(z),

strategically confounding the discriminating capabilities of the discriminatorD. Through

this deliberate and nuanced interplay, the encoder endeavors to synthesize latent code

vectors that strategically blur the distinction between the desired distribution q(z) and the

expected distribution p(z) enforced by the discriminator D. This adversarial interplay

forms the crux of the AAE’s optimization process, ultimately manifesting as a minmax

game of optimization objectives can be written as:

min
G

max
D

Ez∼q(z|Hest
AAE)

[logD(z)] + Ezprior∼p(zprior)[log(1−D(G(z))]. (4.11)
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4.3 Analog precoding

The analog precoding in our previous study used a general neural network model[62]

and successive convex approximation (SCA)[28] that is more difficult to capture whether

the features reconstruct the original signals. Therefore, we use autoencoder to reconstruct

the latent space back to the input channel signal data as much as possible, and extract

from bottleneck features, so that our analog precoding module can improve the accuracy

of capturing the features. We can use this upper bound to optimize by using the following

Jensen’s inequality, and the achievable rate is represented by

Ra
(a)

≤ 1

K

K∑
k=1

log2

(∣∣∣∣∣1 + P

σ2
n

FBB[k]FH
BB[k]BBB[k]BH

BB[k]×

FRFFH
RFBRFBH

RFHeff[k]HH
eff[k]WRFWH

RFWBB[k]WH
BB[k]

∣∣∣∣∣
)

(b)
=

1

K

K∑
k=1

log2

(∣∣∣∣∣1 + PN

σ2
n

FBB[k]FH
BB[k]BBB[k]BH

BB[k]×

FRFFH
RFBRFBH

RFHeff[k]HH
eff[k]WRFWH

RFWBB[k]WH
BB[k]

∣∣∣∣∣
)

(c)

≤ log2

(∣∣∣∣∣INRF +
PN

σ2
n

FBB[k]FH
BB[k]BBB[k]BH

BB[k]×

FRFFH
RFBRFBH

RF

K∑
k=1

Heff[k]HH
eff[k]WRFWH

RFWBB[k]WH
BB[k]

∣∣∣∣∣
)
, (4.12)

Then, the analog precoding matrix can be written as

FRF =
1√
Nk

diag
(
ejΘ
)
, (4.13)
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Training on the reconstruction loss allows learning useful properties of the data in an un

supervised manner. We put the output Ĥest
AAE of the AAE module into the input Ĥest

AE of

the AE module. Source signals Ĥest
AE ∈ Rn and maps it to latent space ZAE ∈ Rm, and the

encoder function generates a latent space containing the code for the source signal. The

decoder reconstructs the input according to the latent space. The encoder transforms the

input data into a lower dimensional representation can be written as

ZAE = σ
(
WĤest

AE + b
)
, (4.14)

where b represent the bias of encoder, σ represent the activation function of encoder, and

W represent the weight of encoder. The decoder converts the representation of the code

back to the original input data can be written as

H̃est
AE = σ′ (W′ZAE + b′) , (4.15)

where b′ represent the bias of decoder, σ′ represent the activation function of decoder,

andW′ represent the weight of decoder. The training process of an autoencoder involves

minimizing the reconstruction error, and it is common to use the squared difference of the

reconstruction error (e.g., MSE) as the loss function
∥∥∥Ĥest

AE − H̃est
AE

∥∥∥2 and optimize it using
a backpropagation algorithm. Then, we put the output H̃est

AE of theAEmodule into the input

Ĥest
AE of the AE module for the MSE operation. In the analog precoding matrix, we pass

the output channel signal from AAE to AE to extract the real and imaginary components

of the channel signal consisting of the phases of the elements in FRF. Then we can get the

optimal digital precoding matrix FRF.
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4.4 Digital precoding

The previously studied digital precoding uses the autoencoder model[16] and alter

nating optimization (AO) Optimization[60] that is more difficult to capture features in the

frequency and spatial domains. As CNNs have the advantages of local neuron connectiv

ity and weight sharing, they can avoid overfitting and do not learn the same features under

different signal processing, and at the same time improve the computational efficiency

and accuracy. In terms of channel precoding, CNN has better prediction and recognition

ability than other general neural networks. Therefore, we use CNN to convert the in

put channel signal data into 2D Fourier transform, and utilize the characteristics of CNN

with local neuron connections, translation invariant, and weight sharing to capture the fre

quency and spatial domain characteristics of the channel precoding, not only the front and

back direction of the neighboring channel data, but also the up and down, left and right

direction of the neighboring channel data, so as to enable our digital precoding module to

have a better prediction and recognition ability.

The twostage hybrid structure combines the benefits of analog phase shifters and

flexible digital processing. We put the output H̃est
AE of the AE module into the input Ĥest

CNN

of the CNNmodule, and we put the output H̃est
CNN of the CNNmodule into the input of the

CNN module for the MSE operation. Then, the digital precoding matrix can be written as

FBB[k] =
√
Pt

F̃ BB[k]∥∥∥FRFF̃ BB[k]
∥∥∥
F

. (4.16)

In the digital precoding matrix, we first pass the output channel signals from the AE

to the CNN model to obtain the real and imaginary components of the channel signals
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composed of the phases of the elements in the FBB[k]. Then we can get the optimal dig

ital precoding matrix FBB[k]. These attributes enable 2DCNN to efficiently capture the

intricate frequency and spatial domain characteristics essential for effective channel pre

coding. Moreover, they help in reducing interference, enhancing both the computational

efficiency and the accuracy of the precoding process.

4.5 Analog beamforming

Figure 4.3: The architecture of GRU and LSTM.

The analog beamforming in our previous study used the autoencoder model[16] and

alternating optimization (AO) Optimization[60] that is more difficult to capture whether

the features reconstruct the original signals. Therefore, we use autoencoder to reconstruct

the latent space back to the input channel signal data as much as possible, and extract from

the bottleneck features, so that our analog beamforming module can improve the accuracy

of capturing the features.

