Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9108
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許永真(Yung-Jen Hsu)
dc.contributor.authorHsiao-Wei Chenen
dc.contributor.author陳筱薇zh_TW
dc.date.accessioned2021-05-20T20:09:29Z-
dc.date.available2009-08-12
dc.date.available2021-05-20T20:09:29Z-
dc.date.copyright2009-08-12
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citationBibliography
[1] G. Adomavicius and T. Alexander. Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data
Eng., 17(6):734–749, 2005. Member-Gediminas Adomavicius and Member-Alexander
Tuzhilin.
[2] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin. Incorporating contextual
information in recommender systems using a multidimensional approach. ACM Trans.
Inf. Syst., 23(1):103–145, 2005.
[3] G. Adomavicius and A. Tuzhilin. Multidimensional recommender systems: A data warehousing
approach. In WELCOM ’01: Proceedings of the Second International Workshop
on Electronic Commerce, pages 180–192, London, UK, 2001. Springer-Verlag.
[4] G. Antoniou and F. van Harmelen. A Semantic Web Primer. MIT Press, April 2004.
[5] L. Ardissono, A. Goy, G. Petrone, M. Segnan, and P. Torasso. Intrigue: Personalized recommendation
of tourist attractions for desktop and handset devices. In Applied Artificial
Intelligence, pages 687–714. Taylor and Francis, 2003.
[6] D. Ashbrook and T. Starner. Learning significant locations and predicting user movement
with gps.
[7] C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social and content-based information in recommendation. In In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pages 714–720. AAAI Press, 1998.
[8] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms
for collaborative filtering. pages 43–52. Morgan Kaufmann, 1998.
[9] A. Chen. Context-aware collaborative filtering system: Predicting the user’s preference
in the ubiquitous computing environment. In LoCA, pages 244–253, 2005.
[10] H. Chen, T. Finin, and A. Joshi. An intelligent broker for context-aware systems. In Ubi-
Comp 2003: Adjunct Proceedings of the Fifth International Conference on Ubiquitous
Computing, pages 183 – 184, Seattle, Washington, USA, October 2003. UbiComp.
[11] H. Chen, T. Finin, and A. Joshi. A context broker for building smart meeting rooms.
In C. Schlenoff and M. Uschold, editors, Proceedings of the Knowledge Representation
and Ontology for Autonomous Systems Symposium, 2004 AAAI Spring Symposium, pages
53–60, Stanford, California, March 2004. AAAI, AAAI Press, Menlo Park, CA.
[12] H. Chen, T. Finin, and A. Joshi. Ontologies for Agents: Theory and Experiences, chapter
The SOUPA Ontology for Pervasive Computing, pages 233–258. Whitestein Series in
Software Agent Technologies. Springer, July 2005.
[13] H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA: Standard ontology for ubiquitous and
pervasive applications. In First Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous’04), pages 258–267, August 2004.
[14] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou. Developing a contextaware
electronic tourist guide: Some issues and experiences. In Proceedings of the
SIGCHI conference on Human factors in computing systems(CHI 2000), pages 17–24,
New York, NY, USA, 2000. ACM.
[15] K. Cheverst, K. Mitchell, and N. Davies. The role of adaptive hypermedia in a contextaware
tourist guide. Communications of the ACM, 45(5):47–51, 2002.
[16] L. Console, S. Gioria, I. Lombardi, V. Surano, and I. Torre. Adaptation and personalization
on board cars: A framework and its application to tourist services. In AH, pages
112–121, 2002.
[17] A. K. Dey. Understanding and using context. Personal and Ubiquitous Computing,
5(1):4–7, 2001.
[18] J. Froehlich, M. Y. Chen, I. E. Smith, and F. Potter. Voting with Your Feet: An Investigative
Study of the Relationship Between Place Visit Behavior and Preference. 2006.
[19] G. Fu, C. B. Jones, and A. I. Abdelmoty. Building a geographical ontology for intelligent
spatial search on the web. In Databases and Applications, pages 167–172, 2005.
[20] T. R. Gruber. Towards principles for the design of ontologies used for knowledge sharing.
In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual Analysis and Knowledge
Representation, Deventer, The Netherlands, 1993. Kluwer Academic Publishers.
[21] G. Karypis. Evaluation of item-based top-n recommendation algorithms. pages 247–254,
2000.
[22] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl. Grouplens:
Applying collaborative filtering to Usenet news. Communications of the ACM,
40(3):77–87, 1997.
[23] G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative
filtering. Internet Computing, IEEE, 7(1):76–80, 2003.
[24] N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating your
first ontology. Online, 2001.
[25] R. Oppermann and M. Specht. A context-sensitive nomadic exhibition guide. In HUC:
handheld and ubiquitous computing, pages 127–142, 2000.
[26] M. J. Pazzani. A framework for collaborative, content-based and demographic filtering.
Artificial Intelligence Review, 13:393–408, 1999.
[27] C. Pils, I. Roussaki, andM. Strimpakou. Location-Based Context Retrieval and Filtering.
2006.
[28] S. Poslad, H. Laamanen, M. Rainer, N. Achim, B. Phil, and Z. Alexander. Crumpet:
Creation of user- friendly mobile services personalised for tourism, 2001.
[29] E. Rich. User modeling via stereotypes, January 1979.
[30] N. M. Sadeh, F. L. Gandon, and O. B. Kwon. Ambient intelligence: The MyCampus
experience. Technical Report CMU-ISRI-05-123, School of Computer Science, Carnegie
Mellon University, July 2005.
[31] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th international conference on World
Wide Web, pages 285–295, New York, NY, USA, 2001. ACM.
[32] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommendation algorithms
for e-commerce. CF-sparisity:158–167, 2000. POI model : Association Rule.
[33] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application of dimensionality
reduction in recommender systems a case study. In In ACM WebKDD Workshop, 2000.
[34] B. M. Sarwar, J. A. Konstan, A. Borchers, J. Herlocker, B. Miller, and J. Riedl. Using
filtering agents to improve prediction quality in the grouplens research collaborative
filtering system. pages 345–354, 1998.
[35] B. Schilit, N. Adams, and R. Want. Context-aware computing applications. In Proceedings
of IEEE Workshop on Mobile Computing Systems and Applications, pages 85 – 90,
Santa Cruz, CA, US, 1994.
[36] A. Schmidt, K. Asante Aidoo, A. Takaluoma, U. Tuomela, K. Van Laerhoven, and W.
Van de Velde. Advanced interaction in context. In HUC ’99: Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing, pages 89–101, London,
UK, 1999. Springer-Verlag.
[37] A. Schmidt, M. Beigl, and H.-W. Gellersen. There is more to context than location.
Computers and Graphics, 23(6):893–901, 1999.
[38] I. Schwab and W. Pohl. Learning information interest from positive examples, 1999.
modifed mechine learning.
[39] M. v. Setten. Experiments with a recommendation technique that learns category interests.
In ICWI, pages 722–725, 2002.
[40] M. v. Setten, S. Pokraev, and J.Koolwaaij. Context-aware recommendations in themobile
tourist application compass. volume 3137, pages 235–244. Springer Berlin / Heidelberg,
2004.
[41] Y. Takeuchi and M. Sugimoto. A user-adaptive city guide system with an unobtrusive
navigation interface. Personal and Ubiquitous Computing, October 2007.
[42] R. Want, A. Hopper, V. F. ao, and J. Gibbons. The active badge location system. ACM
Transactions on Information Systems (TOIS), 10(1):91–102, January 1992.
[43] J. Ye, L. Coyle, S. Dobson, and P. Nixon. A unified semantics space model. In J. Hightower,
B. Schiele, and T. Strang, editors, LoCA, Lecture Notes in Computer Science,
pages 103–120. Springer, 2007.
[44] U. L. Yuhana, L.-l. Chen, J. Y.-j. Hsu, and W.-r. Jih. An ontology based approach
for searching neighborhood building. In Proceedings of The Third International Seminar
Information and Communication Technology Seminar (ICTS07), pages 106 – 112,
Surabaya, Indonesia, September 11 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9108-
dc.description.abstract情境感知校園景點推薦系統根據參觀者的基本資料、參觀的行為、環境中的資訊(時間、天氣)以及景點間的相互關係,動態地推薦景點。
傳統景點推薦系統只考慮使用者偏好以及景點資訊,並沒有將情境的變化納入考量。此外,本系統針對新的使用者(new user)做推薦,在行程開始之前,系統並不假設擁有使用者過去的旅遊偏好資訊。
在使用者遊玩的過程中,系統觀察使用者與系統的互動,參考使用者對拜訪過的景點的喜好度,同時察覺作用中環境的變化,適時產生景點推薦。換句話說,本論文所提出的情境感知景點推薦系統,其需求和推薦系統不同,傳統產品推薦系統,會有一段冷開機(cold-start)的時間,這類推薦系統的品質要隨著對使用者的了解而增加,也就是說,它們必須累積了大量使用者的歷史交易紀錄後,才能得到有品質保證的推薦。但是本景點推薦系統,力求能在裋時間內察覺使用者偏好,推薦環境中使用者有興趣的景點,即便這個使用者是第一次使用本系統。
本系統包含三個主要技術:知識的具體化、情境感知、動態推薦。
知識的具體化使用本體論(Ontology)在特定應用領域表達一些概念的集合。本論文分別建立了時間和空間的知識庫。空間本體論用來架構景點在地理空間上的概念,例如:傅鐘是一個景點,椰林大道是一條路,傅鐘在椰林大道上是一個知識。在時間本體論上,根據本體論以節點為主的建構概念,使具體化的功能得以從初步資料推論高階的資訊。例如:九點是一個時間標記(time stamp),透過推論讓電腦知道,九點在早上而且屬於吃飯的時間。
情境感知(context-aware)處理環境因子的變化,例如:使用者所在地、時間、天氣等資訊。
本推薦系統根據使用者的基本資料、同伴、因應現在的時間、天氣的變化,動態調整推薦的內容。
本論文實作了二個階段的實驗:第一階段在台大杜鵑花節我們邀請民眾考慮時間、天氣、以及與誰一同來玩等因素,為校園景點打分數。透過此活動收集到93筆移動軌跡,949筆景點喜好紀錄,以此建立使用者導向地理模型(user-based location model),強化原有的景點模型做為推薦的基礎知識。在此地理模型中除了紀錄景點基本資料%(例如:編號、名稱、位置、類別、開放時間...)
還包括從分析民眾在台大遊玩的移動軌跡,發現的景點之間的關係(例如:我們觀察到很多人看完傅鐘接下來就會去總圖,因此這二個景點之間產生'下一站'的關係,即傅鐘的下一站是總圖)。
第二階段讓使用者帶著本推薦系統實際走訪校園,評估本系統的接受度、實用性。實驗進行方式,系統同時交錯列出二個推薦的景點列表,其中一個是有將情境的變化納入考慮,另一個則無,而使用者並不知道它們的差別。
我們紀錄十位使用者對推薦結果的反應(接受、拒絕、目前沒意見),以此評估情境因子對景點推薦的助益。
zh_TW
dc.description.abstractIn this paper, we propose a context-aware campus spots recommender system which detects the changes in the environment, and provides a list of spots to user whose preference cannot be retrieved at the trip beginning, on the basis of user’s responses of what had visited in the trip, what time it is, whether it rains, who company with the visitor, and attractions information. The traditional recommender systems overlooked that a decison making differs in different context (location, time, or weather). In order to get high quality recommendations, in the general recommender system user has to rate a sufficient number of items; However, this system learns user’s preferences during the trip and recommends spots that user are interested in, even if this is his first time contact with the system.
The system uses three main technologies: knowledge conceptualization, contextawareness ability, dynamic recommneder algorithm. Ontology is used to represent a set of concepts within the tourist domain. A spatial ontology organize spots information, and conceptualize geographic knowledge of NTU campus, such as Fu Bell is a spot, Royal Palm Blvd. is a road, and Fu Bell is on Royal Palm Blvd. is a geographic knowledge. The temporal concepts are built in ontology which could infer high-level information with the raw data. For example, 9:00 AMis a time stamp, by inference the system obtain that 9:00 AM is in the Morning and it belongs to eating time. Contextawareness ability copes with the changes in the enviroment. In short, the visitors could experience recommendations depending on their personal data and the environment conditions. With up-to-date user’s responses in the trip, the system dynamicly provides recommendations which vary with different time and weather condtion.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:09:29Z (GMT). No. of bitstreams: 1
ntu-98-R96922020-1.pdf: 1483534 bytes, checksum: e6d5ac59fbca1422ee4908a3be50776f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAcknowledgments iii
Abstract v
List of Figures xii
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 General Background Information . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Recommender System . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Context-Aware Computing . . . . . . . . . . . . . . . . . . . 3
1.3 Context-Aware Spot Recommender System . . . . . . . . . . . . . . 3
1.3.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 System Archetecture . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chapter 2 Background and RelatedWork 7
2.1 Recommender System . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Content-Based Recommendation . . . . . . . . . . . . . . . . 9
2.1.2 Collaborative Filtering Recommendation . . . . . . . . . . . 10
2.1.3 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 User Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Context-Aware Computing . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Context-Aware Technology in Tourist Domain . . . . . . . . 18
2.3.2 Context-Aware Recommender System . . . . . . . . . . . . . 20
2.4 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 3 Context-Aware Campus Scenic Spots Recommender 25
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Challenge and Proposed Solution . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Data Collection and Analysis . . . . . . . . . . . . . . . . . . 28
3.2.2 POI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 User Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4 Context Model . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.5 Context-Aware Recommendation Generation . . . . . . . . . 44
Chapter 4 Implementation and Evaluations 55
4.1 Scenario for Existing System . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Experiment Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 60
Chapter 5 Conclusion 65
Bibliography 68
xi
dc.language.isoen
dc.title以本體論為基礎之情境感知校園景點推薦系統zh_TW
dc.titleAn Ontology-based Context-aware Recommender System for Campus Scenic Spotsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱浩華(Hao-Hua Chu),王傑智(Chieh-Chih Wang)
dc.subject.keyword情境感知,推薦系統,本體論,zh_TW
dc.subject.keywordContext-aware computing,recommender systems,multidimensional recommender systems,collaborative filtering,rating estimation,ontology,user modeling agent,location profiles,en
dc.relation.page72
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf1.45 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved