Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91000Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李岳聯 | zh_TW |
| dc.contributor.advisor | Yueh-Lien Lee | en |
| dc.contributor.author | 蔡宗翰 | zh_TW |
| dc.contributor.author | Zong-Han Cai | en |
| dc.date.accessioned | 2023-10-24T16:40:48Z | - |
| dc.date.available | 2025-08-31 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | Hevia-Koch, P. and H.K. Jacobsen, Comparing offshore and onshore wind development considering acceptance costs. Energy Policy, 2019. 125: p. 9-19.
Kou, L., et al., Review on monitoring, operation and maintenance of smart offshore wind farms. Sensors, 2022. 22(8): p. 2822. Deshpande, P., et al., Impressed current cathodic protection (ICCP) of mild steel in association with zinc based paint coating. Materials Today: Proceedings, 2022. 50: p. 1660-1665. Erdogan, C. and G. Swain, Conceptual sacrificial anode cathodic protection design for offshore wind monopiles. Ocean Engineering, 2021. 235: p. 109339. Gundogdu, S. and O. Sahin, EMI effects of cathodic protection on electromagnetic flowmeters. Sensors, 2007. 7(1): p. 75-83. Caldona, E.B., D.O. Wipf, and D.W. Smith Jr, Characterization of a tetrafunctional epoxy-amine coating for corrosion protection of mild steel. Progress in Organic Coatings, 2021. 151: p. 106045. Qin, C.C., A.T. Mulroney, and M.C. Gupta, Anti-icing epoxy resin surface modified by spray coating of PTFE Teflon particles for wind turbine blades. Materials Today Communications, 2020. 22: p. 100770. Yuan, X., et al., EIS study of effective capacitance and water uptake behaviors of silicone-epoxy hybrid coatings on mild steel. Progress in Organic Coatings, 2015. 86: p. 41-48. Slot, H., et al., Leading edge erosion of coated wind turbine blades: Review of coating life models. Renewable energy, 2015. 80: p. 837-848. Magar, H.S., R.Y. Hassan, and A. Mulchandani, Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors, 2021. 21(19): p. 6578. Liao, H.-C., et al., Degradation Observations of Protective Coatings: An Improved Version of Coating Impedance Detector. IEEE Access, 2022. 10: p. 18074-18080. Lee, Y.-L., et al., Field-programmable gate array-based coating impedance detector for rapid evaluation of early degradation of protective coatings. IEEE Access, 2019. 7: p. 20472-20478. Kuo, Y.-T., C.-Y. Lee, and Y.-L. Lee, Compact coating impedance detector for fast evaluation of coating degradation. Measurement, 2018. 124: p. 303-308. 吳興練, 離岸風機塔架塗裝系統耐蝕性評估. Journal of Chinese Corrosion Engineering, 2016. 30(1): p. 24-37. 林維明、饒正, 港灣碼頭鋼板樁結構物腐蝕調查研究, in 中華民國第十二屆海 洋工程研討會論文集. 1990. Pawsey, C., The Importance of Corrosion Protection on Offshore Wind Farms. B. Thierry, M.T., C. Trepanier, O. Savadogo, and L. H. Yahia, Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy. Journal of biomedical materials research, 2000. 51: p. 685-693. Berger, L.-M., Application of hardmetals as thermal spray coatings. International Journal of Refractory Metals and Hard Materials, 2015. 49: p. 350-364. Ang, A.S.M. and C.C. Berndt, A review of testing methods for thermal spray coatings. International Materials Reviews, 2014. 59(4): p. 179-223. Hernández-Betancur, J.D., H.F. Hernández, and L.M. Ocampo-Carmona, A holistic framework for assessing hot-dip galvanizing process sustainability. Journal of cleaner Production, 2019. 206: p. 755-766. Shibli, S., B. Meena, and R. Remya, A review on recent approaches in the field of hot dip zinc galvanizing process. Surface and Coatings Technology, 2015. 262: p. 210-215. Zhou, Y., et al., 3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. Journal of Materials Chemistry A, 2020. 8(23): p. 11719-11727. Kavitha, B., et al., Role of organic additives on zinc plating. Surface and Coatings Technology, 2006. 201(6): p. 3438-3442. Hajdu, G.O.M.a.J.B., Electroless plating: fundamentals and applications. 1990. Carlsson, J.-O. and P.M. Martin, Chemical vapor deposition, in Handbook of Deposition Technologies for films and coatings. 2010, Elsevier. p. 314-363. Z. W. Wicks Jr, F.N.J., S. P. Pappas, and D. A. Wicks, Organic coatings: science and technology. 2007. Grundmeier, G., W. Schmidt, and M. Stratmann, Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochimica Acta, 2000. 45(15-16): p. 2515-2533. P. M. Ajayan, L.S.S., and P. V. Braun, Nanocomposite science and technology. 2006. Price, S.J. and R.B. Figueira, Corrosion protection systems and fatigue corrosion in offshore wind structures: current status and future perspectives. Coatings, 2017. 7(2): p. 25. Xie, S., et al., A hybrid nondestructive testing method of pulsed eddy current testing and electromagnetic acoustic transducer techniques based on wavelet analysis. NDT & E International, 2023: p. 102900. Marschnig, S., et al., Assessing Head Check Crack Growth by Eddy-Current Testing. Infrastructures, 2023. 8(5): p. 89. Santos, D., et al., Non-Destructive Inspection of High Temperature Piping Combining Ultrasound and Eddy Current Testing. Sensors, 2023. 23(6): p. 3348. Grosso, M., et al., Eddy current and inspection of coatings for storage tanks. Journal of Materials Research and Technology, 2018. 7(3): p. 356-360. Hwang, B., et al. Eddy current imaging for electrical characterization of silicon solar cells and TCO layers. in Smart Materials and Nondestructive Evaluation for Energy Systems 2015. 2015. SPIE. Behravan, A., M.M. deJong, and A.S. Brand, Laboratory study on non-destructive evaluation of polyethylene liquid storage tanks by thermographic and ultrasonic methods. CivilEng, 2021. 2(4): p. 823-851. Liu, H., et al., High-frequency ultrasonic methods for determining corrosion layer thickness of hollow metallic components. Ultrasonics, 2018. 89: p. 166-172. Arumaikani, T., S. Sasmal, and T. Kundu, Detection of initiation of corrosion induced damage in concrete structures using nonlinear ultrasonic techniques. The Journal of the Acoustical Society of America, 2022. 151(2): p. 1341-1352. Kulkarni, N.N., et al., Deep learning augmented infrared thermography for unmanned aerial vehicles structural health monitoring of roadways. Automation in Construction, 2023. 148: p. 104784. Shi, L., et al., On-line detection of porosity change of high temperature blade coating for gas turbine. Infrared Physics & Technology, 2020. 110: p. 103415. Doshvarpassand, S., C. Wu, and X. Wang, An overview of corrosion defect characterization using active infrared thermography. Infrared physics & technology, 2019. 96: p. 366-389. Yang, R., et al., Through coating imaging and nondestructive visualization evaluation of early marine corrosion using electromagnetic induction thermography. Ocean Engineering, 2018. 147: p. 277-288. Piro, N.S., A.S. Mohammed, and S.M. Hamad, Electrical resistivity measurement, piezoresistivity behavior and compressive strength of concrete: A comprehensive review. Materials Today Communications, 2023: p. 106573. M. Stern, a.A.L.G., Electrochemical polarization i. A theoretical analysis of the shape of polarization curves. Journal of the electrochemical society 1957. 104: p. 56-63. Touzain, S., Some comments on the use of the EIS phase angle to evaluate organic coating degradation. Electrochimica acta, 2010. 55(21): p. 6190-6194. Zuo, Y., et al., The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS. Corrosion Science, 2008. 50(12): p. 3322-3328. Mahdavian, M. and M. Attar, Another approach in analysis of paint coatings with EIS measurement: phase angle at high frequencies. Corrosion Science, 2006. 48(12): p. 4152-4157. Shanaghi, A., A.R. Souri, and P.K. Chu, EIS and noise study of zirconia-alumina-benzotriazole nano-composite coating applied on Al2024 by the sol-gel method. Journal of Alloys and Compounds, 2020. 816: p. 152662. Martinez, S., I. Šoić, and V. Špada, Unified equivalent circuit of dielectric permittivity and porous coating formalisms for EIS probing of thick industrial grade coatings. Progress in Organic Coatings, 2021. 153: p. 106155. Ciucci, F., Modeling electrochemical impedance spectroscopy. Current Opinion in Electrochemistry, 2019. 13: p. 132-139. Feliu Jr, S., Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges. Metals, 2020. 10(6): p. 775. Ribeiro, D. and J. Abrantes, Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Construction and Building Materials, 2016. 111: p. 98-104. G. D. Davis, R.A.R., and S. Raghu, Coating Health Monitoring System for Army Ground Vehicles. Corrosion, 2007. 7230: p. 11-28. P. D. Ryan Dunn, G.D., Monitoring Coating Degradation with a Wireless, Battery-Powered Coating Health Monitor (CHM). 2010: p. 12-20. 李忠縈, 離岸風機防蝕塗層性質監測技術之開發及應用. 臺灣大學工程科學及海洋工程學研究所學位論文, 2016(2016 年): p. 1-108. 郭昱彤, 以 FPGA 為基礎開發離岸風機之塗層腐蝕監測器. 臺灣大學工程科學及海洋工程學研究所學位論文, 2018: p. 1-71. 陳泓勳, 離岸風機塗層健康監測技術之改良研究. 臺灣大學工程科學及海洋工程學研究所學位論文, 2020. Svatos, J. Metal discrimination using time domain processed SINC signal. in 2016 15th Biennial Baltic Electronics Conference (BEC). 2016. IEEE. Xu, P. and Z. Zhu, Novel square-wave signal injection method using zero-sequence voltage for sensorless control of PMSM drives. IEEE Transactions on Industrial Electronics, 2016. 63(12): p. 7444-7454. Svatoš, J., J. Vedral, and P. Nováček. Metal object detection and discrimination using Sinc signal. in 2012 13th Biennial Baltic Electronics Conference. 2012. IEEE. Margarit-Mattos, I., EIS and organic coatings performance: Revisiting some key points. Electrochimica Acta, 2020. 354: p. 136725. Potvin, E., L. Brossard, and G. Larochelle, Corrosion protective performances of commercial low-VOC epoxy/urethane coatings on hot-rolled 1010 mild steel. Progress in organic coatings, 1997. 31(4): p. 363-373. Sharer, Z. and J. Sykes, Insights into protection mechanisms of organic coatings from thermal testing with EIS. Progress in Organic Coatings, 2012. 74(2): p. 405-409. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91000 | - |
| dc.description.abstract | 台灣位於亞熱帶區域,再加上四面環海,高溫高濕所引起的腐蝕破壞將是台灣海上的離岸風機長時間正常運作所需克服的挑戰。因此需要透過腐蝕檢測及監測的方式掌握其腐蝕狀態,以此對設施進行提前預警和壽命評估,並確保這些工程可以持續運作及檢修人員的安全。
本論文於前半部份將針對離岸風機建設於台灣如此嚴苛的腐蝕環境下面臨的困境以及常應用於工業上檢測腐蝕情況的技術進行介紹,並且回顧了本團隊先前對於防腐蝕塗層是否還具有保護力所開發之塗層監測系統,包含了CID、CID 2.0及CID 3.0,CID驗證了運用分壓公式得以計算塗層阻抗值的初步概念,CID 2.0透過FPGA等硬體整合將前述之概念進行微型化,CID 3.0則在CID 2.0的基礎上對電路及訊號處裡作改良,提升塗層阻抗量測之準確性。有鑑於過往做單點頻率阻抗量測時會有誤判的情形發生,本論文的主要目的為藉由擷取一段頻率範圍獲得更多塗層性質相關資訊,以此來提升判斷塗層保護性是否完好之準確性。 實驗結果顯示,透過CCD 1.0量測不同頻率電壓訊號反饋電流之比值,不僅能降低因外在因素干擾(塗層在施工時的厚薄度差異、塗層狀態處於腐蝕初期等)造成誤判塗層對於底材之保護力,還能判斷出良好塗層及受破壞塗層之優劣,呈現出當具良好保護能力之塗層(特性相似於電容)在腐蝕環境中持續劣化以致於保護能力下降(即塗層之電化學阻抗特性逐漸趨向電阻)之特性。 | zh_TW |
| dc.description.abstract | In this study, we propose the coating characteristic detector 1.0 (CCD1.0), which is an improved version of our previously developed CID. By acquiring information in a range of frequency to realize more information about the coating properties and improving the accuracy of the durability of protective organic coatings. Among many methods of measuring frequency interval, we replaced the sinusoidal-wave with square-wave signal injection and used the current responses at several different frequencies to measure the current ratio. Compared with the previous CID which the impedance modulus was evaluated at a single frequency, CCD1.0 successfully reduced the misjudgment of the protective coating health and indicated the coating characteristics which tend to be capacitance or resistance with an appropriate frequency interval. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:40:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:40:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 IX 1. 第一章 序論 1 1.1 研究動機 1 1.2 研究背景 2 1.2.1 離岸風機結構 2 1.2.2 腐蝕對於離岸風機之影響 3 2. 第二章 文獻回顧 7 2.1 腐蝕的防治技術 7 2.1.1 電化學防蝕法 7 2.1.2 表面處理防蝕法[17] 9 2.2 腐蝕的檢測與評估方法 11 2.2.1 渦電流檢測法(Eddy Current Testing, ECT)[30-33] 11 2.2.2 超聲波檢測法(Ultrasonic Technique, UT)[35-37] 12 2.2.3 紅外線熱成像法(Infrared thermography)[38-41] 12 2.2.4 電阻法(Electrical Resistance, ER)[42] 13 2.2.5 開路電位法(Open-Circuit Potential, OCP) 13 2.2.6 線性極化阻抗量測(Linear Polarization Resistance, LPR) 14 2.2.7 交流阻抗頻譜法(Electrochemical impedance spectroscopy, EIS)[44-51] 15 2.3 塗層健康監測儀 (Coating Health Monitor, CHM)[52, 53] 16 2.4 塗層阻抗監測儀 (Coating Impedance Detector, CID) 21 2.4.1 第一代塗層阻抗監測儀 (CID) [54, 55] 21 2.4.2 第二代塗層阻抗監測儀 (CID 2.0)[55, 56] 26 2.4.3 第三代塗層阻抗監測儀 (CID 3.0)[11] 33 3. 第三章 實驗方法與流程 41 3.1 實驗器材介紹 41 3.1.1 恆電位儀(Potentiostat) 41 3.1.2 塗層特性監測儀 (Coating Characteristic Detector, CCD 1.0) 43 3.2 實驗設計 47 3.2.1 電流波形與塗層抗蝕能力變化 48 3.2.2 工程指標建立 49 3.2.3 CCD 1.0準確性量測(Accuracy) 53 3.2.4 CCD 1.0靈敏度量測(Sensitivity) 54 3.2.5 CCD 1.0精確度量測(Precision) 54 4. 第四章 實驗成果與討論 55 4.1.1 電流波形與塗層抗蝕能力變化量測結果 56 4.1.2 高阻抗塗層系統量測結果比較 58 4.1.3 受破壞之塗層系統量測結果比較 61 4.1.4 受破壞之塗層系統量測結果之靈敏度與精確性比較 64 5. 第五章 結論 66 6. 第六章 未來工作 67 參考文獻 68 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 塗層性質 | zh_TW |
| dc.subject | 防蝕塗層監測 | zh_TW |
| dc.subject | 電化學交流阻抗量測 | zh_TW |
| dc.subject | 電流比值 | zh_TW |
| dc.subject | Corrosion monitor | en |
| dc.subject | Electrochemical impedance spectroscopy | en |
| dc.subject | Coating degradation | en |
| dc.subject | Current ratio | en |
| dc.subject | Coating characteristic | en |
| dc.title | 離岸風機塗層特性變化之監測技術開發 | zh_TW |
| dc.title | The Development of Corrosion Monitoring Technology for Coating Characteristics of Offshore Wind Turbines | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳昭宏;褚喻仁 | zh_TW |
| dc.contributor.oralexamcommittee | Jau-Horng Chen;Yu-Ren Chu | en |
| dc.subject.keyword | 防蝕塗層監測,電化學交流阻抗量測,電流比值,塗層性質, | zh_TW |
| dc.subject.keyword | Coating degradation,Corrosion monitor,Coating characteristic,Current ratio,Electrochemical impedance spectroscopy, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202303906 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2025-08-31 | - |
| Appears in Collections: | 工程科學及海洋工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf | 2.74 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