In the realm of deep learning, recurrent neural networks (RNNs) have emerged as
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powerful tools for capturing temporal dependencies and patterns in sequential data. How

ever, traditional RNNs often grapple with the challenge of the vanishing gradient problem,

where the gradients propagated backward through time tend to dwindle, leading to difficul

ties in learning longrange dependencies. This limitation has motivated the development

of more sophisticated RNN variants, such Fig. 4.3 (a) Gated Recurrent Unit (GRU) is a

simplified variation of the Fig. 4.3 (b) LSTM (Long ShortTermMemory) model. Fig. 4.3

(a) highlights the GRU, a more streamlined variation of the LSTM. The GRU was specif

ically devised to tackle the vanishing gradient problem while maintaining the efficiency

of the model. And, the GRU strikes a balance between computational simplicity and ef

fective information retention, making it a popular choice for modeling sequential data.

The introduction of GRU has significantly enriched the landscape of RNN architectures,

offering a practical and efficient solution for addressing longrange dependencies. Its

simplified design, coupled with its capacity to effectively capture temporal patterns, has

solidified its position as a crucial component in various applications. As such, the GRU

continues to play a vital role in advancing the capabilities of RNNs, paving the way for

more sophisticated and intelligent sequence modeling techniques. Fig. 4.3 (b) illustrates

the LSTM model, renowned for its ability to effectively handle longrange dependencies

in sequences. This mechanism allows the LSTM to retain essential information over ex

tended time periods, enabling it to capture and utilize valuable longterm dependencies

in the data. GRU offer several advantages, which have contributed to their popularity in

various sequence modeling tasks. GRU are easier to train compared to standard RNNs,

such as vanilla RNNs. This is because they use gating mechanisms that allow them to

capture longrange dependencies without suffering from the vanishing gradient problem

to the same extent. GRU have gained prominence in the realm of deep learning for their
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unique architecture, characterized by two essential gating mechanisms: the reset gate and

the update gate. These gating elements play a crucial role in regulating the flow of in

formation within the GRU cell, allowing the network to make informed decisions about

the handling of temporal dependencies. The reset gate, a fundamental component of the

GRU, serves as a mechanism for controlling the retention or dismissal of information

from the previous time step. By selectively resetting certain elements of the hidden state,

the reset gate empowers the network to disregard obsolete or irrelevant information, thus

enabling it to focus on the most relevant and significant temporal patterns within the se

quence. This ability to effectively reset and filter out outdated information resembles the

initial processing of the first symbol in an input sequence, facilitating the initialization of

the network’s memory for subsequent inputs. Notably, units characterized by shortterm

dependencies are likely to exhibit active reset gates, enabling them to focus on recent infor

mation, whereas units characterized by longterm dependencies are more likely to display

active update gates, enabling them to retain crucial historical context and patterns. The in

terplay between the reset and update gates in the GRU architecture serves as a mechanism

for the network to dynamically adjust its memory and information processing, ensuring the

effective modeling of temporal sequences with varying degrees of complexity and length.

This dynamic adaptability and sophisticated control over information flow have solidified

the GRU’s position as a versatile and powerful tool for sequence modeling tasks across di

verse domains. This gating helps in modeling complex temporal dependencies effectively.

The GRU architecture serves as a pivotal component that grants the model the flexibility

to determine the optimal proportion that should be updated with new information. This

finegrained control mechanism enables the GRU to adapt its memory utilization based

on the specific characteristics of the input sequence and the inherent temporal dependen
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cies present within it. This nuanced decisionmaking process ensures that the model re

mains responsive to both immediate changes and longerterm trends, thereby facilitating

the accurate capture and representation of complex temporal relationships. In essence, the

update gate functions as a dynamic filter, allowing the GRU to selectively determine the

relevance and significance. The gate’s adaptive nature empowers the network to adjust its

memory retention and information integration based on the specific requirements of the

task at hand, facilitating robust and effective sequence modeling across a diverse array of

applications and domains. The sophisticated control provided by the update gate within

theGRU architecture not onlymitigates the challenges associatedwith vanishing gradients

but also ensures that the model can effectively capture intricate temporal dependencies.

This helps mitigate the vanishing gradient problem by preventing gradients from becom

ing too small during backpropagation. GRU are computationally more efficient than some

other RNN variants, such as LSTM, while still providing competitive performance. This

efficiency is particularly valuable in applications where computational resources are lim

ited. GRU often perform well on tasks involving short to mediumlength sequences. They

can capture dependencies within these sequences without excessive computational over

head. The gating mechanisms in GRU can help reduce overfitting in certain scenarios by

allowing the model to control the flow of information and avoid memorizing noise in the

training data. GRU have a simpler architecture compared to LSTMs, which makes them

easier to understand, implement, and tune. In its elegant and ingenious design, the GRU

seamlessly amalgamates the traditionally distinct forget and input gates into a singular

and unified ”update gate,” while simultaneously introducing the novel and impactful con

cept of the ”reset gate.” This unique amalgamation of key gating mechanisms imbues the

GRU with a level of sophistication and flexibility that is not only unparalleled but also
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increasingly sought after in contemporary research and applications. Furthermore, the ac

tivation hj
t of the GRU at a given time step t unfolds as a delicately orchestrated symphony

of intricate and nuanced computations, embodying a seamless and harmonious fusion of

the previous activation hj
t−1 and the candidate activation h̃j

t . This elegant and profound

fusion can be conceptualized as a linear interpolation, a delicate dance between the tem

poral continuity and dynamic evolution of the underlying data, seamlessly blending the

past and present into a coherent and unified representation that captures the essence of the

data’s underlying temporal dynamics. It is within this delicate interplay of unified gating

mechanisms and seamless temporal interpolations that the GRU distinguishes itself, tran

scending the conventional boundaries of standard LSTMmodels and emerging as a beacon

of simplicity, efficiency, and remarkable performance. In the everevolving landscape of

recurrent neural networks, the GRU’s simplicity belies its remarkable power, standing as

a testament to the relentless pursuit of more effective, streamlined, and versatile models

that push the boundaries of what is possible in the realm of sequential data analysis and

processing.

hj
t = (1− zjt )h

j
t−1 + zjt h̃

j
t (4.17)

The update gate zjt have a prominent place in regulating the extent to which the unit

updates its activation.

zjt = σ(WzĤest
GRU + Uzht−1)

j. (4.18)

The candidate activation h̃j
t is computed in a manner similar to the update gate:

h̃j
t = tanh(W Ĥest

GRU + U(rtht−1))
j, (4.19)
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U , W represent weight matrices from the input layer to the hidden layer, and inside

the hidden layer. σ represents the sigmoid function, tanh represents the hyperbolic tan

gent function. In the realm of GRU, the concept of the reset gate rjt holds a position of

critical importance. Serving as a central component of the GRU’s intricate architecture,

the reset gate’s role is multifaceted, and its activation state profoundly influences the in

formation processing dynamics within the unit. When the reset gate is in an inactive state,

it effectively enables the unit to selectively discard or ignore information from the past,

thus facilitating a mechanism akin to the unit’s initial processing of the very first sym

bol within an input sequence. This intricate interplay of gate activation and information

retention lies at the heart of the GRU’s ability to adaptively process sequential data, en

abling it to effectively capture the temporal dynamics and dependencies present within

the data. The computation of the reset gate’s activation involves a carefully orchestrated

series of calculations that intricately weigh the relevance and significance of past informa

tion. Through a meticulously designed computational formula, the reset gate is endowed

with the capability to selectively control the flow of information, allowing the GRU to

dynamically adjust its processing based on the current context and the specific temporal

dynamics inherent in the data. This delicate dance of gate activation and information pro

cessing forms the foundation of the GRU’s adaptability, enabling it to effectively capture

and leverage the intricate temporal dependencies present within sequential data. The reset

gate can be written as:

rjt = σ(WrĤest
GRU + Urht−1)

j (4.20)

The update gate z within the framework of GRU assumes a pivotal role in regu

lating the balance between the influence of past information and the integration of new

information within the current state. As a dynamic control mechanism, the update gate
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orchestrates the intricate interplay between the existing state and the influx of new in

formation, thereby dictating the degree to which historical data should contribute to the

present state. This mechanism is crucial in enabling the GRU to effectively capture and

model the temporal dynamics inherent in sequential data. Notably, the behavior of the

update gate reveals essential insights into the nature of temporal dependencies within the

data. In instances where shortterm dependencies hold sway, the GRU tends to activate

the reset gates r, thereby signaling the unit’s focus on leveraging recent information to

inform its current state. Conversely, when the unit encounters longterm dependencies

that necessitate a more comprehensive understanding of the data’s historical context, the

update gate z assumes a more prominent role, guiding the unit in integrating pertinent past

information to shape its current state effectively. This intricate orchestration of gate dy

namics underscores the GRU’s capacity to flexibly adapt to diverse data patterns, allowing

it to strike an optimal balance between capturing shortterm nuances and comprehending

broader, longterm trends. By modulating the flow of information through the interplay

of update and reset gates, the GRU emerges as a powerful tool for modeling complex

temporal dependencies, offering an invaluable asset across a wide spectrum of applica

tions, including natural language processing, speech recognition, and time series analysis,

among others. Then, the analog beamforming matrix can be written as

BRF =
1√
Nt

e
j∡
([

Heff(:,1:NRF)[k]
])

, (4.21)

4.6 Digital beamforming

The previously studied digital beamforming uses the autoencoder model[16] and al

ternating optimization (AO) Optimization[60] that is more difficult to capture features in
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the frequency and spatial domains. 1DCNNs excel at capturing local patterns and depen

dencies within sequential data. They can automatically learn features such as time series

analysis, so as to enable our digital beamforming module to have better antiinterference

ability.

We put the output H̃est
GRU of the GRU module into the input Ĥest

1D−CNN of the CNN

module, and we put the output H̃est
1D−CNN of the 1DCNN module into the input of the

1DCNN module for the MSE operation. Then, the digital beamforming matrix can be

written as

BBB[k] =
√

Pt
B̃BB[k]∥∥BRFB̃BB[k]

∥∥
F

. (4.22)

Therefore, the overall loss function can be written as

Loss =
∥∥∥Ĥest

AAE − H̃est
AAE

∥∥∥2
AAE

+
∥∥∥Ĥest

AE − H̃est
AE

∥∥∥2
AE

+
∥∥∥Ĥest

2D−CNN − H̃est
2D−CNN

∥∥∥2
2D−CNN

+

∥∥∥Ĥest
GRU − H̃est

GRU

∥∥∥2
GRU

+
∥∥∥Ĥest

1D−CNN − H̃est
1D−CNN

∥∥∥2
1D−CNN

. (4.23)

In the digital beamforming matrix, we first pass the output channel signals from the

GRU to the 1DCNN model to obtain the real and imaginary components of the channel

signals composed of the phases of the elements in the BBB[k]. Then we can get the optimal

digital beamforming matrix BBB[k].
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4.7 Computational Complexity Analysis

Table 4.1 provides a comprehensive comparison of the computational complexities

associated with different models. Notably, our proposed VAECATTBeamformingmodel

exhibits significantly lower complexitywhen contrastedwith the LSTMDAEBeamforming

model. Its computational demands are on par with the DAEBeamforming model. In

terms of overall system performance, VAECATTBeamforming outperforms the com

pared models concerning Mean Squared Error (MSE). It does possess a slightly higher

complexity compared to DAEBeamforming, DAECNNBeamforming, and DAECNN

ATTBeamforming. However, it remains considerably more efficient when contrasted

with the complexities of DAECNNBeamforming, DAECNNATTBeamforming, and

DAEBeamforming approaches. In essence, our proposed model strikes a wellbalanced

equilibrium between robust performance and reasonable computational complexity.

Furthermore, we conducted inference time measurements for the considered mod

els, resulting in the following times: 0.39 seconds for VAECATTBeamforming, 0.26

seconds for DAEBeamforming, 0.43 seconds for LSTMDAEBeamforming, 0.34 sec

onds for DAECNNBeamforming, and 0.37 seconds for DAECNNATTBeamforming.

Importantly, the variability in the inference times is notably low. Additionally, it’s impor

tant to highlight that the parallelization capabilities of GPUs significantly accelerate the

execution time and processing speed of deep learning models.
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Chapter 5 Results

In the scope of this thesis, our investigation delves into the intricate dynamics of the

MIMO system, investigating the influence of different system parameters on the overall

performance and effectiveness of the entire configuration. To provide a comprehensive

analysis, we meticulously set up the experimental environment with a carefully chosen

array of system parameters, ensuring a robust and reliable framework for our evaluations.

The system parameters were meticulously tailored to capture a diverse range of scenarios,

including the numbers of transmitting antennasNt, which were meticulously varied across

64 and 32, alongside the numbers of receiving antennas Nr, selected as 32 and 16. Addi

tionally, the propagation paths L were systematically manipulated, spanning 1, 2, 3, and

4, in order to capture the multifaceted nature of realworld propagation scenarios. The ro

bustness and consistency of our findings were ensured through the use of a wellcalibrated

batch size of 128, coupled with a carefully selected learning rate of 0.0001. Furthermore,

a meticulous training strategy encompassing 200 epochs was employed to meticulously

explore and dissect the various intricacies of theMIMO channel. Our hardware configura

tion, comprising the highperformance Intel Core i911900K CPU processor operating at

an impressive 5.30 GHz, supported by a substantial 64 GB of RAM, and the stateofthe

art NVIDIA® GeForce RTX™ 3080Ti GPU equipped with 12 GB GDDR6X memory,

provided the essential computational power necessary for conducting the rigorous simu
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lations and analyses. The entire experimental setup was meticulously orchestrated within

the Linux Mint version 21.2 environment, ensuring a stable and reliable operating sys

tem conducive to robust research endeavors. In order to generate a comprehensive and

diverse dataset, a total of 50,000 MIMO channel samples were meticulously synthesized,

guaranteeing a rich and varied pool of data for indepth analysis. Python 3.9 served as

the primary programming framework for implementing all the models, with TensorFlow

2.8.0 serving as the foundational tool for training and analysis. The Adam optimizer,

known for its robust and efficient performance in various machine learning tasks, was

carefully selected as the primary optimization algorithm, further enhancing the reliabil

ity and effectiveness of our training procedures. The system parameters are specified

in Table 5.1. We show comparison results of the proposed AAEAATTBeamforming,

DAEBeamforming, LSTMDAEBeamforming, DAECNNBeamforming, and DAE

CNNATTBeamforming. These are expressed as follows:

1) Proposed AAEAATTBeamforming: uses the DAE similar to [16], and uses the

additive attention mechanism to enhance the capability of the beamforming design.

2) DAEBeamforming: uses the DAE similar to [16] enhance the capability of the

beamforming design.

3) DAECNNBeamforming: uses CNN similar to [23] with the DAE to enhance the

capability of the beamforming design.

4) DAECNNATTBeamforming: uses a CNN with the DAE, and utilizes the ad

ditive attention method similar to [37] to enhance the performance of the beamforming

design.

5) LSTMDAEBeamforming: uses a LSTM model similar to [54] to retrieve pre
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Table 5.1: SIMULATION PARAMETERS

Parameters Value
Carrier frequency (fc) 28 GHz
Paths ( Lt = Lg = L ) 4
Learning rate α 0.0001

Transmitter antennas (Nb) 32, 64
Angle (θl) U(−π/2, π/2)

Receiver antennas (Nu) 16, 32
Subcarriers 128

IRS reflecting elements (M ) 32, 64
Bandwidth (fs) 2 GHz

(a) (L=1, Nt=32, Nr=16). (b) (L=1, Nt=64, Nr=32).

Figure 5.1: Comparison of MSE versus SNR between different methods without beam
forming.

vious channel information sequences and then utilize DAE to improve the efficiency of

beamforming designs.

5.1 The Investigation of System Parameters

In the evaluation of the IRSassisted beamforming model within a mmWave MIMO

OFDM system under different SNR conditions, several noteworthy observations can be

made in Fig.5.1a and Fig.5.1b: DAECNNATT and DAECNN models exhibit subopti
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(a) (L=1, Nt=32, Nr =16). (b) (L=1, Nt=64, Nr=32).

Figure 5.2: Comparison of MSE versus SNR between different methods with beamform
ing.

(a) (L=1, Nt=32, Nr=16). (b) (L=1, Nt=64, Nr=32).

Figure 5.3: Comparison of achievable rate versus SNR between different methods without
beamforming.
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mal performance compared to the AAEAATT model. This discrepancy is attributed to

their smaller receptive fields, which hinder their ability to capture global domain features

effectively under severe noise conditions. DAE outperforms the LSTMDAE model at

high SNR due to its superior noise reduction capabilities under such conditions. How

ever, LSTMDAE outperforms the DAE model at low SNR due to LSTM’s capacity to

capture dependencies between channels. As SNR increases, the proposed AAEAATT

model consistently achieves the lowest MSE among all the models. This is attributed to

the additive attention mechanism incorporated in the AAEAATT model, which adeptly

captures interchannel data, including frequency, spatial, and temporal aspects. Addition

ally, AAEs have the unique ability to generate realistic data samples based on this learned

latent space. This capability proves valuable in various applications such as signal pro

cessing and the generation of new data points resembling the training data. Importantly,

the learned latent space plays a pivotal role in capturing essential features for intrachannel

beamforming in both frequency and spatial domains. Overall, the AAEAATTmodel pro

vides the best MSE performance at both low and high SNR. A slight degradation in the

MSE performance of all models is observed as the number of antennas increases. This

decline can be attributed to variations in the parameters of the estimated number of an

tennas. With precoding, the MSE performance of all models shows improvement. This

enhancement is attributed to the AAEAATTBeamforming method, which utilizes the

AAE model and the additive attention mechanism to mitigate noise effects and optimize

beamforming designs. In Fig.5.2a and Fig.5.2b, as the number of transmitting and receiv

ing antennas increases, a slight decrease in the MSE of all models is observed. This is due

to the higher number of antenna parameters involved. AAEAATT demonstrates supe

rior performance compared to DAECNNATT and DAECNN models. This advantage
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is attributed to the translation invariance of the CNN model. This is adept at capturing

crucial frequency and spatial features necessary for channel precoding while simultane

ously reducing interference. DAE outperforms the LSTMDAEmodel at high SNR due to

its noiserobust reconstructed signal. Conversely, LSTMDAE surpasses the DAE model

at low SNR by leveraging its longterm memory function to model channel signal se

quences. As SNR increases in Fig.5.3a, the proposed AAEAATT model consistently

achieves the highest achievable rate performance among all models. This is facilitated

by the additive attention mechanism within the AAEAATT model, which captures inter

channel data, including sequences, spatial, and temporal information. Additionally, AAE

is employed to learn a structured latent space, resulting in superior achievable rate results.

Fig.5.3b illustrates that the achievable rate comparison results for all the models experi

ence a slight degradation. This degradation is attributed to the challenges posed by esti

mating antenna parameters, especially as the number of antennas increases. In Fig.5.4b,

we present achievable rate comparison results for various models, including the proposed

AAEAATTBeamforming, DAEBeamforming, DAECNNBeamforming, DAECNN

ATTBeamforming, and LSTMDAEBeamforming models with beamforming. These re

sults indicate that all models exhibit enhanced achievable rate performance. The proposed

AAEAATTBeamforming method leverages the additive attention mechanism to allow

the models to analyze input sequences from diverse perspectives simultaneously. This

mechanism captures interchannel data, encompassing frequency, spatial, and temporal

aspects, enabling the models to comprehend different subcarrier dependencies and extract

vital channel information. The additive attention mechanism improves channel beam

forming performance by reevaluating the significance of frequency, spatial, and temporal

domains. Additionally, AAEs have the unique ability to generate realistic data samples
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(a) (L=1, Nt=32, Nr=16). (b) (L=1, Nt=64, Nr=32).

Figure 5.4: Comparison of achievable rate versus SNR between different methods with
beamforming.

based on this learned latent space. This capability proves valuable in various applications

such as signal processing and the generation of new data points resembling the training

data. Importantly, the learned latent space plays a pivotal role in capturing essential fea

tures for intrachannel beamforming in both frequency and spatial domains. In Fig.5.4b,

we observe that MSE comparison results for all the models exhibit a slight degradation,

mainly due to the challenges associated with estimating antenna parameters as the number

of antennas increases.

5.2 The Investigation of Loss Functions

Fig.5.5a presentsMSE comparison results for the proposedAAEAATTBeamforming

model with different loss functions. TheMSE performance difference betweenLOSSAAE

and LOSSAAE + LOSSPrecoding is 21.63%, and between LOSSAAE + LOSSPrecoding

and LOSSAAE + LOSSPrecoding + LOSSBF is 31.836%. Fig.5.5b displays MSE com

parison results for the DAECNNATTBeamforming model with different loss functions.
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(a) AAEAATTBeamforming (L=1, Nt=32,
Nr=16).

(b) DAECNNATTBeamforming (L=1,
Nt=32, Nr=16).

Figure 5.5: Comparison of loss functions versus SNR between different methods.

(a) Original 2D Fourier spec
trum.

(b) AAE model. (c) CNN model.

Figure 5.6: Comparison of attention map between different methods.

(a) AAE model with additive attention.(b) AAE model without additive atten
tion.

Figure 5.7: Comparison of subcarrier channel prediction for different methods.
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Here, we observe that MSE performance difference between LOSSAAE and LOSSAAE

+ LOSSPrecoding is 26.48%, and between LOSSAAE + LOSSPrecoding + LOSSBF and

LOSSAAE +LOSSPrecoding is 37.57%. The overallMSE performance difference between

the proposed AAEAATTBeamforming model and the DAECNNATTBeamforming

model is 71.83%. This divergence in MSE performance can be attributed to the AAE’s

optimization approach, AAEs have the unique ability to generate realistic data samples

based on this learned latent space. This capability proves valuable in various applications

such as signal processing and the generation of new data points resembling the training

data. Importantly, the learned latent space plays a pivotal role in capturing essential fea

tures for intrachannel beamforming in both frequency and spatial domains, facilitating

comprehensive contextual information acquisition from channel signals. Additionally, the

analog beamforming module benefits from feature capture enhancements via an autoen

coder and GRU, while the digital beamforming module effectively reduces interference

through the utilization of a CNN.

5.3 The Investigation of Spectral Analysis

The objective of spectral analysis is to break down a signal into its various frequency

components, a technique employed to scrutinize the frequency aspects of channel signals.

This transformation from time and spatial domain functions to frequency domain func

tions is achieved through the Fourier transform, as depicted in Fig.5.6a. The Xaxis and

Yaxis represent the 2D signal spectrum in the time and spatial domains, respectively.

The color spectrum in the Fourier transform’s frequency domain intensity ranges from

yellow (strongest) to black (weakest), following the order: Yellow > Lime > Teal > Blue

> Black. To gauge the relative overlap of two bounding boxes, we employ Intersection
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over Union (IoU) measurements. When there are two bounding boxes, their intersec

tion and union areas can be calculated, allowing us to determine the similarity between

the two bounding boxes. In our observations, we note that the IoU values for the CNN

model are Yellow=0.48, Lime=0.33, Teal=0.42, Blue=0.46, Black=0.41, whereas for the

VAE model, these values are significantly higher: Yellow=0.93, Lime=0.86, Teal=0.84,

Blue=0.79, Black=0.88. Additionally, in our experiments, we found that the attention

map’s area in the frequency domain is larger for the AAE model compared to the CNN

model, as depicted in Fig.5.6b and Fig.5.6c. This phenomenon is attributed to the AAE’s

incorporation of an encoder that capability proves valuable in various applications such

as signal processing and the generation of new data points resembling the training data.

Importantly, the learned latent space plays a pivotal role in capturing essential features

for intrachannel beamforming in both frequency and spatial domains. Furthermore, we

conducted experiments comparing the AAE model with and without additive attention.

The results demonstrated that the AAE model with additive attention outperforms the one

without it in the time domain subcarrier channel prediction, as illustrated in Fig.5.7a and

Fig.5.7b. The rationale behind this improvement lies in the additive attention mechanism

within our AAEAATTBeamforming approach. This mechanism adeptly captures inter

channel global data, encompassing time domain information, thereby enabling the model

to effectively comprehend intricate relationships, dependencies, and interactions among

various sequences of channel signal subcarriers.

5.4 The Investigation of Interference Analysis

In Fig.5.8a, we conduct a comparison between SignaltoInterferenceplusNoise Ra

tio (SINR) and SignaltoNoise Ratio (SNR) for three different combinations: AAEAATT

78

http://dx.doi.org/10.6342/NTU202304239


doi:10.6342/NTU202304239

Beamforming (Proposed), AAEAATTBeamforming (AE), andAAEAATTBeamforming

(AO). SINR represents the ratio of received signal strength to received noise plus interfer

ence signal strength. Using Shannon’s Theorem, we calculate the degree of beamforming

interference with Equation(4.1). Our observations reveal that AAEAATTBeamforming

(Proposed) exhibits the best performance, boasting a 4.35% improvement in system per

formance over DAECNNATTBeamforming. When transitioning to AAEAATTBeam

forming(AE) and AAEAATTBeamforming (AO), the system performance decreases by

6.23% and 10.61%, respectively. In Fig.5.8b, the DAECNNATTBeamforming sec

tion illustrates that replacing DAECNNATTBeamforming (AE) and DAECNNATT

Beamforming (AO) leads to a degradation of system performance by 9.56% and 18.34%,

respectively. (Proposed) outperforms (AE) because in digital precoding, CNN leverages

advantages like local neuron connections and weight sharing. This ensures that the same

features are not redundantly learned under different signal processing, avoiding over

computation and enhancing efficiency and accuracy. (AE) surpasses (AO) because the

autoencoder effectively restores the latent space to the original input channel signal data.

This enables our analog precoding module to capture global domain features more effec

tively. In contrast, the order in which variables are updated in AO can significantly affect

its convergence rate and final solution. Weak choices of variable ordering can lead to slow

convergence or getting stuck in suboptimal solutions.

5.5 The Investigation of Generalization

Generalization refers to the ability of deep neural networks to perform effectively

when exposed to new, unseen realworld data. A robust model maintains high perfor

mance on test datasets that were not part of its training data. To assess generalizability,
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(a) AAEAATTBeamforming (L=1, Nt=32,
Nr=16).

(b) DAECNNATTBeamforming (L=1, Nt=32,
Nr=16).

Figure 5.8: Comparison of SNR versus SINR between different methods.

we introduce modifications to different Doppler frequencies. In Fig. 5.9a, we present

achievable rate comparison results for the AAEAATTBeamforming and DAECNN

ATTBeamforming models with and without beamforming for 32 antennas. The achiev

able rate comparison between DAECNNATT32 and DAECNNATTBeamforming

32 reveals a 8.56% difference. Achievable rate comparison results for DAECNNATT

Beamforming32 are 8.34%, while those for AAEAATT32 are 1.72%. The performance

difference in achievable rate is 2.13% for AAEAATTBeamforming32 and 7.82% for

DAECNNATTBeamforming32. In Fig. 5.9b, we showcase achievable rate compari

son results for the AAEAATTBeamforming and DAECNNATTBeamforming models

with and without beamforming for 64 antennas. Here, we observe that achievable rate

comparison results for DAECNNATT64 are 7.16%, while those for DAECNNATT

Beamforming64 are 4.86%. The achievable rate performance difference for AAEAATT

Beamforming64 is 2.18%. Notably, the achievable rate performance difference between

AAEAATTBeamforming64 and DAECNNATTBeamforming64 is 4.63%. This be

havior can be attributed to the AAE model, channel data is input and processed through
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an encoder, which maps the input data into the bottleneck layer. AAEs have the unique

ability to generate realistic data samples based on this learned latent space. This capabil

ity proves valuable in various applications such as signal processing and the generation

of new data points resembling the training data. Importantly, the learned latent space

plays a pivotal role in capturing essential features for intrachannel beamforming in both

frequency and spatial domains. And, additive attention mechanism effectively captures

global interchannel data, including crucial time domain information. This capability al

lows the model to gain a deep understanding of intricate relationships, dependencies, and

interactions among different sequences of channel signal subcarriers. In the analog pre

coding module, an autoencoder is employed to optimize the latent space and faithfully

reconstruct it to match the original input channel signal data that greatly enhancing the

accuracy of capturing global domain features. The digital precoding module utilizes a

2DCNN with characteristics like local neuron connectivity, translation invariance, and

weight sharing. This configuration excels at capturing crucial frequency and spatial fea

tures necessary for channel precoding while effectively reducing interference. Within the

analog beamforming module, a GRU is utilized, featuring two gating mechanisms: the

reset gate and the update gate. These gates are essential in controlling the flow of informa

tion within the cell. They enable the network to make informed decisions about retaining

information from the previous time step and incorporating new information, effectively

modeling complex temporal dependencies. Importantly, the update gate addresses the

vanishing gradient problem. This mechanism significantly enhances the accuracy of fea

ture capture within the analog beamforming module. The digital beamforming module

employs a 1DCNN, which excels at capturing local patterns and dependencies within

sequential data. This configuration is particularly wellsuited for tasks like time series
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(a) (L=1, Nt=32, Nr=16). (b) (L=1, Nt=64, Nr=32).

Figure 5.9: The generalization evaluation of different maximum Doppler frequencies be
tween different methods.

analysis. It effectively captures the necessary features for channel beamforming while

minimizing interference.

5.6 The Investigation of Robustness

Robustness in the context of deep neural networks pertains to their ability to adapt

to perturbations in source signals. It measures the network’s capacity to maintain reliabil

ity in the face of realworld imperfections such as noisy inputs, distributional shifts, and

adversarial attacks. Robust models excel at anomaly detection and consistently produce

accurate predictions even in the presence of minor disturbances. To evaluate robustness,

We evaluate the robustness by modifying different EVM (Error Vector Magnitude). In

Fig. 5.10a, Fig. 5.10a compares the MSE performance of the proposed AAEAATT

Beamforming model with different EVM, we can observe that the MSE performance dif

ference between AAEEVM=45% and AAEEVM=35% is 17.48%, and the MSE perfor

mance difference between AAEEVM= 35% and AAEEVM=25% theMSE performance

difference is 24.53%. Fig. 5.10b shows MSE comparison results of DAECNNATT
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Beamforming model with different EVM, we can observe that MSE comparison results

between CNNEVM=45% and CNNEVM=35% is 26.43%, and the MSE performance

difference between CNNEVM=35% and CNNEVM=25%MSE performance difference

is 34.81%, and the MSE performance difference between AAEEVM=25% and CNN

EVM=25% is 71.32%. The reason is that AAE have the unique ability to generate realistic

data samples based on this learned latent space. This capability proves valuable in various

applications such as signal processing and the generation of new data points resembling the

training data. Importantly, the learned latent space plays a pivotal role in capturing essen

tial features for intrachannel beamforming in both frequency and spatial domains. At the

same time, additive attention is a powerful mechanism for modeling global relationships

among elements within an input sequence. It operates without imposing rigid assump

tions regarding the nature of these relationships, making it highly adaptable for capturing

diverse dependencies. In the context of channel data analysis, this layer assumes a cru

cial role by effectively capturing interchannel features in the time domain characteristics,

with a specific emphasis on the intricate and complex interdependencies present in the

channel data. In the analog precoding module, an autoencoder is used to optimize the la

tent space and faithfully reconstruct it to match the original input channel signal data that

resulting in a significant enhancement in the accuracy of capturing global domain features.

In the digital precoding module, a 2DCNN is employed, characterized by features like

local neuron connectivity, translation invariance, and weight sharing. This configuration

excels at capturing crucial frequency and spatial features essential for channel precod

ing while concurrently reducing interference. Within the analog beamforming module,

a GRU is utilized that make decisions regarding information retention from the previous

time step and the incorporation of new information. The GRU effectively models complex
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(a) AAEAATTBeamforming (L=1, Nt=32,
Nr=16).

(b) DAECNNATTBeamforming (L=1,
Nt=32, Nr= 16).

Figure 5.10: Comparison of MSE performance against the impact of different EVM be
tween different methods.

temporal dependencies, with the update gate addressing the vanishing gradient problem,

thereby significantly enhancing feature capture accuracy within the analog beamforming

module. Lastly, the digital beamforming module utilizes a 1DCNN, which excels at cap

turing local patterns and dependencies within sequential data. This configuration is highly

effective in capturing the necessary features for channel beamforming while minimizing

interference.

5.7 The Investigation of System Architecture Ablation

The Fig.5.11a showsMSE comparison results of theAAEAATTBeamformingmodel

with different system architecture ablation, and we can observe that the MSE performance

difference betweenAAEAATTChannel predictionPrecodingBeamforming (AAEAATT

CPPCBF) and (AAEAATTCPBF) is 11.43%. The MSE performance difference be

tween (AAEAATTCPBF) and (AAEAATTCPPC) is 12.36%. The MSE performance

difference between (AAEAATTCPPC) and (AAEAATTCP) is 13.68%. Fig.5.11b
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(a) AAEAATTBeamforming (L=1, Nt=32,
Nr=16).

(b) DAECNNATTBeamforming (L=1, Nt=32,
Nr= 16).

Figure 5.11: Comparison of MSE performance against the impact of different system
architecture ablation.

shows MSE comparison results of DAECNNATTBeamforming model with different

system architecture ablation, and we can observe that theMSE performance difference be

tweenDAECNNATTChannel predictionPrecodingBeamforming (DAECNNATTCP

PCBF) and (DAECNNATTCPBF) is 23.57%. The MSE performance difference be

tween (DAECNNATTCPBF) and (DAECNNATTCPPC) is 31.61%. The MSE per

formance difference between (DAECNNATTCPPC) and (DAECNNATTCP) is 36.74%.

The reason is that AAEAATTBeamforming addresses various aspects of interference

and channel optimization in the following ways: To tackle interference that varies with

time and frequency across different channels, we leverage additive attention, a versatile

mechanism that captures global relationships within input sequences. It excels at model

ing diverse dependencies without imposing rigid assumptions. In the context of channel

data analysis, it plays a vital role by effectively capturing interchannel features, espe

cially in the time domain, and addressing complex interdependencies within the channel

data. Our AAEAATTBeamforming model also addresses interference specific to sub

carriers. It does so by processing channel data through an autoencoder within the AAE
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model. This autoencoderbased approach enables the generation of realistic data samples

from a learned latent space, which proves valuable for signal processing and generating

data resembling the training dataset. Importantly, this learned latent space captures es

sential features for intrachannel beamforming, both in terms of frequency and spatial

domains. In the analog precoding module, our model employs an autoencoder to op

timize the latent space and faithfully reconstruct it to match the original input channel

signal data that significantly improving the accuracy of capturing global domain features.

In contrast, the digital precoding module utilizes a 2DCNN with characteristics such as

local neuron connectivity, translation invariance, and weight sharing. These features en

able it to capture crucial frequency and spatial features essential for channel precoding

while minimizing interference. Within the analog beamforming module, we utilize the

GRU featuring reset and update gates that enabling decisions about retaining informa

tion from the previous time step and incorporating new data. This mechanism effectively

models complex temporal dependencies and mitigates the vanishing gradient problem.

Consequently, it enhances the accuracy of feature capture within the analog beamforming

module. For digital beamforming, our model employs a 1DCNN known for its ability

to capture local patterns and dependencies within sequential data. This configuration is

particularly suited for tasks such as time series analysis. It proves advantageous in captur

ing the necessary features for channel beamforming while minimizing interference. And,

our AAEAATTBeamforming model employs a combination of techniques, including

additive attention, autoencoders, and specialized neural network architectures, to address

various types of interference and optimize channel performance across time, frequency,

and spatial domains. This multifaceted approach enhances the accuracy and efficiency of

channel data analysis and beamforming processes. Fig.5.12a shows achievable rate com
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parison results of the proposed AAEAATTBeamforming model with different system

architecture ablation, and we can observe that the MSE performance difference between

AAEAATTChannel predictionPrecodingBeamforming (AAEAATTCPPCBF) and

(AAEAATTCPBF) is 9.65%. The MSE performance difference between (AAEAATT

CPBF) and (AAEAATTCPPC) is 13.52%. The MSE performance difference between

(AAEAATTCPPC) and (AAEAATTCP) is 14.73%. Fig.5.12b shows achievable rate

comparison results of DAECNNATTBeamforming model with different system archi

tecture ablation, and we can observe that theMSE performance difference between (DAE

CNNATTCPPCBF) and (DAECNNATTCPBF) is 25.46%. The MSE performance

difference between (DAECNNATTCPBF) and (DAECNNATTCPPC) is 34.21%.

The MSE performance difference between (DAECNNATTCPPC) and (DAECNN

ATTCP) is 37.12%. The reason is that AAEAATTBeamforming framework addresses

interference that varies over time and frequency across different channels. It leverages

additive attention, a potent mechanism capable of modeling intricate relationships among

elements within an input sequence without imposing rigid assumptions. This adaptability

is particularly valuable for capturing diverse dependencies present in the complex inter

channel relationships. In the context of channel data analysis, additive attention plays a

pivotal role by effectively capturing interchannel features in the time domain, emphasiz

ing the intricate and complex dependencies in the channel data. Furthermore, our AAE

AATTBeamforming systemmitigates subcarrier channel interference. In the AAEmodel,

channel data is input and processed through an encoder, which maps the data into a latent

space representation. AAEs possess a unique ability to generate realistic data samples

based on this learned latent space, proving valuable in applications like signal processing

and generating data points resembling the training data. Crucially, the learned latent space
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(a) AAEAATTBeamforming (L=1, Nt=32,
Nr=16).

(b) DAECNNATTBeamforming (L=1, Nt=32,
Nr= 16).

Figure 5.12: Comparison of achievable rate performance against the impact of different
system architecture ablation.

is instrumental in capturing essential features for intrachannel beamforming, spanning

both frequency and spatial domains. Within the analog precoding module, an autoencoder

optimizes the latent space and reconstructs it as faithfully as possible to the original input

channel signal data that resulting in significantly improved accuracy in capturing global

domain features. The digital precoding module employs a 2DCNN with features like

local neuron connectivity, translation invariance, and weight sharing. This configuration

excels at capturing crucial frequency and spatial features essential for channel precoding

while simultaneously reducing interference. In the analog beamforming module, the GRU

is utilized that allowing the network to decide whether to retain information from the pre

vious time step or incorporate new data. The GRU effectively models complex temporal

dependencies and addresses the vanishing gradient problem through the update gate, sig

nificantly enhancing feature capture accuracy. Finally, the digital beamforming module

employs a 1DCNN, which excels at capturing local patterns in sequential data. This con

figuration is suitable for time series analysis and proves advantageous in capturing the

necessary features for channel beamforming while minimizing interference.
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Chapter 6 Conclusions

6.1 Conclusions

In the conclusions, we proposed the AAEAATTBeamforming in IRSassisted mm

wave MIMO OFDM system. Additive attention is a potent mechanism for modeling

global relationships within input sequences in the time domain. The AAElearned la

tent space plays a central role in capturing crucial features for intrachannel beamforming

in both frequency and spatial domains. In the analog precoding module, an autoencoder

is used to optimize the latent space and faithfully reconstruct it to match the original in

put channel signal data, significantly enhancing the accuracy of capturing global domain

features. The digital precoding module employs a 2DCNN with features like transla

tion invariance, enabling it to capture vital frequency and spatial features for channel pre

coding while minimizing interference. Within the analog beamforming module, GRU is

utilized, featuring reset and update gates that control information flow within the cell.

This enhances feature capture accuracy. The digital beamforming module employs a 1D

CNN, proficient in capturing local patterns and dependencies in sequential data, making it

wellsuited for tasks like time series analysis. This module effectively captures essential

channel beamforming features while reducing interference. Numerical results showcase

significant improvements in MSE, achievable rate, generalizability, and robustness com
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pared to prior research[18, 25, 49, 54].
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