Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90781
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭光成zh_TW
dc.contributor.advisorKuan-Chen Chengen
dc.contributor.author林歆珮zh_TW
dc.contributor.authorHsin-Pei Linen
dc.date.accessioned2023-10-03T17:35:34Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation林典翰 (2019) 由水果篩選酵母菌以生產葡萄酒。國立臺灣大學食品科技研究所學位論文。臺北,臺灣。
黃佩秀(2020) 篩選水果中酵母菌並以共培養生產蘋果酒。國立臺灣大學食品科技研究所學位論文。臺北,臺灣。
鄭磾 (2020) 篩選與鑑定臺灣本土乳酸菌進行黑后葡萄汁蘋果酸-乳酸發酵。國立臺灣大學食品科技研究所學位論文。臺北,臺灣。
惠蘭舟 (2022) 以Saccharomyces cerevisiae及Torulaspora delbrueckii共培養提升蜂蜜酒辛酸乙酯含量。國立臺灣大學食品科技研究所學位論文。臺北,臺灣。
許婷羽 (2022) 非釀酒酵母及乳酸菌對鳳梨酒發酵製程之影響。國立臺灣大學食品科技研究所學位論文。臺北,臺灣。
劉伯康及莊朝琪 (2016)。食品感官品評:理論與實務。新北市:新文京。
Akaike, M., Miyagawa, H., Kimura, Y., Terasaki, M., Kusaba, Y., Kitagaki, H., & Nishida, H. (2020). Chemical and bacterial components in sake and sake production process. Current Microbiology, 77(4), 632-637.
Al-Sweih, N., Khan, Z. U., Ahmad, S., Devarajan, L., Khan, S., Joseph, L., & Chandy, R. (2011). Kodamaea ohmeri as an emerging pathogen: a case report and review of the literature. Medical Mycology, 49(7), 766-770.
Albergaria, H., Torrão, A. R., Hogg, T., Gírio, F. M. (2003). Physiological behaviour of Hanseniaspora guilliermondii in aerobic glucose-limited continuous cultures. FEMS Yeast Research. 3 (2), 211-216.
Albergaria, H., Francisco, D., Gori, K., Arneborg, N., Gírio, F. (2010) Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains. Applied Microbiology and Biotechnology, 86, 965-972.
Albertin, W., Setati, M. E., Miot-Sertier, C., Mostert, T. T., Colonna-Ceccaldi, B., Coulon, J., Girard, P., Moine, V., Pillet, M., & Salin, F. (2016). Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering. Frontiers in Microbiology, 6, 1569.
Alexi, N., Nanou, E., Lazo, O., Guerrero, L., Grigorakis, K., Byrne, D. (2018). Check-All-That-Apply (CATA) with semi-trained assessors: Sensory profiles closer to descriptive analysis or consumer elicited data? Food Quality and Preference, 64, 11-20.

Ancín‐Azpilicueta, C.; Nieto‐Rojo, R.; Gómez‐Cordón, J. (2013) Effect of foliar urea fertilisation on volatile compounds in Tempranillo wine. Journal of the Science of Food and Agriculture, 93 (6), 1485-1481.
Ando, H., Kurata, A., Kishimoto, N. (2015). Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo‐shu). Journal of Applied Microbiology, 118 (4), 873-880.
Andorrà, I., Berradre, M., Mas, A., Esteve-Zarzoso, B., Guillamón, J. M. (2012) Effect of mixed culture fermentations on yeast populations and aroma profile. LWT, 49 (1), 8-13.
Auesukaree, C. (2017). Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. Journal of Bioscience and Bioengineering, 124(2), 133-142.
Azzolini, M., Tosi, E., Lorenzini, M., Finato, F., Zapparoli, G. (2015). Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 31 (2), 277-293.
Bechman, A., Phillips, R. D., & Chen, J. (2012). Changes in selected physical property and enzyme activity of rice and barley koji during fermentation and storage. Journal of Food Science, 77(6), M318-M322.
Belda, I., Ruiz, J., Esteban-Fernández, A., Navascués, E., Marquina, D., Santos, A., & Moreno-Arribas, M. V. (2017). Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules, 22(2), 189.
Belda, I., Navascués, E., Marquina, D., Santos, A., Calderon, F., & Benito, S. (2015). Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Applied Microbiology and Biotechnology, 99, 1911-1922.
Benito, Á., Calderón, F., & Benito, S. (2019). The influence of non-Saccharomyces species on wine fermentation quality parameters. Fermentation, 5(3), 54.
Binati, R. L., Junior, W. J. L., Luzzini, G., Slaghenaufi, D., Ugliano, M., & Torriani, S. (2020). Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. International Journal of Food Microbiology, 318, 108470.
