請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9095
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周正俊 | |
dc.contributor.author | Yin-Soon Moy | en |
dc.contributor.author | 梅燕蓀 | zh_TW |
dc.date.accessioned | 2021-05-20T20:09:04Z | - |
dc.date.available | 2014-08-11 | |
dc.date.available | 2021-05-20T20:09:04Z | - |
dc.date.copyright | 2009-08-11 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-30 | |
dc.identifier.citation | Adams, M. R. Growth inhibition of food-borne pathogens by lactic and acetic acids and their mixtures. Int. J. Food Sci. Technol. 1988, 23, 287-292
Aldrich. Flavors and Fragrances, international ed.; Sigma-Aldrich: Milwaukee, WI, 1998. Ames, J. M.; Macleod, G. Volatile components of an unflavored textured soy protein. J. Food Sci. 1984, 49, 1552-1557. An, H. S.; Bae, J. S.; Lee, T. S. Comparison of free amino acids, sugars and organic acids in soy bean paste prepared with various organisms. J. Korean Agric. Chem. Soc. 1987, 30 (4), 345-350 (in Korean). AOAC. Official methods of analysis, 17th ed.; AOAC International: Maryland, 2000. Arai, S.; Suzuki, H.; Fujimaki, M.; Sakurai, Y. Studies on flavor components in soybean Part II. Phenolic acids in defatted soybean flour. Agric. Biol. Chem. 1966, 30, 863. Arctander, K. Perfume and Flavor Chemicals; Arctander, S., Eds.; Elizabeth: NJ, 1969, pp 1592-1596. Barbesgaard, P.; Heldt-Hansen, H. P.; Diderichsen, B. On the safety of Aspergillus oryzae: a review. Appl. Microbiol. Biotechnol. 1992, 36, 569-572. Bauer, K.; Garbe, D. Common fragrance and flavor materialss preparation, properties and uses; VCH Publishers: Deerfield Beach, FL, 1985. Burdock, G. A. Fenaroli’s Handbook of Flavor Ingredients, 3rd ed.; CRC Press: Boca Raton, FL, 1994. Cameselle, C.; Bohlmann, J. T.; NuÂnÄ ez, M. J.; Lema, J. M. Oxalic acid production by Aspergillus niger. Part I: Influence of sucrose and milk whey as carbon source. Bioprocess Eng. 1998, 19, 247-252. Chou, C. C.; Ho, F. M.; Tsai, C. S. Effects of temperature and relative humidity on the growth of and enzyme production by Actinomucor taiwanensis during sufu pehtze preparation. Appl. Environ. Microbiol. 1988, 54, 688-692. Chou, C. C.; Hwan, C. H. Effect of ethanol on the hydrolysis of protein and lipid during the ageing of a Chinese fermented soya bean curd-sufu. J. Sci. Food Agric. 1994, 66, 393-398. Chumchuere, S.; Robinson, R. K. Selection of starter cultures for the fermentation of soy milk. Food Microbiol. 1999, 16, 129-137. Chung, H. Y. Volatile components in fermented soybean (Glycine max) curds. J. Agric. Food Chem. 1999, 47, 2690-2696. Chung, H. Y. Volatile flavor components in red fermented soybean (Glycine max) curds. J. Agric. Food Chem. 2000, 47, 1803–1809. Chung, H. Y.; Fung, P. K.; Kim, J. S. Aroma impact components in commercial plain sufu. J. Agric. Food Chem. 2005, 53, 1684-1691. Cristofaro, E.; Mottu, F.; Wuhrmann, J. J. Involvement of the raffinose family of oligosaccharides in flatulence. In: Sugar in Nutrition, Chapter 20; Sipple, H. L., McNutt, K. W., Eds.; Academic Press: New York, 1974. Cruz, R.; Batistela, J. C.; Wosiacki, G. Microbial α-galactosidase from soymilk processing. J. Food Sci. 1981, 46, 1196-1200. Cruz, R.; Park, Y. K. Production of fungal α-galactosidase and its application to the hydrolysis of galactooligosaccharides in soybean milk. J. Food Sci. 1982, 47, 1973-1975. del Rosario, R.; De Lumen, B. O.; Habu, T.; Flath, R. A.; Mon, T. R.; Teranishi, R. Comparison of headspace of volatiles from winged beans and soybeans. J. Agric. Food Chem., 1984, 32, 1011-1015. Delavega, M.; Cejudo, F.; Paneq, A. Purification and properties of an extracellular invertase. Enzyme Microbiol. Technol. 1991, 13, 267-271. Dhananjay, S. K.; Mulimani, V. H. Purification of a-galactosidase and invertase by three-phase partitioning from crude extract of Aspergillus oryzae. Biotechnol Lett. 2008, 30, 1565-1569. Domsch, K. H.; Gams, W.; Anderson, T. H. Compendium of soil fungi. Academic Press: New York, 1980. Edenharder, R.; Tang, X. Inhibition of the mutagenicity of 2-nitrofluorene, 3-nitrofluoranthene and 1-nitropyrene by flavonoids, coumarins, quinones and other phenolic compounds. Food Chem. Toxicol. 1997, 35, 357-372. FAO. Specification for identity and purity of certain food additives. Food and Nutritional Paper no. 49. 1990. FAO/WHO (Food and Agriculture Organisation/World Health Organisation) JECFA (Joint FAO/WHO Expert Committee on Food Additives). WHO Teeh Rep Ser. 1988, 759, 16-17. FCC. Food Chemical Codex, 3rd Eds; National Academy Press: Washington, 1981. Fors, S. Sensory properties of volatile Maillard reaction products and related compounds, a literature review. In: The maillard reaction in foods and nutrition; Waller, G. R.; Feather, M. S., Eds.; ACS Symp. Ser. No. 215, American Chemical Society: Washington, DC. 1983; pp 185-286. Greuell, E. H. M. Some aspects of research in the application of soy proteins in foods. J. Am. Oil Chem. Soc. 1974, 51, 98-100. Grosch, W.; Schwencke, D.; Lebensm, W. Soybean lipoxygenase: Volatile aldehydes and alcohols from linoleic acid. Technol. 1969, 2, 109. Han, B. Z.; Beumer, R. R.; Rombouts, F. M.; Nout, M. J. R. Microbiological safety and quality of commercial sufu- a Chinese fermented soybean food. Food Control. 2001a, 12, 541-547. Han, B. Z.; Rombouts, F. M.; Nout, M. J. R. A Chinese fermented soybean food. Int. J. Food Microbiol. 2001b, 65, 1-10. Haruta, S.; Ueno, S.; Egawa, I.; Hashiguchi, K.; Fujii, A.; Nagano, M.; Ishii, M.; Igarashi, Y. Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 2006, 109, 79-87. Hesseltine, C. W. A millennium of fungi, food, and fermentation. Mycologia. 1965, 57, 149-197. Hesseltine, C. W.; Wang, H. L. Traditional fermented foods. Biotechnol. Bioeng. 1967, 9, 275-288. Ho, C. T.; Carlin, J. T. Formation and aroma characteristics of heterocyclic compounds in foods. In Flavor Chemistry, Trends and Developments; ACS Symposium Series 388; Teranishi, R., Buttery, R. G., Shahidi, F., Eds.; American Chemical Society: Washington, DC, 1989; pp 92-104. Hsieh, M. L.; Chou, C. C. Mutagenicity and antimutagenic effect of soymilk fermented with lactic acid bacteria and bifodobacteria. J. Food Microbiol. 2006, 111, 43-47. Huang, Y. H. Isoflavone content and antioxidative activity of sufu prepared with Taiwanese manufacture process. MS Thesis, National Taiwan University, Taipei, Taiwan. 2008. Hung, Y. H.; Huang, H. Y.; Chou, C. C. Mutagenic and antimutagenic effects of methanol extracts of unfermented and fermented black soybeans. Int. J. Food Microbiol. 2007, 118, 62-68. Hwan, C. H.; Chou, C. C. Volatile components of the Chinese fermented soya bean curd as affected by the addition of ethanol in ageing solution. J. Sci. Food Agric. 1999, 79, 243-248. Hwang, C. H.; Chou, C. C. Content of nucleotides, organic acid and sugars as well as some physical properties of sufus prepared with different starter. Food Sci. 1994. 21, 124-133. Ibolya, M. P.; Margit, P. S. Monitoring of Maillard reactions in soy products, Z. Lebensm.-Unters. Forsch. 1986, 183, 18-25 Jing, Y. K.; Waxman, S. Structural requirements for differentiation-induction and growth-inhibition of mouse erythroleukemia-cells by isoflavones. Anticancer Res. 1995, 15, 1147–1152. Jong, S. C.; Yuan, G. F. Actinomucor taiwanensis sp. nov. for manufacture of fermented soybean food. Mycotaxon. 1985, 13, 261. Kanojia, D.; Vaidya, M. M. 4-nitroquinoline-1-oxide induced experimental oral carcinogenesis. Oral Oncology. 2006, 42, 655-667. Kim, S. Y.; Shon, Y. H.; Lee, J. S.; Kim, C. H.; Nam, K. S. Antimutagenic activity of soybeans fermented with basidiomycetes in Ames/Salmonella test. Biotechnol. Lett. 2000, 22, 1197–1202. Kobayashi, A.; Tsuda, Y.; Hirata, N.; Kubota, K.; Kitamura, K. Aroma constituents of soybean [Glycine max (L.) Merril] milk lacking lipoxygenase isozymes. J. Agric. Food Chem. 1995, 43, 2449-2452. Ku, K. L.; Chen, T. P.; Chiou, R. Y. Y. Apparatus used for small-scale volatile extraction from ethanol-supplemented low-salt miso and GC-MS characterization of the extracted flavors. J. Agric. Food Chem. 2000, 48, 3507-3511. Kubicek, C. P.; Rohr, M. Citric acid fermentation. CRC Crit. Rev. Biotechnol. 1986, 3, 331-373 Lawless, H. T.; Horne, J.; Giasi, A. Astringency of organic acids is related to pH. Chem Senses. 1996, 21, 397-403. LeBlanc, J. G.; Garro, M. S.; de Giori, G. S. Effect of pH on Lactobacillus fermentum growth, raffinose removal, α-galactosidase activity and fermentation products. Appl. Microbiol. Biotechnol. 2004, 65, 119-123. Lee, M. H.; Kwok, K. F. Studies on the flavor components of soy sauce. J. Chinese Agric. Chem. Soc. 1987, 25, 101-111. Lee, S. J.; Ahn, B. Comparison of volatile components in fermented soybean pastes using simultaneous distillation and extraction (SDE) with sensory characterization. Food Chem. 2009, 114, 600-609. Lee, S. M.; Seo, B. C.; Kim, Y. S. Volatile compounds in fermented and acid-hydrolyzed soy sauces. J. Food Sci., 2006, 71, C146-C156. Lee, Y. S.; Kim, J. S. A study of chemical characteristics of soy sauce and mixed soy sauce: chemical characteristics of soy sauce. Eur. Food Res. Technol. 2008, 227, 933-944. Lee,S. T. 16th Century Ben-Chao Gong-Mu (botanical encyclopedia). Reprinted by Shanghai Hong Pao Chai Book Co., Shanghai, China. 1916. Lefebvre, D.; Gabriel, V.; Vayssier, Y.; Fontagne’ Faucher, C. Simultaneous HPLC determination of sugars, organic acids and ethanol in sourdough process. Lebensm. Wiss. U. Technol. 2002, 35, 407-414. Lertsiri, S.; Maungma, R.; Assavanig, A.; Bhumiratana, A. Roles of the Maillard reaction in browning during mormi process of Thai soy sauce. J. Food Process. Preserv. 2001, 25, 149–162. Lertsiri, S.; Phontree, K.; Thepsingha, W.; Bhumiratana, A. Evidence of enzymatic browning due to laccase-like enzyme during mash fermentation in Thai soybean paste. Food Chem. 2003, 80, 171-176. Li, Y. Y. Changes of enzyme activity and physiochemical properties during the fermentation of Taiwanese style sufu at different temperatures. MS Thesis, National Taiwan University, Taipei, Taiwan. 2009. Likens, S. T.; Nickerson, G. B. Detection of certain hop oil constituents in brewing products. J. Am. Soc. Brewing Chemists, 1964, 11, 5–13. Lin, C. H.; Chou, C. C. Suppression on the mutagenicity of 4-nitroquinoline-N-oxide by the methanol extracts of soybean koji prepared with various filamentous fungi. Int. J. Food Microbiol. 2006, 110, 43-47. Macrae, R.; Robinson, R. K.; Sadler, M. J. Encyclopedia of Food Science, In Food Technology, and Nutrition; Academic Press: San Diego, CA, 1993; Vol. 6, pp 4230-4233. Mansour, E. H.; Khalil, A. H. Nutritional changes during the fermentation of chick pea (Cicer arietinum) flour. Menofiya J. Agric. Res. 1995, 20, 151-164. Marazza, J. A.; Garro, M. S.; de Giori, G. S. Aglycone production by Lactobacillus rhamnosus CRL981 during soymilk fermentation. Food Microbiol. 2009, 26, 333-339. Maron, D. M.; Ames, B. N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 113, 173-215. Miyazawa, M.; Sakano, K.; Nakamura, S.; Kosaka, H. Antimutagenic activity of isoflavones from soybean seeds (Glycine max Merrill). J. Agric. Food Chem. 1999, 47, 1346-1349. Mookherjee, B. D.; Deck, R. E.; Chang, S. S. Food flavor changes, relationship between monocarbonyl compounds and flavor of potato chips. J . Agric. Food Chem, 1965, 13, 131. Noguchi, A.; Mossor, K.; Aymord, C.; Jeunik, J.; Cheftel, J. C. Maillard reaction during extrusion cooking of protein enriched biscuits. Lebsen. Wiss. Technol. 1982, 15, 105-108. Nout, M. J. R.; Aidoo, K. E. Asian fungal fermented food. In: Industrial Applications. The Mycota; Osiewacz, H. D., Ed.; 2000; Vol. X. Nunomura, N.; Sasaki, M.; Yokotsuka, T. Shoyu (soy sauce) flavor components: neutral fraction. Agric. Biol Chem. 1984, 48, 1753-1762. Park, K. Y.; Jung, K. O.; Rhee, S. H.; Choi, Y. H. Antimutagenic effects of doenjang (Korean fermented soypaste) and its active compounds. Mutat. Res. 2003, 523, 43-53. Rackis, J. J.; Honig, D. H.; Sessa, D. J.; Steggarda, F. R. Flavor and flatulence factors in soybean protein products. J. Agric. Food Chem. 1970, 18, 977-980. Raper, K. B.; Fennell, D. I. The genus Aspergillus. Academic Press: New York. 1965. Rehms, H.; Barz, W. Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizupus fungi. Appl. Microbiol. Biotechnol. 1995, 44, 47-52. Ren, H. F.; Liu, H. E.; Endo, H.; Takagi, Y.; Hayashi, T. Anti-mutagenic and anti-oxidative activities found in Chinese traditional soybean fermented products furu. Food Chem. 2006, 95, 71-76. SAS. SAS User’s Guide: Statistics, Version 8. Gary, NC: SAS Institute, 2001 Scalabrini, P.; Rossi, M.; Spettoli, P.; Matteuzzi, D. Characterization of Bifidobacterium strains for use in soymilk fermentation. Int. J. Food Microbiol. 1998, 39, 213-219. Smouse, T. H.; Chang, S. S. A systematic characterization of the reversion flavor of soybean oil. J. Am. Oil Chem. Soc. 1967, 44, 509-514 Steinkraus, K. H. In Handbook of Indigenous Fermented Foods; Dekker: New York, 1983; pp 553-571. Su, N. W.; Wang, M. L.; Kwok, K. F.; Lee, M. H. Effects of temperature and sodium chloride concentration on the activities of proteases and amylases in soy sauce koji. J. Agri. Food Chem. 2005, 53, 1521-1525. Su, Y. C. Sufu. In Legume-based Fermented Foods; Reddy, N. R.; Pierson, M. D.; Salunkhe, D. K., Eds.; CRC Press, Boca Raton: Florida, 1986; pp 69–83. Su, Y. C. Traditional fermented food in Taiwan. In Proceedings of the oriental fermented foods; Food Industry Research and Development Institute: Hsinchu, Taiwan, 1980; pp 15. Sugawara, E.; Ito, T.; Odagiri, S.; Kubota, K.; Kobayashi, A. Comparison of compositions of odor components of natto and cooked soybeans. Agric. Biol. Chem. 1985, 49, 311-317. Tanaka, T.; Muramatsu, K.; Kim, H. R.; Watanabe, T.; Takeyasu, M.; Kanai, Y.; Kiuchi, K. Comparison of volatile compounds from chungkuk-jang and itohiki-natto. Biosci. Biotechnol. Biochem. 1998, 62, 1440-1444. Tavan, E.; Maziere, S.; Narbonne, J. F.; Cassand, P. Effects of vitamins A and E on methylazoxymethanol-induced mutagenesis in Salmonella typhimurium strain TA100. Mutat. Res. 1997, 377, 231-237. Tsangalis, D.; Shah, N. P. Metabolism of oligosaccharides and aldehydes and production of organic acids in soymilk by probiotic Bifidobacteria. Int. J. Food Sci. Technol. 2004, 39, 541-554. van den Ouweland, G. A.; Schutte, L. Flavor problems in the application of soy protein materials as meat substitutes. In Flavor of Foods and Beverages; Charalambous, G. L.; Inglett, G. E., Eds.; Academic: New York, 1978; pp 33-42. Wai, N. A new species of Mono-Mucor, Mucor sufu, on Chinese soybean cheese. Science. 1929, 70, 307-308. Wai, N. Investigation of the various processes used in preparing Chinese cheese by the fermentation of soybean curd with Mucor and other fungi. Final technical report; UR-A6-(40)-1. U.S. Department of Agriculture. Beltsville. Md. 1968. Wang, H. J.; Murphy, P. A. Isoflavone content in commercial soybean foods. J. Agric. Food Chem.1994, 42, 1666–1673. Wang, H. L. Release of proteinase from mycelium of Mucor hiemalis. J. Bacteriol. 1967, 93, 1794-1799. Wang, H. L.; Hesseltine, C. W. Sufu and Lao-Chao. J. Agric. Food Chem. 1970, 18, 572-575. Wang, Y. C.; Yu, R. C.; Yang, H. Y.; Chou, C. C. Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with Bifidobacteria. Food Microbiol. 2003, 20, 333-338. Watanabe, S. Soybean isoflavones. In Bioactivity of isoflavones. Saiwai Press: Tokyo, 2001. Whitaker, J. R. Biochemical changes occurring during the fermentation of high-protein foods. Food Technol. 1978, 32, 175–180. Wieklow, D. T. Adaptation in wild and domesticated yellowgreen aspergilli. In Toxigenic fungi - their toxins and health hazard. Kurata, H.; Ueno, Y. Eds.; Elsevier: Amsterdam, 1984; pp 78- 86. Wilkens, W. F.; Lin, F. M. Gas Chromatographic and mass spectral analyses of soybean milk volatiles. J. Agric. Food Chem. 1970, 18, 333-336. Wu, C. M.; Chen, S. Y. Volatile Compounds in oils after deep frying or stir frying and subsequent storage. J. Am. Oil Chem. Soc., 1992, 69, 858-865 Yin, L. J.; Li, L. T.; Li, Z. G.; Eizo, T.; Masayoshi, S. Changes in isoflavone contents and composition of sufu (fermented tofu) during manufacturing. Food Chem. 2004, 87, 587-592. Yokotsuka, T. Soy sauce biochemistry. Advance in Food Res. 1986, 30, 95–329 Zhang, H.; Zhou, F.; Ji, B. P.; Nout, R. M. J.; Fang, Q.; Yang, Z. W. Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method. Eur. Food Res. Technol. 2008, 227, 1183-1190 Zhang, J. H.; Tatsumi, E. Fan, J. F.; Li, L. T. Chemical components of Aspergillus-type Douchi, a Chinese traditional fermented soybean product, change during the fermentation process. Int. J. Food Sci. Technol. 2007, 42, 263-268. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9095 | - |
dc.description.abstract | 豆腐乳 (Sufu) 是軟質乾酪狀由黃豆凝結塊(豆腐)製成之東方發酵黃豆食品。台式豆腐乳之釀造過程包括先製備鹽漬豆腐塊,以Aspergillus oryzae為發酵之豆米麴,然後再將鹽漬豆腐塊浸漬於麴醪 (豆米麴加糖水) 中發酵而成。本研究主要在探討台式豆腐乳發酵過程中 (揮發性成分,醣類與有機酸組成分) 與抗致突變活性變化之情形。
結果顯示隨著發酵時間增加,大部分揮發性成分之含量亦隨之上升,尤其是醇類及酯類。豆腐乳樣品中共鑑定出90種揮發性成分,其中包括22種醇類,22種酯類,21種醛類,10種脂肪酸,9種酮類與6種其它成分。 未發酵之豆腐中主要之醣類為水蘇糖,棉子糖,蔗糖,葡萄糖與果糖。而豆米麴醪中除發現上述之醣類外還含有麥芽糖與半乳糖且有大量之棉子糖與葡萄糖。大致而言,水蘇糖、棉子糖及蔗糖含量隨發酵時間之增加而減少,但單醣含量則隨發酵時間增加而上升,發酵46天後,豆腐乳與豆米麴中以葡萄糖之含量最多。 在發酵8天後豆腐乳與豆米麴中檢測出四種有機酸,包括草酸,乳酸,醋酸及檸檬酸,其中以醋酸含量最高。大致而言,除檸檬酸外,豆腐乳中有機酸含量皆於發酵第8天達到最高。隨著發酵時間增加,豆米麴中之乳酸,醋酸及檸檬酸含量也隨發酵時間之延長而增加,但草酸則呈現下降之趨勢。 此外,豆腐塊對4-NQO (4-nitroquinoline N-oxide) 與DMAB (3, 2-Dimethyl-4-amino-biphenyl hydrochloride) 所呈現之抗致突變活性隨著發酵時間之延長而增加。 | zh_TW |
dc.description.abstract | Sufu, the oriental fermented product of soy bean, is a soft cheese-like product made from cubes of soy bean curd (tofu). During the Taiwanese manufacturing process of sufu, the salted-tofu cubes and koji mash were first prepared. Fermentation was then proceeded by soaking the salted-tofu cubes in the prepared koji mash. Koji mash was prepared by mixing Aspergillus oryzae fermented rice-soybean koji with syrup containing 65% sucrose. In this study, changes in volatile, sugar, organic acid constituents and antimutagenicity of sufu during fermentation were investigated.
A total of 90 compounds of volatiles including 22 alcohols, 22 esters, 21 aldehydes, 10 fatty acids, 9 ketones and 6 other compounds from the sufu samples examined were identified. It was found that as the fermentation period was extended, contents of nearly all volatile fractions increased gradually, especially alcohols and ester. The main sugars noted in the non-fermented tofu were stachyose, raffinose, sucrose, glucose and fructose. As the fermentation time extended, generally, content of stachyose, raffinose and sucrose decreased, while content of glucose and fructose increased. Glucose was the most abundant sugar detected in the 46-day-sufu. Four organic acids including oxalic, lactic, acetic and citric acid were detected from the tofu and rice-soybean koji samples after fermentation for 8 days or longer. Acetic acid was the most predominant organic detected. It was generally found that content of these organic acids, except citric acid in the tofu cube increased to the highest point after 8 days of fermentation. The level of lactic, acetic and citric acid also increased in the collected koji as the fermentation time was extended. Methanol extract of tofu showed antimutagenicity against 4-nitroquinoline-N-oxide (4-NQO) and 3, 2′-dimethyl-4-amino-biphenyl (DMAB). Fermentation was found to enhance the antimutagenicity of tofu extract. Antimutagenicity of tofu extract increased with the extension of fermentation time. Beside, sufu extract exerted a significantly higher (p < 0.05) antimutagenicity against DMAB than 4-NQO. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:09:04Z (GMT). No. of bitstreams: 1 ntu-98-R96641036-1.pdf: 1491405 bytes, checksum: 4b0dfcf17d142dcda15565872bb7715e (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Page
中文摘要………………………………………………………………………………......... i Abstract …………………………………………………………………………………….. ii Menu……………………………………………………………………………………….. iv Figure menu ……………………………………………………………………………….. vi Table menu ……………………………………………………………………………….... vii I. Introduction …………………………………………………………………………….... 1 II. Literature review ………………………………………………………………………... 3 1. Introduction ……….………………………………………………………… 3 2. Manufacturing process of sufu …………….………………………………... 4 3. Microorganism involved in the manufacture of sufu….…………………….. 9 4. Aspergillus oryzae ………………….………………………………………. 9 5. Biochemical changes during the fermentation of sufu ..……………………. 10 6. Fermentation develops characteristic flavor in sufu ………………………... 13 7. Changes in the constituents associated with functional properties during the fermentation of sufu ……...…………………………….……………………… 17 III. Material and methods ……………………………………………….............................. 18 i. Experimental Design ……………………………………………….......................... 18 ii. Materials ………………………………………………............................................ 19 1. Bacterial strain ………………………………………………............................ 19 2. Chemicals ……………………………………………….................................... 19 3. Equipment ………………………………………………................................... 20 iii. Preparation of Salmonella typhimurium TA100 inoculum …………………… 22 iv. Sample preparation ………………………………………………............................ 22 1. Preparation of tofu ………………………………………………...................... 22 2. Preparation of koji mash ………………………………………………............. 23 3. Fermentation of sufu ………………………………………………................... 23 4. Sampling ………………………………………………..................................... 23 v. Analysis methods ……………………………………………….............................. 24 1. Assay for volatile compounds ………………………………………………...... 24 2. Assay for sugars and organic acids ………………………………………….…. 25 3. Assay for antimutagenic activity ……………………………………………….. 27 4. Determination of moisture content ……………………………………….......... 33 5. Statistical analysis ………………………………………………....................... 34 IV. Results and discussion ………………………………………………………………..... 35 1. Changes in the content of the volatile components during sufu fermentation …. 35 2. Changes in the sugar content of tofu during sufu fermentation ……….……….. 49 3. Changes in the sugar content of rice-soybean koji during sufu fermentation ….. 52 4. Changes in the organic acid content of tofu during sufu fermentation ………… 55 5. Changes in the organic acid content of rice-soybean koji during sufu fermentation ……………………………………………………………………. 57 6. Confirming the genotype of the Salmonella typhimurium TA100 …..…….…… 60 7. Toxic and mutagenic effect of tofu and sufu extract on Sal. typhimurium TA100 ………………………………………………………………………….. 63 8. Antimutagenicity of non-fermented tofu and sufu extracts against 4-NQO and DMAB in Sal. typhimurium TA 100 …………………………………………… 63 V. Conclusion …….……….……….……….……….……….……….……….……….…… 71 VI. Reference……….……….……….……….……….……….……….……….………..… 72 | |
dc.language.iso | en | |
dc.title | 以台灣式製程製備豆腐乳時風味物質組成及抗致突變性之變化 | zh_TW |
dc.title | Flavor Content and Antimutagenic Activity of Sufu Prepared with Taiwanese Manufacture Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱志威,潘崇良,蔡國珍,游若? | |
dc.subject.keyword | 豆腐乳,豆米麴,揮發性成分,醣類,有機酸,抗致突變活性, | zh_TW |
dc.subject.keyword | sufu,koji,volatiles,sugar,organic acid,antimutagenic, | en |
dc.relation.page | 83 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 1.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。