Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90791
Title: 應用於表面式永磁同步馬達故障情境之功率硬體迴路模擬
Power Hardware-in-the-Loop Emulation for Surface Permanent Magnet Synchronous Motor Under Fault Scenarios
Authors: 鍾佳銘
Jia-Ming Zhong
Advisor: 陳耀銘
Yaow-Ming Chen
Keyword: 功率硬體迴路,電子式馬達模擬器,動態馬達模擬器,永磁同步馬達,電阻不平衡,欠相故障,匝間短路故障,馬達驅動器,磁場導向控制,
Power hardware-in-the-loop (PHIL),Electric motor emulator (EME),Dynamic motor emulator (DME),Permanent magnet synchronous motor (PMSM),Resistance unbalance (R-Unbalance),Open-phase fault (OPF),Inter-turn short-circuit fault (ISCF),Motor driver,Field-oriented control (FOC),
Publication Year : 2023
Degree: 碩士
Abstract: 本論文主旨在於使用功率硬體迴路(Power Hardware-in-the-Loop, PHIL)技術,實現對於表面式永磁同步馬達(Surface Permanent Magnet Synchronous Motor, SPMSM)在不同故障情境下的實時模擬。論文主要分為兩個部份,第一部分是針對SPMSM常見的故障情境,包含電阻不平衡(Resistance Unbalance, R-Unbalance)、欠相故障(Open-Phase Fault, OPF)以及匝間短路故障(Inter-Turn Short-Circuit Fault, ISCF),進行模型的建立以及簡化。

第二部分則是當待測馬達驅動器(Motor driver Under Test, MUT)使用磁場導向控制(Field-Oriented Control, FOC)時, PHIL會經由故障情境之馬達模型產生具有諧波成分的參考電流。由於此參考電流無法只透過比例積分(Proportional-Integral; PI)控制器達成無穩態誤差,因此本文提出了具耦合項之比例積分諧振(Coupling-Proportional-Integral-Resonant, CPIR)控制器,以改善PHIL電流控制器的效能。

最後,這些論述的成果將透過MATLAB & Simulink模擬進行初步驗證,並同時在硬體實驗上取得相對應的成果,以證明實作及模擬皆與理論相符。本論文從實測數據驗證了PHIL在使用CPIR控制後,直交軸上兩倍頻電流的誤差在R-Unbalance情境下從17.64%降到0.43%,在OPF情境下從17.21%降到0.39%,在ISCF情境下從15.70%降到0.47%。另外,實測結果的三相電流及數值模擬的三相電流之均方根誤差(Root-Mean-Square Error, RMSE),在使用了CPIR控制後,R-Unbalance情境下從18.31%降到14.36%,OPF情境下從17.21%降到7.94%,ISCF情境下從20.29%降到18.34%。此外,為了公正評估PHIL模擬實際馬達的能力,本論文提出了使用總諧波失真再加上雜訊(Total Harmonic Distortion plus Noise,THD+N)來進行計算的相似指數(Simularity Index, SI)。透過SI可比較實測結果的三相電流以及數值模擬的三相電流的相似程度。在使用了CPIR控制後,R-Unbalance情境下SI從86.42%升到97.33%,OPF情境下SI從55.64%升到84.31%,ISCF情境下SI從61.43%升到64.07%。透過上述三種比較數據可驗證使用CPIR控制的PHIL在故障情境下的實時模擬效能。
The objective of this thesis is to realize the emulation of Surface Permanent Magnet Synchronous Motor (SPMSM) under different fault scenarios using Power Hardware-in-the-Loop (PHIL) technology. This thesis is divided into two main parts. The first part involves the development and simplification of models for common SPMSM fault scenarios, including Resistance Unbalance(R-Unbalance), Open-Phase Fault (OPF), and Inter-Turn Short-Circuit Fault (ISCF).

The second part focuses on the emulation of faulty motors using a Motor Driver Under Test (MUT) with Field-Oriented Control (FOC). The motor model considering fault conditions generates the reference currents with harmonic components, where the conventional Proportional-Integral (PI) control cannot achieve zero steady-state error. To improve the performance of the PHIL current control, this thesis proposes a new method called Coupling-Proportional-Integral-Resonant (CPIR) control.

Finally, the derived PMSM fault models and the proposed CPIR control are preliminarily verified using MATLAB & Simulink simulations. Also, hardware experiments are conducted to validate that both simulation and experiment results are consistent. Furthermore, this thesis provides a comprehensive analysis of the error at second order harmonic of the controller. It is evident that the implementation of CPIR control leads to a significant reduction in the error at second order harmonic in various fault scenarios. Specifically, in the case of R-Unbalance scenario, the error drops from 17.64% to 0.43%, in the OPF scenario, it decreases from 17.21% to 0.39%, and in the ISCF scenario, it diminishes from 15.70% to 0.47%. Additionally, a comparison is conducted between the root-mean-square errors (RMSE) of the three-phase current measured from hardware experiments and the three-phase current obtained from numerical simulation. The results demonstrate notable improvements with the application of CPIR control. In the R-Unbalance scenario, RMSE decreases from 18.31% to 14.36%, in the OPF scenario, it drops from 17.21% to 7.94%, and in the ISCF scenario, it goes from 20.29% to 18.34%. To further assess the effectiveness of the PHIL-based motor test-bench, this thesis proposes the use of the Similarity Index (SI), calculated based on the Total Harmonic Distortion plus Noise (THD+N), to quantify the similarity between the three-phase currents of experimental and numerical simulation. The results reveal substantial enhancements in similarity with the adoption of CPIR control. In the R-Unbalance scenario, the SI increases from 86.42% to 97.33%, in the OPF scenario, the SI rises from 55.64% to 84.31%, and in the ISCF scenario, it elevates from 61.43% to 64.07%. These three hardware result comparisons confirm the effectiveness of PHIL under fault scenarios.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90791
DOI: 10.6342/NTU202302551
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2025-06-29
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf6.89 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved