請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91087完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李岳聯 | zh_TW |
| dc.contributor.advisor | Yueh-Lien Lee | en |
| dc.contributor.author | 許鵬曙 | zh_TW |
| dc.contributor.author | Peng-Shu Hsu | en |
| dc.date.accessioned | 2023-10-24T17:03:11Z | - |
| dc.date.available | 2025-09-01 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-12 | - |
| dc.identifier.citation | [1] B. Mordike, T. Ebert, Magnesium: properties—applications—potential, Materials Science and Engineering: A, 302 (2001) 37-45.
[2] B. Landkof, Magnesium applications in aerospace and electronic industries, Magnesium alloys and their applications, (2000) 168-172. [3] H.E. Friedrich, B.L. Mordike, Magnesium technology, Springer, 2006. [4] B. Akyüz, Comparison of the machinability and wear properties of magnesium alloys, The International Journal of Advanced Manufacturing Technology, 75 (2014) 1735-1742. [5] K. Hiratsuka, A. Enomoto, T. Sasada, Friction and wear of Al2O3, ZrO2 and SiO2 rubbed against pure metals, Wear, 153 (1992) 361-373. [6] H. Chen, A. Alpas, Sliding wear map for the magnesium alloy Mg-9Al-0.9 Zn (AZ91), Wear, 246 (2000) 106-116. [7] D. Saran, A. Kumar, S. Bathula, D. Klaumünzer, K.K. Sahu, Review on the phosphate-based conversion coatings of magnesium and its alloys, International Journal of Minerals, Metallurgy and Materials, 29 (2022) 1435-1452. [8] L.-p. Wu, J.-j. Zhao, Y.-p. Xie, Z.-D. Yang, Progress of electroplating and electroless plating on magnesium alloy, Transactions of Nonferrous Metals Society of China, 20 (2010) s630-s637. [9] Y. Zhang, C. Yan, F. Wang, H. Lou, C. Cao, Study on the environmentally friendly anodizing of AZ91D magnesium alloy, Surface and Coatings Technology, 161 (2002) 36-43. [10] R.A. Singh, S. Jayalakshmi, S. Sankaranarayanan, R. Shabadi, S. Konovalov, X. Chen, M. Gupta, Tribological characteristics of magnesium nanocomposites, Materials Today: Proceedings, 5 (2018) 16575-16579. [11] W. Monteiro, S. Buso, L. Silva, Application of magnesium alloys in transport, New features on magnesium alloys, (2012) 1-14. [12] W. Yao, L. Wu, J. Wang, B. Jiang, D. Zhang, M. Serdechnova, T. Shulha, C. Blawert, M.L. Zheludkevich, F. Pan, Micro‐arc oxidation of magnesium alloys: A review, Journal of Materials Science & Technology, 118 (2022) 158-180. [13] 莊東漢, 材料破損分析, 五南圖書出版股份有限公司, 2009. [14] A. Tsujimoto, W.W. Barkmeier, N.G. Fischer, K. Nojiri, Y. Nagura, T. Takamizawa, M.A. Latta, M. Miazaki, Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors, Japanese Dental Science Review, 54 (2018) 76-87. [15] D.K. Dwivedi, Adhesive wear behaviour of cast aluminium–silicon alloys: Overview, Materials & Design (1980-2015), 31 (2010) 2517-2531. [16] B. Podgornik, Adhesive Wear Failures, Journal of Failure Analysis and Prevention, 22 (2022) 113-138. [17] K. Zum Gahr, Modelling of two-body abrasive wear, Wear, 124 (1988) 87-103. [18] A. Vencl, V. Gašić, B. Stojanović, Fault tree analysis of most common rolling bearing tribological failures, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, pp. 012048. [19] G.W. Stachowiak, A.W. Batchelor, Engineering tribology, Butterworth-heinemann, 2013. [20] B. Madsen, Standard guide for determining amount of synergism between wear and corrosion, ASTM G119-09, Annu Book ASTM Stand Sect, 11 (2009) 1-6. [21] A. López-Ortega, J. Arana, R. Bayón, Tribocorrosion of passive materials: a review on test procedures and standards, International Journal of Corrosion, 2018 (2018). [22] T. Xin, Y. Zhao, R. Mahjoub, J. Jiang, A. Yadav, K. Nomoto, R. Niu, S. Tang, F. Ji, Z. Quadir, Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition, Science Advances, 7 (2021) eabf3039. [23] M.K. Kulekci, Magnesium and its alloys applications in automotive industry, The International Journal of Advanced Manufacturing Technology, 39 (2008) 851-865. [24] B. Akyüz, Comparison of the machinability and wear properties of magnesium alloys, The International Journal of Advanced Manufacturing Technology, 75 (2014) 1735-1742. [25] F. Simchen, M. Sieber, A. Kopp, T. Lampke, Introduction to plasma electrolytic oxidation—An overview of the process and applications, Coatings, 10 (2020) 628. [26] H. Tang, W. Tao, H. Wang, Y. Song, X. Jian, L. Yin, X. Wang, F. Scarpa, High‐performance infrared emissivity of micro‐arc oxidation coatings formed on titanium alloy for aerospace applications, International Journal of Applied Ceramic Technology, 15 (2018) 579-591. [27] S. Yang, R. Sun, K. Chen, Self-healing performance and corrosion resistance of phytic acid/cerium composite coating on microarc-oxidized magnesium alloy, Chemical Engineering Journal, 428 (2022) 131198. [28] M. Wang, X. Zuo, W. Li, G. Cao, A. Xiang, Enhanced dielectric performance of BaxSr (1-x) TiO3 films prepared by the direct current micro-arc oxidation in the presence of ethylenediamine tetraacetic acid, Thin Solid Films, 694 (2020) 137579. [29] F. Muhaffel, H. Cimenoglu, Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy, Surface and Coatings Technology, 357 (2019) 822-832. [30] N. Sluginov, On luminous phenomen, observed in liquids during electrolysis, Russ. Phys. Chem. Soc, 12 (1880) 193-203. [31] S. Brown, K. Kuna, T.B. Van, Anodic spark deposition from aqueous solutions of NaAlO2 and Na2SiO3, Journal of the American Ceramic Society, 54 (1971) 384-390. [32] A. Kuhn, Plasma anodizing of magnesium alloys, Metal Finishing, 101 (2003) 44-50. [33] R. Hussein, X. Nie, D. Northwood, An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing, Electrochimica Acta, 112 (2013) 111-119. [34] G.B. Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications, Journal of Magnesium and Alloys, 5 (2017) 74-132. [35] J. Jovović, S. Stojadinović, N. Šišović, N. Konjević, Spectroscopic study of plasma during electrolytic oxidation of magnesium-and aluminium-alloy, Journal of Quantitative Spectroscopy and Radiative Transfer, 113 (2012) 1928-1937. [36] L. Chang, Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation, Journal of Alloys and Compounds, 468 (2009) 462-465. [37] R. Hussein, X. Nie, D. Northwood, A. Yerokhin, A. Matthews, Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process, Journal of Physics D: Applied Physics, 43 (2010) 105203. [38] T. Mi, B. Jiang, Z. Liu, L. Fan, Plasma formation mechanism of microarc oxidation, Electrochimica Acta, 123 (2014) 369-377. [39] L.-r. Chang, F.-h. Cao, J.-S. Cai, W.-j. Liu, Z. Zhang, J.-q. Zhang, Influence of electric parameters on MAO of AZ91D magnesium alloy using alternative square-wave power source, Transactions of Nonferrous Metals Society of China, 21 (2011) 307-316. [40] C. Xu, X. Yan, H. Yang, H. Yan, Effect of voltage on the microstructure and corrosion properties of MAO coatings on biodegradable ZK60 Mg alloys, Int. J. Electrochem. Sci, 13 (2018) 3555-3565. [41] Z. Li, Y. Yuan, X. Jing, Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg–Li alloy, Journal of Alloys and Compounds, 541 (2012) 380-391. [42] R. Hussein, D. Northwood, X. Nie, Coating growth behavior during the plasma electrolytic oxidation process, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 28 (2010) 766-773. [43] S. Wang, Y. Xia, L. Liu, N. Si, Preparation and performance of MAO coatings obtained on AZ91D Mg alloy under unipolar and bipolar modes in a novel dual electrolyte, Ceramics International, 40 (2014) 93-99. [44] S. Gnedenkov, O. Khrisanfova, A. Zavidnaya, S. Sinebryukhov, V. Egorkin, M. Nistratova, A. Yerokhin, A. Matthews, PEO coatings obtained on an Mg–Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes, Surface and Coatings Technology, 204 (2010) 2316-2322. [45] J.-t. Yao, S. Wang, Y. Zhou, H. Dong, Effects of the power supply mode and loading parameters on the characteristics of micro-arc oxidation coatings on magnesium alloy, Metals, 10 (2020) 1452. [46] R. Hussein, D. Northwood, X. Nie, The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy, Journal of Alloys and Compounds, 541 (2012) 41-48. [47] X. Ly, S. Yang, Influence of current mode on microstructure and corrosion behavior of micro-arc oxidation (MAO) biodegradable Mg-Zn-Ca alloy in Hank's solution, Surface and Coatings Technology, 358 (2019) 331-339. [48] A. Anawati, E. Hidayati, H. Labibah, Characteristics of magnesium phosphate coatings formed on AZ31 Mg alloy by plasma electrolytic oxidation with improved current efficiency, Materials Science and Engineering: B, 272 (2021) 115354. [49] H. Gao, M. Zhang, X. Yang, P. Huang, K. Xu, Effect of Na2SiO3 solution concentration of micro-arc oxidation process on lap-shear strength of adhesive-bonded magnesium alloys, Applied surface science, 314 (2014) 447-452. [50] H. Guo, M. An, Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate–fluoride solutions and evaluation of corrosion resistance, Applied Surface Science, 246 (2005) 229-238. [51] A. Fattah-Alhosseini, M. Sabaghi Joni, Effect of KOH concentration on the microstructure and electrochemical properties of MAO-coated Mg alloy AZ31B, Journal of Materials Engineering and Performance, 24 (2015) 3444-3452. [52] J. Zhuang, R. Song, H. Li, N. Xiang, Effect of various additives on performance of plasma electrolytic oxidation coatings formed on AZ31 magnesium alloy in the phosphate electrolytes, Journal of Wuhan University of Technology-Mater. Sci. Ed., 33 (2018) 703-709. [53] X. Liu, L. Zhu, H. Liu, W. Li, Investigation of MAO coating growth mechanism on aluminum alloy by two-step oxidation method, Applied surface science, 293 (2014) 12-17. [54] J. Dou, C. Wang, G. Gu, C. Chen, Formation of silicon-calcium-phosphate-containing coating on Mg-Zn-Ca alloy by a two-step micro-arc oxidation technique, Materials Letters, 212 (2018) 37-40. [55] Q. Chen, Y. Zheng, S. Dong, X.-B. Chen, J. Dong, Effects of fluoride ions as electrolyte additives for a PEO/Ni-P composite coating onto Mg alloy AZ31B, Surface and Coatings Technology, 417 (2021) 126883. [56] B. Kazanski, A. Kossenko, M. Zinigrad, A. Lugovskoy, Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy, Applied Surface Science, 287 (2013) 461-466. [57] M.A. Osipenko, D.S. Kharytonau, A.A. Kasach, J. Ryl, J. Adamiec, I.I. Kurilo, Inhibitive effect of sodium molybdate on corrosion of AZ31 magnesium alloy in chloride solutions, Electrochimica Acta, 414 (2022) 140175. [58] H. Zhu, X. Li, X. Guan, Z. Shao, Effect of Molybdate Conversion Coating of Magnesium Alloy Reinforced by Micro-arc Oxidation, Metals and Materials International, 27 (2021) 3975-3982. [59] L. Ling-jie, Y. Zhi-ming, L. Jing-lei, H. Dong-hai, Z. Sheng-tao, P. Fu-sheng, Corrosion inhibition of magnesium alloy in 3.5% NaCl medium by tungstate, Journal of Electrochemistry, 14 (2008) 427. [60] B. Zhang, K. Xu, X. Zheng, X. Yao, Y. Wang, J. Ge, Study of a hydrogen inhibition method with sodium tungstate for wet aluminum dust removal systems, Coatings, 10 (2020) 431. [61] M. Javidi, R. Omidvar, Synergistic inhibition behavior of sodium tungstate and penicillin G as an eco-friendly inhibitor on pitting corrosion of 304 stainless steel in NaCl solution using Design of Experiment, Journal of Molecular Liquids, 291 (2019) 111330. [62] H. Yan, W. Liu, Z. Yu, B. Liu, C. Liu, T. Wang, Y. Liu, L. Wu, Y. Ma, Effect of Sodium Tungstate on the Microstructure and Properties of Micro-Arc Oxidized Coatings Formed on 2A12 Aluminum Alloy, Journal of Materials Engineering and Performance, 30 (2021) 7741-7751. [63] W. Tu, Y. Cheng, X. Wang, T. Zhan, J. Han, Y. Cheng, Plasma electrolytic oxidation of AZ31 magnesium alloy in aluminate-tungstate electrolytes and the coating formation mechanism, Journal of Alloys and Compounds, 725 (2017) 199-216. [64] Y. Song, X. Sun, Y. Liu, Effect of TiO2 nanoparticles on the microstructure and corrosion behavior of MAO coatings on magnesium alloy, Materials and Corrosion, 63 (2012) 813-818. [65] R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G. Thompson, M. Merino, AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles, Applied Surface Science, 254 (2008) 6937-6942. [66] F. Liu, D. Shan, Y. Song, E.-H. Han, W. Ke, Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation, Corrosion Science, 53 (2011) 3845-3852. [67] Y. Zhang, Y. Xu, C. Miao, X. Tu, J. Yu, J. Li, Effect of tungsten carbide particles on the characteristics of PEO coatings formed on AZ31B magnesium alloy in alkaline electrolyte, Int. J. Electrochem. Sci, 13 (2018) 7923-7929. [68] G. Yinning, S. Yongyao, C. Linjiang, Z. Yan, L. Siyingi, X. Min, Formation of a composite anodic oxidation film containing Al2O3 particles on the AZ31 magnesium alloy, Materiali in tehnologije, 53 (2019) 225-232. [69] R. Chaharmahali, A. Fattah-alhosseini, M. Nouri, K. Babaei, Improving surface characteristics of PEO coatings of Mg and its alloys with zirconia nanoparticles: A review, Applied Surface Science Advances, 6 (2021) 100131. [70] X.-J. Cui, C.-H. Liu, R.-S. Yang, M.-T. Li, X.-Z. Lin, Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism, Surface and Coatings Technology, 269 (2015) 228-237. [71] F. Einkhah, K.M. Lee, M.A.F. Sani, B. Yoo, D.H. Shin, Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation, Surface and Coatings Technology, 238 (2014) 75-79. [72] M. Rahmati, K. Raeissi, M.R. Toroghinejad, A. Hakimizad, M. Santamaria, The multi-effects of K2TiF6 additive on the properties of PEO coatings on AZ31 Mg alloy, Surface and Coatings Technology, 402 (2020) 126296. [73] B.-Y. Qian, W. Miao, M. Qiu, F. Gao, D.-H. Hu, J.-F. Sun, R.-Z. Wu, B. Krit, S. Betsofen, Influence of Voltage on the Corrosion and Wear Resistance of Micro-Arc Oxidation Coating on Mg–8Li–2Ca Alloy, Acta Metallurgica Sinica (English Letters), 32 (2019) 194-204. [74] D. Zhang, Y. Ge, G. Liu, F. Gao, P. Li, Investigation of tribological properties of micro-arc oxidation ceramic coating on Mg alloy under dry sliding condition, Ceramics International, 44 (2018) 16164-16172. [75] S. Durdu, M. Usta, Characterization and mechanical properties of coatings on magnesium by micro arc oxidation, Applied Surface Science, 261 (2012) 774-782. [76] D. Chen, R. Wang, Z. Huang, Y. Wu, Y. Zhang, G. Wu, D. Li, C. Guo, G. Jiang, S. Yu, Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy, Applied surface science, 434 (2018) 326-335. [77] K. Tekin, U. Malayoglu, S. Shrestha, Tribological properties of plasma electrolytic oxide coatings on magnesium alloys, Tribology-Materials, Surfaces & Interfaces, 6 (2012) 67-74. [78] X. Li, X. Liu, B.L. Luan, Corrosion and wear properties of PEO coatings formed on AM60B alloy in NaAlO2 electrolytes, Applied surface science, 257 (2011) 9135-9141. [79] P. Zhang, X. Nie, H. Hu, Y. Liu, TEM analysis and tribological properties of Plasma Electrolytic Oxidation (PEO) coatings on a magnesium engine AJ62 alloy, Surface and Coatings Technology, 205 (2010) 1508-1514. [80] D.V. Mashtalyar, S.L. Sinebryukhov, I.M. Imshinetskiy, A.S. Gnedenkov, K.V. Nadaraia, A.Y. Ustinov, S.V. Gnedenkov, Hard wearproof PEO-coatings formed on Mg alloy using TiN nanoparticles, Applied Surface Science, 503 (2020) 144062. [81] D. Jun, J. Liang, L.-t. Hu, J.-c. Hao, Q.-j. Xue, Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte, Transactions of Nonferrous Metals Society of China, 17 (2007) 244-249. [82] Z. Fang, A.-D. Liao, R.-F. Zhang, S.-F. Zhang, H.-X. Wang, X.-M. Shi, M.-J. Li, X.-M. He, Effects of sodium tungstate on properties of micro-arc coatings on magnesium alloys, Transactions of Nonferrous Metals Society of China, 20 (2010) s683-s687. [83] Q. Chen, W. Li, K. Ling, R. Yang, Effect of Na2WO4 addition on formation mechanism and microstructure of micro-arc oxidation coating on Al-Ti double-layer composite plate, Materials & Design, 190 (2020) 108558. [84] Y. Cheng, Z. Zhu, Q. Zhang, X. Zhuang, Y. Cheng, Plasma electrolytic oxidation of brass, Surface and Coatings Technology, 385 (2020) 125366. [85] R. Hussein, D. Northwood, J. Su, X. Nie, A study of the interactive effects of hybrid current modes on the tribological properties of a PEO (plasma electrolytic oxidation) coated AM60B Mg-alloy, Surface and Coatings Technology, 215 (2013) 421-430. [86] K.B. Devi, B. Tripathy, A. Roy, B. Lee, P.N. Kumta, S.K. Nandi, M. Roy, In vitro biodegradation and in vivo biocompatibility of forsterite bio-ceramics: Effects of strontium substitution, ACS Biomaterials Science & Engineering, 5 (2018) 530-543. [87] M. Kamil, M. Kaseem, Y. Lee, Y. Ko, Microstructural characteristics of oxide layer formed by plasma electrolytic oxidation: Nanocrystalline and amorphous structures, Journal of Alloys and Compounds, 707 (2017) 167-171. [88] K.S. Lee, K.C. Chin, S. Ramesh, J. Purbolaksonoa, M. Hassan, M. Hamdi, W. Teng, Characterization of forsterite ceramics, Journal of Ceramic Processing Research, 14 (2013) 131-133. [89] D.L. Whitney, M. Broz, R.F. Cook, Hardness, toughness, and modulus of some common metamorphic minerals, American Mineralogist, 92 (2007) 281-288. [90] Z. Li, Y. Cheng, S.-h. Kang, W. Tu, Y. Cheng, A re-understanding of the breakdown theory from the study of the plasma electrolytic oxidation of a carbon steel—A non-valve metal, Electrochimica Acta, 284 (2018) 681-695. [91] Y.P. Sharkeev, V. Sheykin, M. Sedelnikova, E. Legostaeva, E. Komarova, V. Ermakov, A. Osipov, E. Shelekhova, Modification of titanium medical agraffe surface for suturing instruments with microarc oxidation method, Inorganic Materials: Applied Research, 7 (2016) 226-232. [92] L.L. Chang, M.G. SCROGER, B. Phillips, Alkaline‐Earth Tungstates: Equilibrium and Stability in the M‐W‐O Systems, Journal of the American Ceramic Society, 49 (1966) 385-390. [93] B. Han, Y. Li, C. Guo, N. Li, F. Chen, Sintering of MgO-based refractories with added WO3, Ceramics international, 33 (2007) 1563-1567. [94] Y. Syono, T. Goto, H. Takei, M. Tokonami, K. Nobugai, Association reaction in forsterite under shock compression, Science, 214 (1981) 177-179. [95] Y. Xie, W. Zhai, L. Chen, J. Chang, X. Zheng, C. Ding, Preparation and in vitro evaluation of plasma-sprayed Mg2SiO4 coating on titanium alloy, Acta Biomaterialia, 5 (2009) 2331-2337. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91087 | - |
| dc.description.abstract | 本研究以雙脈衝電源於 AZ31 鎂合金表面進行微弧氧化製程,探討添加鎢酸鈉在矽酸鹽系統微弧氧化製程中對氧化層成膜機制的影響,並透過圓盤球式磨耗試驗機進行乾燥狀態下的抗磨耗能力比較。
實驗結果顯示,鎢酸鈉的添加超過5g/L時會使 AZ31 微弧氧化膜在矽酸鹽製程中出現兩個階段的成長行為。第一階段透過相對低熔點相MgWO4的併入束縛電漿化的氣體,進而吸引貫穿形式的B-type放電造成微弧氧化層的不均勻生長。第二階段則轉為孔洞內放電使膜層緻密並均勻增厚。適當的鎢酸鈉添加量能透過此二階段成長使微弧氧化膜表面富含較多高硬度之Mg2SiO4,進而擁有較好的抗磨耗能力,過多的添加量則會導致第一階段的膜層因強放電發生崩解,造成最終膜層厚度不均使抗磨耗能力劣化。 | zh_TW |
| dc.description.abstract | The micro-arc oxidation using a bipolar power supply was carried out and coated on AZ31 magnesium alloy. This study discussed the change of coatings' growth mechanism by adding sodium tungstate in a silicate-based electrolyte system. Meanwhile, the ball-on-disc wear test was applied to investigate the wear resistance in dry conditions.
According to the experiment results, Adding sodium tungstate beyond 5g/L leads to a two-step coating growth. In the first stage, the incorporation of melton MgWO4 entraps the plasma gas to attract the penetrating B-type discharge, resulting in a non-uniform coating growth. Later, the second stage discharge in pores densifies and thickens the coating uniformly. Appropriate addition of sodium tungstate enriches the coating with more high hardness Mg2SiO4, thereby enhancing the wear resistance. However, excessive addition makes the coating collapse due to the intense discharge in the first stage, resulting in a non-uniform coating thickness and reducing its wear resistance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T17:03:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T17:03:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 總目錄 iv 圖目錄 vi 表目錄 ix 第一章 前言 1 第二章 文獻回顧 3 2.1磨耗概論 3 2.1.1磨耗定義 3 2.1.2磨耗系統[13] 3 2.1.3磨耗分類[13] 5 2.1.4常見磨耗檢測裝置[13] 11 2.2鎂合金及其磨耗性質 13 2.3微弧氧化 16 2.3.1微弧氧化發展與放電理論 16 2.3.2電性參數與電源形式 20 2.3.2電解液配置 22 2.3.2鎂合金微弧氧化磨耗特性 30 第三章 實驗方法與步驟 34 3.1研究動機與實驗流程 34 3.2材料成分與試片製備 36 3.3微弧氧化設備與製程參數設定 37 3.3.1製程設備 37 3.3.2電性參數 38 3.3.3電解液成分 38 3.4 基本微結構、硬度分析 39 3.4.1掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 39 3.4.2微硬度量測 40 3.5磨耗試驗 41 3.5.1 ball on disc磨耗試驗 41 3.5.2光學顯微鏡(Optical Microscope, OM) 43 3.6成分分析 43 3.6.1電子微探針(Electron Probe Microanalyzer, EPMA) 43 3.6.2能量散射X射線譜(Energy-dispersive X-ray Spectroscopy, EDS) 44 3.6.3穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 44 3.6.4背向散射電子繞射 (Electron Back Scatter Diffraction, EBSD) 45 第四章 實驗結果 46 4.1電壓對時間圖 46 4.2 基本微結構、硬度分析 48 4.2.1 微結構分析 48 4.2.2微硬度分析 58 4.3 ball on disc磨耗試驗 59 4.3元素與化合物組成分析 62 4.3.1 EPMA分析 62 4.3.2 EDS分析 66 4.3.3 TEM分析 67 4.3.4 EBSD分析 68 第五章 討論 71 5.1添加Na2WO4對成膜機制之影響 71 5.2第一電壓平台對氧化層性能之影響 75 5.3電壓第二次上升對氧化層性能之影響 76 5.4抗磨耗能力討論 78 第六章 結論 79 第七章 未來展望 80 參考文獻 81 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鎢酸鈉 | zh_TW |
| dc.subject | 微弧氧化 | zh_TW |
| dc.subject | 鎂合金 | zh_TW |
| dc.subject | 抗磨耗 | zh_TW |
| dc.subject | 成膜機制 | zh_TW |
| dc.subject | growth mechanism | en |
| dc.subject | wear resistance | en |
| dc.subject | micro-arc oxidation | en |
| dc.subject | magnesium | en |
| dc.subject | sodium tungstate | en |
| dc.title | 添加鎢酸鈉對AZ31鎂合金微弧氧化層生長機制與抗磨耗能力之研究 | zh_TW |
| dc.title | Effect of sodium tungstate on growth mechanism and wear resistance of micro-arc oxidation coatings formed on AZ31 magnesium alloy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李志偉;楊舜涵;鄭憶中 | zh_TW |
| dc.contributor.oralexamcommittee | JYH-WEI Lee;Shun-Han Yang;I-Chung Cheng | en |
| dc.subject.keyword | 抗磨耗,微弧氧化,鎂合金,鎢酸鈉,成膜機制, | zh_TW |
| dc.subject.keyword | wear resistance,micro-arc oxidation,magnesium,sodium tungstate,growth mechanism, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202303702 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2025-09-01 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 7.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
