Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90791
標題: 應用於表面式永磁同步馬達故障情境之功率硬體迴路模擬
Power Hardware-in-the-Loop Emulation for Surface Permanent Magnet Synchronous Motor Under Fault Scenarios
作者: 鍾佳銘
Jia-Ming Zhong
指導教授: 陳耀銘
Yaow-Ming Chen
關鍵字: 功率硬體迴路,電子式馬達模擬器,動態馬達模擬器,永磁同步馬達,電阻不平衡,欠相故障,匝間短路故障,馬達驅動器,磁場導向控制,
Power hardware-in-the-loop (PHIL),Electric motor emulator (EME),Dynamic motor emulator (DME),Permanent magnet synchronous motor (PMSM),Resistance unbalance (R-Unbalance),Open-phase fault (OPF),Inter-turn short-circuit fault (ISCF),Motor driver,Field-oriented control (FOC),
出版年 : 2023
學位: 碩士
摘要: 本論文主旨在於使用功率硬體迴路(Power Hardware-in-the-Loop, PHIL)技術,實現對於表面式永磁同步馬達(Surface Permanent Magnet Synchronous Motor, SPMSM)在不同故障情境下的實時模擬。論文主要分為兩個部份,第一部分是針對SPMSM常見的故障情境,包含電阻不平衡(Resistance Unbalance, R-Unbalance)、欠相故障(Open-Phase Fault, OPF)以及匝間短路故障(Inter-Turn Short-Circuit Fault, ISCF),進行模型的建立以及簡化。

第二部分則是當待測馬達驅動器(Motor driver Under Test, MUT)使用磁場導向控制(Field-Oriented Control, FOC)時, PHIL會經由故障情境之馬達模型產生具有諧波成分的參考電流。由於此參考電流無法只透過比例積分(Proportional-Integral; PI)控制器達成無穩態誤差,因此本文提出了具耦合項之比例積分諧振(Coupling-Proportional-Integral-Resonant, CPIR)控制器,以改善PHIL電流控制器的效能。

最後,這些論述的成果將透過MATLAB & Simulink模擬進行初步驗證,並同時在硬體實驗上取得相對應的成果,以證明實作及模擬皆與理論相符。本論文從實測數據驗證了PHIL在使用CPIR控制後,直交軸上兩倍頻電流的誤差在R-Unbalance情境下從17.64%降到0.43%,在OPF情境下從17.21%降到0.39%,在ISCF情境下從15.70%降到0.47%。另外,實測結果的三相電流及數值模擬的三相電流之均方根誤差(Root-Mean-Square Error, RMSE),在使用了CPIR控制後,R-Unbalance情境下從18.31%降到14.36%,OPF情境下從17.21%降到7.94%,ISCF情境下從20.29%降到18.34%。此外,為了公正評估PHIL模擬實際馬達的能力,本論文提出了使用總諧波失真再加上雜訊(Total Harmonic Distortion plus Noise,THD+N)來進行計算的相似指數(Simularity Index, SI)。透過SI可比較實測結果的三相電流以及數值模擬的三相電流的相似程度。在使用了CPIR控制後,R-Unbalance情境下SI從86.42%升到97.33%,OPF情境下SI從55.64%升到84.31%,ISCF情境下SI從61.43%升到64.07%。透過上述三種比較數據可驗證使用CPIR控制的PHIL在故障情境下的實時模擬效能。
The objective of this thesis is to realize the emulation of Surface Permanent Magnet Synchronous Motor (SPMSM) under different fault scenarios using Power Hardware-in-the-Loop (PHIL) technology. This thesis is divided into two main parts. The first part involves the development and simplification of models for common SPMSM fault scenarios, including Resistance Unbalance(R-Unbalance), Open-Phase Fault (OPF), and Inter-Turn Short-Circuit Fault (ISCF).

The second part focuses on the emulation of faulty motors using a Motor Driver Under Test (MUT) with Field-Oriented Control (FOC). The motor model considering fault conditions generates the reference currents with harmonic components, where the conventional Proportional-Integral (PI) control cannot achieve zero steady-state error. To improve the performance of the PHIL current control, this thesis proposes a new method called Coupling-Proportional-Integral-Resonant (CPIR) control.

Finally, the derived PMSM fault models and the proposed CPIR control are preliminarily verified using MATLAB & Simulink simulations. Also, hardware experiments are conducted to validate that both simulation and experiment results are consistent. Furthermore, this thesis provides a comprehensive analysis of the error at second order harmonic of the controller. It is evident that the implementation of CPIR control leads to a significant reduction in the error at second order harmonic in various fault scenarios. Specifically, in the case of R-Unbalance scenario, the error drops from 17.64% to 0.43%, in the OPF scenario, it decreases from 17.21% to 0.39%, and in the ISCF scenario, it diminishes from 15.70% to 0.47%. Additionally, a comparison is conducted between the root-mean-square errors (RMSE) of the three-phase current measured from hardware experiments and the three-phase current obtained from numerical simulation. The results demonstrate notable improvements with the application of CPIR control. In the R-Unbalance scenario, RMSE decreases from 18.31% to 14.36%, in the OPF scenario, it drops from 17.21% to 7.94%, and in the ISCF scenario, it goes from 20.29% to 18.34%. To further assess the effectiveness of the PHIL-based motor test-bench, this thesis proposes the use of the Similarity Index (SI), calculated based on the Total Harmonic Distortion plus Noise (THD+N), to quantify the similarity between the three-phase currents of experimental and numerical simulation. The results reveal substantial enhancements in similarity with the adoption of CPIR control. In the R-Unbalance scenario, the SI increases from 86.42% to 97.33%, in the OPF scenario, the SI rises from 55.64% to 84.31%, and in the ISCF scenario, it elevates from 61.43% to 64.07%. These three hardware result comparisons confirm the effectiveness of PHIL under fault scenarios.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90791
DOI: 10.6342/NTU202302551
全文授權: 同意授權(全球公開)
電子全文公開日期: 2025-06-29
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf6.89 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved