請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91227完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李泰成 | zh_TW |
| dc.contributor.advisor | Tai-Cheng Lee | en |
| dc.contributor.author | 張育菘 | zh_TW |
| dc.contributor.author | Yu-Sung Chang | en |
| dc.date.accessioned | 2023-12-12T16:18:17Z | - |
| dc.date.available | 2023-12-13 | - |
| dc.date.copyright | 2023-12-12 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-11-02 | - |
| dc.identifier.citation | [1] X. Gao, E. A. M. Klumperink, M. Bohsali, and B. Nauta, “A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by N2,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3253–3263, Dec. 2009.
[2] B. Razavi, Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Level. Cambridge University Press, 2020. [3] B. Razavi, Design of Integrated Circuits for Optical Communications. Mc-Graw Hill, 2003. [4] X. Geng, Q. Xie, and Z. Wang, “A Quadrature Sub-Sampling Phase Detector for Fast-Relocked Sub-Sampling PLL Under External Interference,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, pp. 87–91, Jan. 2021. [5] Y. Ma, G. Zhang, and M. S. Tong, “A wide input range subsampling phase detector in subsampling phase locked loop,” in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM), pp. 283–284, 2020. [6] Y. Lim, J. Kim, Y. Jo, J. Bang, S. Yoo, H. Park, H. Yoon, and J. Choi, “17.8 A 170MHz-Lock-In-Range and −253dB-FoMjitter 12-to-14.5GHz Subsampling PLL with a 150µW Frequency-Disturbance-Correcting Loop Using a Low-Power Unevenly Spaced Edge Generator,” in 2020 IEEE International Solid- State Circuits Conference - (ISSCC), pp. 280–282, Feb. 2020. [7] D. Liao, Y. Zhang, F. F. Dai, Z. Chen, and Y. Wang, “An mm-wave synthesizer with robust locking reference-sampling pll and wide-range injection-locked vco,” IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 536–546, 2020. [8] M. Mercandelli, A. Santiccioli, S. M. Dartizio, A. Shehata, F. Tesolin, S. Karman, L. Bertulessi, F. Buccoleri, L. Avallone, A. Parisi, A. L. Lacaita, M. P. Kennedy, C. Samori, and S. Levantino, “32.3 a 12.9-to-15.1ghz digital pll based on a bang-bang phase detector with adaptively optimized noise shaping achieving 107.6fs integrated jitter,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC), vol. 64, pp. 445–447, 2021. [9] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 731–740, Apr. 2010. [10] X. Gao, E. Klumperink, and B. Nauta, “Sub-sampling PLL Techniques,” in 2015 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8, 2015. [11] X. Gao, E. A. M. Klumperink, G. Socci, M. Bohsali, and B. Nauta, “Spur Reduction Techniques for Phase-Locked Loops Exploiting A Sub-Sampling Phase Detector,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 1809–1821, Sep. 2010. [12] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, pp. 117–121, Feb. 2009. [13] H. Attah, “A Low Jitter Wideband Fractional-N Subsampling Phase Locked Loop (SSPLL),” Master’s thesis, Texas AM University, 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91227 | - |
| dc.description.abstract | 在當今的車用電子和自動駕駛應用中,電路不僅需要滿足高速、低延遲的傳輸特性,低噪聲和高環境耐受特性也是重要指標。訊號在傳輸時需要可信的時脈支持,因此鎖相迴路被使用以來產生時脈信號。比較電荷泵鎖相迴路和次採樣鎖相迴路,次採樣鎖相迴路具有更好的抖動性能。然而,由於次採樣相位偵測器的捕獲範圍有限,次採樣鎖相迴路存在擷取能力問題。為了改善次採樣鎖相迴路的擷取能力問題,本論文提出了 “一種具有更寬擷取範圍相位偵測器的次採樣鎖相迴路”,以滿足車用電子高環境耐受性的需求。
晶片使用技術為 TSMC 28nm 製程。在量測結果中,提出之次採樣鎖相迴路在 0.9V 供電源消耗 18.91mW,晶片之核心電路總面積為 0.114 × 0.320 mm2。提出之次採樣鎖相迴路在 14MHz 參考輸入頻率 5.6GHz 鎖相迴路輸出頻率下,其 FoM 為-210.2。次取樣鎖相迴路最大允許壓控震盪器抖動性能在提出之次採樣鎖相迴路架構亦比傳統次採樣鎖相迴路好至少10%。 | zh_TW |
| dc.description.abstract | Nowadays, in automotive electronics and autonomous driving applications, chip circuits not only need to meet high-speed, low-latency transmission characteristics, and low noise and high environmental tolerance characteristics are also important indicators. Signal transmission needs to be supported by a reliable clock signal, and a phase-locked loop (PLL) is used to generate the clock signal. Comparing the charge-pump phase-locked loop (CPPLL) and the sub-sampling phase-locked loop (SSPLL), SSPLL has better jitter performance. However, there is a capture ability issue in SSPLL due to the limited capture range of the sub-sampling phase detector (SSPD). In order to improve the capture ability problem of SSPLL, “a SSPLL with a wider capture range phase detector” is proposed in this thesis, which can be used to meet the high environmental tolerance requirements of automotive electronics.
The chip is fabricated in the TSMC 28nm technology. In the measurement result, the proposed SSPLL consumes 18.91mW from a 0.9V supply and occupies an active area of 0.114 × 0.320 mm2. The FoM of SSPLL (F oMSSPLL) is -210.2 with 14MHz reference input frequency and 5.6GHz SSPLL output frequency. SSPLL maximum allowable VCO jitter performance of the proposed SSPLL is better than that of the traditional SSPLL by at least 10%. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:18:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-12T16:18:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 ii
摘要 iv Abstract v 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Fundamental 3 2.1 Phase Noise and Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Traditional Charge-Pump PLL . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Architecture and Operation . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Phase Domain Model . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.3 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Sub-sampling PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 Architecture and Operation . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 Phase Domain Model . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 SSPLL Maximum Allowable VCO Jitter and Proposed Wider Capture Range Phase Detector Technique 16 3.1 SSPLL Maximum Allowable VCO Jitter . . . . . . . . . . . . . . . . . . 16 3.1.1 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Proposed Wider Capture Range Phase Detector . . . . . . . . . . . . . . 18 3.2.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Analysis of SSPLL Maximum Allowable VCO Jitter Performance in the Behavior Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 Different Loop Bandwidth of Sub-Sampling Loop (SSL) . . . . . 25 3.3.2 SSPLL Maximum Allowable SSCP Noise Performance in the Behavior Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Building Blocks and Design Consideration 32 4.1 Buildings Blocks of Proposed SSPLL . . . . . . . . . . . . . . . . . . . 32 4.2 Sub-Sampling Loop (SSL) . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.1 REF_GEN and PULSER . . . . . . . . . . . . . . . . . . . . . . 34 4.2.2 VCDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.3 SSPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.4 COMPARATOR . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.5 Decision Circuit in SSL . . . . . . . . . . . . . . . . . . . . . . 41 4.2.6 SSCP and SSCP_2X . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.7 VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Frequency-Locked Loop (FLL) . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.1 PFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.2 DZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.3 Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.4 CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Frequency Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . 60 4.4.1 Transfer Function of Proposed SSPLL . . . . . . . . . . . . . . . 60 4.5 SSPLL Maximum Allowable VCO Jitter Performance . . . . . . . . . . . 62 4.6 Noise and Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.6.1 VCO Performance Consideration . . . . . . . . . . . . . . . . . 63 4.6.2 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . 63 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5 Measurement 66 5.1 Printed Circuit Board Design . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2 Chip Die-photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.4 Measurement Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4.2 SSPLL Maximum Allowable VCO Jitter Performance . . . . . . 72 5.4.3 Total Comparison Table . . . . . . . . . . . . . . . . . . . . . . 73 5.4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6 Conclusion 75 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Bibliography 78 | - |
| dc.language.iso | en | - |
| dc.subject | 鎖相迴路 | zh_TW |
| dc.subject | 次取樣鎖相迴路 | zh_TW |
| dc.subject | 相位偵測器 | zh_TW |
| dc.subject | 擷取範圍 | zh_TW |
| dc.subject | 次取樣鎖相迴路最大允許壓控震盪器抖動性能 | zh_TW |
| dc.subject | 鎖相迴路 | zh_TW |
| dc.subject | 次取樣鎖相迴路 | zh_TW |
| dc.subject | 相位偵測器 | zh_TW |
| dc.subject | 擷取範圍 | zh_TW |
| dc.subject | 次取樣鎖相迴路最大允許壓控震盪器抖動性能 | zh_TW |
| dc.subject | SSPLL maximum allowable VCO jitter performance | en |
| dc.subject | phase-locked loop | en |
| dc.subject | PLL | en |
| dc.subject | sub-sampling phase-locked loop | en |
| dc.subject | SSPLL | en |
| dc.subject | phase detector | en |
| dc.subject | capture range | en |
| dc.subject | SSPLL maximum allowable VCO jitter performance | en |
| dc.subject | phase-locked loop | en |
| dc.subject | PLL | en |
| dc.subject | sub-sampling phase-locked loop | en |
| dc.subject | SSPLL | en |
| dc.subject | phase detector | en |
| dc.subject | capture range | en |
| dc.title | 一種具有更寬擷取範圍相位偵測器的次採樣鎖相迴路 | zh_TW |
| dc.title | A Sub-Sampling PLL With a Wider Capture Range Phase Detector | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉深淵;林宗賢;陳筱青 | zh_TW |
| dc.contributor.oralexamcommittee | Shen-Iuan Liu;Tsung-Hsien Lin;Hsiao-Chin Chen | en |
| dc.subject.keyword | 鎖相迴路,次取樣鎖相迴路,相位偵測器,擷取範圍,次取樣鎖相迴路最大允許壓控震盪器抖動性能, | zh_TW |
| dc.subject.keyword | phase-locked loop,PLL,sub-sampling phase-locked loop,SSPLL,phase detector,capture range,SSPLL maximum allowable VCO jitter performance, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU202304383 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-11-03 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 16.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