Bokulich, N. A., Ohta, M., Lee, M., & Mills, D. A. (2014). Indigenous bacteria and fungi drive traditional kimoto sake fermentations. Applied and Environmental Microbiology, 80(17), 5522-5529.
Borren, E., & Tian, B. (2020). The important contribution of non-Saccharomyces yeasts to the aroma complexity of wine: A review. Foods, 10(1), 13.
Bourbon-Melo, N., Palma, M., Rocha, M. P., Ferreira, A., Bronze, M. R., Elias, H., & Sá-Correia, I. (2021). Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to enhance the aromatic profile of beer in mixed-culture fermentation with Saccharomyces cerevisiae. Food Microbiology, 95, 103678.
Branco, P., Francisco, D., Chambon, C., Hébraud, M., Arneborg, N., Almeida, M. G., Caldeira, J., Albergaria, H. (2014). Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Applied Microbiology and Biotechnology, 98 (2), 843-853.
Carneiro, R., Duncan, S., O'Keefe, S., Yu, D., Huang, H., Yin, Y., Neill, C., Zhang, B., Kuhar, T., Rideout, S. (2021). Utilizing consumer perception of edamame to guide new variety development. Frontiers in Sustainable Food Systems, 4, 556580.
Capece, A., Siesto, G., Romaniello, R., Lagreca, V. M., Pietrafesa, R., Calabretti, A., Romano, P. (2013). Assessment of competition in wine fermentation among wild Saccharomyces cerevisiae strains isolated from Sangiovese grapes in Tuscany region. LWT - Food Science and Technology, 54 (2), 485-492.
Carpena, M., Fraga-Corral, M., Otero, P., Nogueira, R. A., Garcia-Oliveira, P., Prieto, M. A., & Simal-Gandara, J. (2020). Secondary aroma: Influence of wine microorganisms in their aroma profile. Foods, 10(1), 51.
Capozzi, V., Berbegal, C., Tufariello, M., Grieco, F., Spano, G. (2019). Impact of co-inoculation of Saccharomyces cerevisiae, Hanseniaspora uvarum and Oenococcus oeni autochthonous strains in controlled multi starter grape must fermentations. LWT, 109, 241-249.
Cameleyre, M., Lytra, G., Tempere, S., Barbe, J.-C. (2015). Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. Journal of Agricultural and Food Chemistry, 63 (44), 9777-9788.
Chancharoonpong, C., Hsieh, P.-C., Sheu, S.-C. (2012). Enzyme production and growth of Aspergillus oryzae on soybean koji fermentation. Apcbee Procedia, 2, 57-61.
Chen, C. H., Wu, Y. L., Lo, D., Wu, M. C. (2013). Physicochemical property changes during the fermentation of longan (Dimocarpus longan) mead and its aroma composition using multiple yeast inoculations. Journal of the Institute of Brewing,119(4), 303–308.
Chen, C. H., Wu, P. H., Lo, D., Hsiang, Y. H., Wu, M. C. (2011). Study themumefural change and antioxidant properties during lemon essence making.International Research Journal of Biochemistry and Bioinformatics, 1(7):139-153.
Chen, C. H., Chang, M. H., Shih, M. K., Jiang, C. M., Wu, M. C. (2009). Effect of Thermal Treatment on Physicochemical Composition and Sensory Qualities, including ‘foxy’ Methyl Anthranilate of Interspecific Variety Golden Muscat (Vitis vinifera × Vitis labrusca) Fortified Wine Made in Taiwan. Journal of the Science of Food and Agriculture, 89:2551-2557.
Chen, C. H., Wu, M. C., Hou, C. Y., Jiang, C. M., Huang, C. M., Wang, Y. T. (2009). Effect of Phenolic Acid on AntioxidantActivity of Wine and Inhibition of Pectin Methyl Esterase. Journal of the Institute of Brewing, 115(4),328–333.
Chang, M.H, Chen, C.H. (2005). Develop an Appropriate Mandarin Sensorial Profile of Wines Made in Burgundy, Journal of Food Technology, 3(3): 308-313.
Chen, H., Liu, Y., Chen, J., Fu, X., Suo, R., Chitrakar, B., & Wang, J. (2022). Effects of spontaneous fermentation on microbial succession and its correlation with volatile compounds during fermentation of Petit Verdot wine. LWT, 168, 113890.
Chen, K., Liu, C., Wang, Y., Wang, Z., Li, F., Ma, L., & Li, J. (2021). Predominance of indigenous non-Saccharomyces yeasts in the traditional fermentation of greengage wine and their significant contribution to the evolution of terpenes and ethyl esters. Food Research International, 143, 110253.
Chen, L., Li, D., Ren, L., Ma, X., Song, S., & Rong, Y. (2021). Effect of non‐Saccharomyces yeasts fermentation on flavor and quality of rice wine. Journal of Food Processing and Preservation, 45(1), e15058.
Chen, L., Li, D., Ren, L., Song, S., Ma, X., & Rong, Y. (2021). Effects of simultaneous and sequential cofermentation of Wickerhamomyces anomalus and Saccharomyces cerevisiae on physicochemical and flavor properties of rice wine. Food Science & Nutrition, 9(1), 71-86.
Chen, L., Wang, S., Ren, L., Li, D., Ma, X., & Rong, Y. (2021). Flavour characteristics of rice wine fermented with mixed starter by moulds and yeast strains. International Journal of Food Science & Technology, 56(11), 5791-5798.
Chidi, B. S., Bauer, F., & Rossouw, D. (2018). Organic acid metabolism and the impact of fermentation practices on wine acidity: A review. South African Journal of Enology and Viticulture, 39(2), 1-15.
Ciani, M., Morales, P., Comitini, F., Tronchoni, J., Canonico, L., Curiel, J. A., Oro, L., Rodrigues, A. J., Gonzalez, R. (2016). Non-conventional yeast species for lowering ethanol content of wines. Frontiers in Microbiology, 7, 642.
Cray, J. A., Bell, A. N., Bhaganna, P., Mswaka, A. Y., Timson, D. J., Hallsworth, J. E. (2013). The biology of habitat dominance; can microbes behave as weeds? Microbial Biotechnology, 6 (5), 453-492.
Dai, J., Li, K., Song, N., Yao, W., Xia, H., Yang, Q., Zhang, X., Li, X., Wang, Z., Yao, L. (2020). Zygosaccharomyces rouxii, an aromatic yeast isolated from chili sauce, is able to biosynthesize 2-phenylethanol via the Shikimate or Ehrlich pathways. Frontiers in Microbiology, 11, 597454.
Daliri, E. B.-M., Lee, B. H., Park, B.-J., Kim, S.-H., Oh, D.-H. (2018). Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Science and Biotechnology, 27, 1781-1789.
de-la-Fuente-Blanco, A., Sáenz-Navajas, M.-P., Ferreira, V. (2016). On the effects of higher alcohols on red wine aroma. Food Chemistry. 210, 107-114.
Dinnella, C., Pierguidi, L., Spinelli, S., Borgogno, M., Toschi, T. G., Predieri, S., Lavezzi, G., Trapani, F.,Tura, M.; Magli, M. (2022). Remote testing: Sensory test during Covid-19 pandemic and beyond. Food Quality and Preference, 96, 104437.
Du Plessis, H., Du Toit, M., Nieuwoudt, H., Van der Rijst, M., Hoff, J., & Jolly, N. (2019). Modulation of wine flavor using Hanseniaspora uvarum in combination with different Saccharomyces cerevisiae, lactic acid bacteria strains and malolactic fermentation strategies. Fermentation, 5(3), 64.
Dutraive, O., Benito, S., Fritsch, S., Beisert, B., Patz, C.-D., & Rauhut, D. (2019). Effect of sequential inoculation with non-Saccharomyces and Saccharomyces yeasts on Riesling wine chemical composition. Fermentation, 5(3), 79.
Englezos, V., Torchio, F., Cravero, F., Marengo, F., Giacosa, S., Gerbi, V., Rantsiou, K., Rolle, L., Cocolin, L. (2016) Aroma profile and composition of Barbera wines obtained by mixed fermentations of Starmerella bacillaris (synonym Candida zemplinina) and Saccharomyces cerevisiae. LWT, 73, 567-575.
Environ, T., Ewert, J., Merz, M., Funk, J., Claaßen, W., Lutz-Wahl, S., Schmidt, H., Kuhn, A., & Fischer, L. (2016). A novel glutamyl (aspartyl)-specific aminopeptidase A from Lactobacillus delbrueckii with promising properties for application. PLoS One, 11(3), e0152139.
Fan, G., Teng, C., Xu, D., Fu, Z., Minhazul, K. A., Wu, Q., Liu, P., Yang, R., Li, X. (2019). Enhanced production of ethyl acetate using co-culture of Wickerhamomyces anomalus and Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 128 (5), 564-570.
Fariña, L., Medina, K., Urruty, M., Boido, E., Dellacassa, E., Carrau, F. (2012) Redox effect on volatile compound formation in wine during fermentation by Saccharomyces cerevisiae. Food Chemistry. 134 (2), 933-939.
Foley, H. J., Bates, M. (2019). Sensation and perception. Routledge.
Frost, R., Quiñones, I., Veldhuizen, M., Alava, J.-I.; Small, D.; Carreiras, M. (2015) What can the brain teach us about winemaking? An fMRI study of alcohol level preferences. PLoS One, 10 (3), e0119220.
Fujii, T., Yamauchi, T., Ishiyama, M., Gogami, Y., Oikawa, T., Hata, Y. (2015). Crystallographic studies of aspartate racemase from Lactobacillus sakei NBRC 15893. Acta Crystallographica Section F: Structural Biology Communications, 71 (8), 1012-1016.
García, M., Esteve-Zarzoso, B., Cabellos, J. M., & Arroyo, T. (2018). Advances in the Study of Candida stellata. Fermentation, 4(3), 74.
Gandra, J. R., Oliveira, E., Takiya, C. S., Del Valle, T. A., Rennó, F. P., Goes, R. H. T., Leite, R., Garcia, N., Batista, J., & Acosta, A. (2019). Amylolytic activity and chemical composition of rehydrated ground maize ensiled with α-amylase or glucoamylase. The Journal of Agricultural Science, 157(5), 449-455.

González-Royo, E., Pascual, O., Kontoudakis, N., Esteruelas, M., Esteve-Zarzoso, B., Mas, A., Canals, J. M., & Zamora, F. (2015). Oenological consequences of sequential inoculation with non-Saccharomyces yeasts (Torulaspora delbrueckii or Metschnikowia pulcherrima) and Saccharomyces cerevisiae in base wine for sparkling wine production. European Food Research and Technology, 240(5), 999-1012.
Hall, H., Zhou, Q., Qian, M. C., Osborne, J. P. (2017). Impact of yeasts present during prefermentation cold maceration of Pinot noir grapes on wine volatile aromas. American Journal of Enology and Viticulture, 68(1), 81-90.
Han, Y., Du, J., Li, J., Li, M. (2019). Quantification of the organic acids in hawthorn wine: a comparison of two HPLC methods. Molecules, 24 (11), 2150.
Holt, S., Miks, M. H., de Carvalho, B. T., Foulquie-Moreno, M. R., Thevelein, J. M. (2019). The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiology Reviews, 43(3), 193-222.
Honda, C., Kaneko, A., Katsuta, R., Tokuoka, M. (2022). Adjacent double branches exist in the branching structure of starch. Carbohydrate Research, 519, 108628.
Hou, C.Y., Huang, P. H., Lai, Y. T., Lin, S. P., Liou, B. K., Lin, H. W., Hsieh, C. W., Hsu, H. U., Cheng, K. C. (2022). Screening and identification of yeasts from fruits and their co-culture for cider production. Fermentation.8:1.
Huang, Y.; Zhong, M.; Mu, S.; Han, Y.; Shi, Y.; Li, X.; Li, D. (2023). Assessment of the contributions of Saccharomyces cerevisiae, Hansenula sp. and Pichia kudriavzevii to volatile organic compounds and sensory characteristics of waxy rice wine. European Food Research and Technology, 249 (3), 685-697.
Huang, C. H., Lai, Y. T., Cui, S. M., Yu, R. C., Cheng, K. C. (2018). Analysis of the aroma compounds of Taiwan draft beer. Journal of Agriculture Chemistry and Food Science. 56(5):113-120.
Hu, K., Jin, G.-J., Mei, W.-C., Li, T., & Tao, Y.-S. (2018). Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chemistry, 239, 495-501.
Hu, K., Jin, G.-J., Xu, Y.-H., & Tao, Y.-S. (2018). Wine aroma response to different participation of selected Hanseniaspora uvarum in mixed fermentation with Saccharomyces cerevisiae. Food Research International, 108, 119-127.
Hu, K., Jin, G.-J., Xu, Y.-H., Xue, S.-J., Qiao, S.-J., Teng, Y.-X., & Tao, Y.-S. (2019). Enhancing wine ester biosynthesis in mixed Hanseniaspora uvarum/Saccharomyces cerevisiae fermentation by nitrogen nutrient addition. Food Research International, 123, 559-566.
Hu, K., Qin, Y., Tao, Y. S., Zhu, X. L., Peng, C. T., Ullah, N. (2016). Potential of glycosidase from non‐Saccharomyces isolates for enhancement of wine aroma. Journal of Food Science, 81 (4), M935-M943.
Ioannou, P., & Papakitsou, I. (2020). Kodamaea ohmeri infections in humans: A systematic review. Mycoses, 63(7), 636-643.
Isogai, A., Utsunomiya, H., Kanda, R., & Iwata, H. (2005). Changes in the aroma compounds of sake during aging. Journal of Agricultural and Food Chemistry, 53(10), 4118-4123.
Ito, T., Konno, M., Shimura, Y., Watanabe, S., Takahashi, H., & Hashizume, K. (2016). Formation of guaiacol by spoilage bacteria from vanillic acid, a product of rice koji cultivation, in Japanese sake brewing. Journal of Agricultural and Food Chemistry, 64(22), 4599-4605.
Ito, T., Suzuki, N., Nakayama, A., Ito, M., & Hashizume, K. (2014). Factors affecting phenolic acid liberation from rice grains in the sake brewing process. Journal of Bioscience and Bioengineering, 118(6), 640-645.
Izu, H., Yamashita, S., Arima, H., Fujii, T. (2019). Nutritional characterization of sake cake (sake-kasu) after heat-drying and freeze-drying. Bioscience, Biotechnology, and Biochemistry, 83 (8), 1477-1483.
Jolly, N. P., Varela, C., Pretorius, I. S. (2014). Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Research, 14 (2), 215-237.
Jones, P. R., Gawel, R., Francis, I. L., & Waters, E. J. (2008). The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Quality and Preference, 19(6), 596-607.
Jeromel, A., Korenika, A.-M. J., & Tomaz, I. (2019). An influence of different yeast species on wine aroma composition. In Fermented Beverages (pp. 171-285).
Jiang, B.; Xi, Z.; Luo, M.; Zhang, Z. (2013). Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Research International, 51 (2), 482-489.
Jiang, Y., Lv, X., Zhang, C., Zheng, Y., Zheng, B., Duan, X., Tian, Y. (2019). Microbial dynamics and flavor formation during the traditional brewing of Monascus vinegar. Food Research International, 125, 108531.
Jin, Z., Cai, G., Wu, C., Hu, Z., Xu, X., Xie, G., Wu, D., & Lu, J. (2021). Profiling the key metabolites produced during the modern brewing process of Chinese rice wine. Food Research International, 139, 109955.
Kaewkrod, A., Niamsiri, N., Likitwattanasade, T., & Lertsiri, S. (2018). Activities of macerating enzymes are useful for selection of soy sauce koji. LWT, 89, 735-739.
Kitagaki, H., & Kitamoto, K. (2013). Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives. Annual Review of Food Science and Technology, 4, 215-235.
Koyanagi, T., Nakagawa, A., Kiyohara, M., Matsui, H., Tsuji, A., Barla, F., Take, H., Katsuyama, Y., Tokuda, K., & Nakamura, S. (2016). Tracing microbiota changes in yamahai-moto, the traditional Japanese sake starter. Bioscience, Biotechnology, and Biochemistry, 80(2), 399-406.
Kum, S.-J., Yang, S.-O., Lee, S. M., Chang, P.-S., Choi, Y. H., Lee, J. J., Hurh, B. S., & Kim, Y.-S. (2015). Effects of Aspergillus species inoculation and their enzymatic activities on the formation of volatile components in fermented soybean paste (doenjang). Journal of Agricultural and Food Chemistry, 63(5), 1401-1418.
Kutyna, D. R., Varela, C., Henschke, P. A., Chambers, P. J., Stanley, G. A. (2010). Microbiological approaches to lowering ethanol concentration in wine. Trends in Food Science & Technology, 21 (6), 293-302.
Lai, Y. T., Hsieh, C. W., Lo, Y. C., Liou, B. K., Lin, H. W., Hou, C. Y., Cheng, K. C. (2022). Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making. LWT, 154, 112653.
Lai, Y. T., Cheng, K. C., Lai, C. N., Lai, Y. J. (2019). Isolation and identification of aroma producing strain with esterification capacity from yellow water. PLOS ONE. 14(2):e0211356.
Lawless, H. T., Heymann, H. (2010). Discrimination Testing. In Sensory Evaluation of Food: Principles and Practices, 79-100.
Lee, D. E., Lee, S., Jang, E. S., Shin, H. W., Moon, B. S., & Lee, C. H. (2016). Metabolomic profiles of Aspergillus oryzae and Bacillus amyloliquefaciens during rice koji fermentation. Molecules, 21(6), 773.
Li, H.; Tao, Y.-S.; Wang, H.; Zhang, L.(2008). Impact odorants of Chardonnay dry white wine from Changli County (China). European Food Research and Technology, 227 (1), 287-292.
Liang, B., Zheng, Y., Wang, J., Zhang, W., Fu, Y., Kai, W., Xu, Y., Yuan, B., Li, Q., Leng, P. (2020). Overexpression of the persimmon abscisic acid β‐glucosidase gene (DkBG1) alters fruit ripening in transgenic tomato. The Plant Journal, 102 (6), 1220-1233.
Liu, G., Serikawa, J., Okutsu, K., Yoshizaki, Y., Futagami, T., Tamaki, H., & Takamine, K. (2021). Impact of fermentation temperature on the quality and sensory characteristics of imo‐shochu. Journal of the Institute of Brewing, 127(4), 417-423.
Liu, J., Arneborg, N., Toldam‐Andersen, T. B., Petersen, M. A., Bredie, W. L. (2017). Effect of sequential fermentations and grape cultivars on volatile compounds and sensory profiles of Danish wines. Journal of the Science of Food and Agriculture, 97 (11), 3594-3602.
Liu, S., Laaksonen, O., & Yang, B. (2019). Volatile composition of bilberry wines fermented with non-Saccharomyces and Saccharomyces yeasts in pure, sequential and simultaneous inoculations. Food Microbiology, 80, 25-39.
Liu, S., Yang, L., Zhou, Y., He, S., Li, J., Sun, H., Yao, S., & Xu, S. (2019). Effect of mixed moulds starters on volatile flavor compounds in rice wine. LWT, 112, 108215.
Lleixà, J., Martín, V., Portillo, M. d. C., Carrau, F., Beltran, G., & Mas, A. (2016). Comparison of fermentation and wines produced by inoculation of Hanseniaspora vineae and Saccharomyces cerevisiae. Frontiers in Microbiology, 7, 338.
Lu, Y., Voon, M. K. W., Chua, J.-Y., Huang, D., Lee, P.-R., Liu, S.-Q. (2017). The effects of co-and sequential inoculation of Torulaspora delbrueckii and Pichia kluyveri on chemical compositions of durian wine. Applied Microbiology and Biotechnology, 101, 7853-7863.
Lytra, G., Tempere, S., Le Floch, A., de Revel, G., Barbe, J.-C. (2013). Study of sensory interactions among red wine fruity esters in a model solution. Journal of Agricultural and Food Chemistry, 61 (36), 8504-8513.
Jang, Y., Okuda, M., Hashizume, K., Joyo, M., Mikami, S., & Goto-Yamamoto, N. (2011). Analyses of peptides in sake mash: Forming a profile of bitter-tasting peptides. Journal of Bioscience and Bioengineering, 112(3), 238-246.
Ma, L., Fu, L., Hu, Z., Li, Y., Zheng, X., Zhang, Z., Jiang, C., Zeng, B. (2019). Modulation of Fatty Acid Composition of Aspergillus oryzae in Response to Ethanol Stress. Microorganisms, 7, 158.
Mateo, J. J., & Maicas, S. (2016). Application of non-Saccharomyces yeasts to wine-making process. Fermentation, 2(3), 14.
Matsuda, A., Yamada, Y., Arite, T., Nakamura, S., Yano, T. (2010). Selection of yeasts for giving a good sour taste to sake and a sake brewing test. Journal of the Brewing Society of Japan. 105 (1), 39-48.
Meilgaard Morten, C., Vance, C. G., Thomas, C. B. (2016). Sensory Evaluation Techniques. CRC Press Taylor & Francis Group Boca Raton, FL-USA.
Mestre Furlani, M. V., Maturano, Y. P., Combina, M., Mercado, L. A., Toro, M. E., Vazquez, F. (2017). Selection of non-Saccharomyces yeasts to be used in grape musts with high alcoholic potential: A strategy to obtain wines with reduced ethanol content. FEMS Yeast Research, 17 (2), fox010.
Meligaard, M. (1999). Basic statistical methods. Sensory Evaluation Techniques, 265-304.
Mestre, M. V., Maturano, Y. P., Gallardo, C., Combina, M., Mercado, L., Toro, M. E., Carrau, F., Vazquez, F., & Dellacassa, E. (2019). Impact on sensory and aromatic profile of low ethanol malbec wines fermented by sequential culture of Hanseniaspora uvarum and Saccharomyces cerevisiae native yeasts. Fermentation, 5(3), 65.
Mihafu, F. D., Issa, J. Y., Kamiyango, M. W. (2020). Implication of sensory evaluation and quality assessment in food product development: A review. Current Research in Nutrition and Food Science Journal, 8 (3), 690-702.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31 (3), 426-428.
Mimura, N., Isogai, A., Iwashita, K., Bamba, T., & Fukusaki, E. (2014). Gas chromatography/mass spectrometry based component profiling and quality prediction for Japanese sake. Journal of Bioscience and Bioengineering, 118(4), 406-414.
Morata, A., Loira, I., Tesfaye, W., Bañuelos, M. A., González, C., Suárez Lepe, J. A. (2018). Lachancea thermotolerans applications in wine technology. Fermentation, 4 (3), 53.
Morata, A., Loira, I., Escott, C., del Fresno, J. M., Bañuelos, M. A., Suárez-Lepe, J. A. (2019). Applications of Metschnikowia pulcherrima in wine biotechnology. Fermentation, 5 (3).
Nagayoshi, E., Ozeki, K., Hata, M., Minetoki, T., Takii, Y. (2015). Transglycosilation activity of Aspergillus oryzae-derived -glucosidase. Journal of Biological Macromolecules. 15 (1), 13-27.
Nicolotti, L., Mall, V., & Schieberle, P. (2019). Characterization of Key Aroma Compounds in a Commercial Rum and an Australian Red Wine by Means of a New Sensomics-Based Expert System (SEBES)—An Approach To Use Artificial Intelligence in Determining Food Odor Codes. Journal of Agricultural and Food Chemistry, 67(14), 4011-4022.
Niu, Y., Zhu, Q., Xiao, Z. (2020) Characterization of perceptual interactions among ester aroma compounds found in Chinese Moutai Baijiu by gas chromatography-olfactometry, odor Intensity, olfactory threshold and odor activity value. Food Research International. 131, 108986.
Niu, Y., Wang, P., Xiao, Z., Zhu, J., Sun, X., & Wang, R. (2019). Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC–MS, GC–O, odor threshold and sensory analysis: An insight at the molecular level. Food Chemistry, 275, 143-153.
Niu, Y., Yao, Z., Xiao, Z., Zhu, G., Zhu, J., Chen, J. (2018) Sensory evaluation of the synergism among ester odorants in light aroma-type liquor by odor threshold, aroma intensity and flash GC electronic nose. Food Research International. 113, 102-114.
Negoro, H., Ishida, H. (2022). Development of sake yeast breeding and analysis of genes related to its various phenotypes. FEMS Yeast Research, 22 (1), foac057.
Oguro, Y., Nakamura, A., & Kurahashi, A. (2019). Effect of temperature on saccharification and oligosaccharide production efficiency in koji amazake. Journal of Bioscience and Bioengineering, 127(5), 570-574.
Okada, K., Gogami, Y., & Oikawa, T. (2013). Principal component analysis of the relationship between the d-amino acid concentrations and the taste of the sake. Amino Acids, 44(2), 489-498.
Okuda, M. (2019). Rice used for Japanese sake making. Bioscience, Biotechnology, and Biochemistry, 83(8), 1428-1441.
Okuda, M., Joyo, M., Tamamoto, Y., Sasaki, M., Takahashi, K., Goto‐Yamamoto, N., Ikegami, M., & Hashizume, K. (2018). Analysis of protein composition in rice cultivar used for sake brewing, and their effects on nitrogen compounds in sake. Cereal Chemistry, 95(2), 320-329.
Okuda, M., Miyamoto, M., Joyo, M., Takahashi, K., Goto-Yamamoto, N., Iida, S., & Ishii, T. (2016). The relationship between rice protein composition and nitrogen compounds in sake. Journal of Bioscience and Bioengineering, 122(1), 70-78.
Padilla, B., Gil, J. V., & Manzanares, P. (2016). Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Frontiers in Microbiology, 7, 411.
Padilla, B., Gil, J. V., & Manzanares, P. (2018). Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking. Fermentation, 4(3), 68.
Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., Lyng, J. (2021). Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry, 338, 128119.
Parapouli, M., Vasileiadis, A., Afendra, A.-S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6(1), 1.
Perestrelo, R., Silva, C., Gonçalves, C., Castillo, M., Câmara, J. S. (2020). An approach of the madeira wine chemistry. Beverages, 6 (1), 12.
Pérez-Jiménez, M., Sherman, E., Pozo-Bayón, M., & Pinu, F. R. (2021). Application of untargeted volatile profiling and data driven approaches in wine flavoromics research. Food Research International, 145, 110392.
Poivet, E., Tahirova, N., Peterlin, Z., Xu, L., Zou, D.-J., Acree, T., & Firestein, S. (2018). Functional odor classification through a medicinal chemistry approach. Science Advances, 4(2), eaao6086.
Pretorius, I. S. (2020). Tasting the terroir of wine yeast innovation. FEMS Yeast Research, 20 (1), foz084.
Puri, R., Khamrui, K., Khetra, Y., Malhotra, R., Devraja, H. (2016) Quantitative descriptive analysis and principal component analysis for sensory characterization of Indian milk product cham-cham. Journal of Food Science and Technology. 53, 1238-1246.
Rodrigues, A. J., Raimbourg, T., Gonzalez, R., Morales, P. (2016). Environmental factors influencing the efficacy of different yeast strains for alcohol level reduction in wine by respiration. LWT-Food Science and Technology, 65, 1038-1043.
Romano, P., Ciani, M., & Fleet, G. H. (2019). Yeasts in the Production of Wine. Springer.
Sáenz-Navajas, M. P., Ballester, J., Fernández-Zurbano, P., Ferreira, V., Peyron, D., Valentin, D. (2016). Wine quality perception: A sensory point of view. Wine Safety, Consumer Preference, and Human Health, 119-138.
Schmidt, C. V., Olsen, K., & Mouritsen, O. G. (2021). Umami potential of fermented beverages: Sake, wine, champagne, and beer. Food Chemistry, 360, 128971.
Seo, H. S., Lee, S., Singh, D., Shin, H. W., Cho, S. A., & Lee, C. H. (2018). Untargeted metabolite profiling for koji-fermentative bioprocess unravels the effects of varying substrate types and microbial inocula. Food Chemistry, 266, 161-169.
Shi, H., Zhou, X., Yao, Y., Qu, A., Ding, K., Zhao, G., Liu, S. Q. (2022). Insights into the microbiota and driving forces to control the quality of vinegar. LWT, 157, 113085.
Simonin, S., Alexandre, H., Nikolantonaki, M., Coelho, C., & Tourdot-Maréchal, R. (2018). Inoculation of Torulaspora delbrueckii as a bio-protection agent in winemaking. Food Research International, 107, 451-461.
Smid, E. J., Lacroix, C. (2013). Microbe–microbe interactions in mixed culture food fermentations. Current Opinion in Biotechnology, 24 (2), 148-154.
Steensels, J., & Verstrepen, K. J. (2014). Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations. Annu Rev Microbiol, 68(1), 61-80.
Stone, H., Bleibaum, R., Thomas, H. A. (2020). Sensory evaluation practices. Academic Press.
Stressler, T., Ewert, J., Merz, M., Funk, J., Claaßen, W., Lutz-Wahl, S., Schmidt, H., Kuhn, A., Fischer, L. (2016). A novel glutamyl (aspartyl)-specific aminopeptidase A from Lactobacillus delbrueckii with promising properties for application. PLoS One, 11 (3), e0152139.
Sugimoto, M., Kaneko, M., Onuma, H., Sakaguchi, Y., Mori, M., Abe, S., Soga, T., & Tomita, M. (2012). Changes in the charged metabolite and sugar profiles of pasteurized and unpasteurized Japanese sake with storage. Journal of Agricultural and Food Chemistry, 60(10), 2586-2593.
Sugimoto, M., Koseki, T., Hirayama, A., Abe, S., Sano, T., Tomita, M., & Soga, T. (2010). Correlation between sensory evaluation scores of Japanese sake and metabolome profiles. Journal of Agricultural and Food Chemistry, 58(1), 374-383.
Sumby, K. M., Grbin, P. R., Jiranek, V. (2010). Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chemistry, 121 (1), 1-16.
Suto, M., & Kawashima, H. (2022). Discrimination for sake brewing methods by compound specific isotope analysis and formation mechanism of organic acids in sake. Food Chemistry, 381, 132295.
Suto, M.; Kawashima, H., (2020). Carbon isotope ratio of organic acids in sake and wine by solid-phase extraction combined with LC/IRMS. Analytical and Bioanalytical Chemistry, 413 (2), 355-363.
Takahashi, K., & Goto-Yamamoto, N. (2011). Simple method for the simultaneous quantification of medium-chain fatty acids and ethyl hexanoate in alcoholic beverages by gas chromatography-flame ionization detector: Development of a direct injection method. Journal of Chromatography A, 1218(43), 7850-7856.
Takahashi, K., Kabashima, F., & Tsuchiya, F. (2016). Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry reveals the correlation between chemical compounds in Japanese sake and its organoleptic properties. Journal of Bioscience and Bioengineering, 121(3), 274-280.
Takahashi, K., & Kohno, H. (2016). Different polar metabolites and protein profiles between high-and low-quality Japanese ginjo sake. PLoS One, 11(3), e0150524.
Takahashi, K., Tsuchiya, F., & Isogai, A. (2014). Relationship between medium-chain fatty acid contents and organoleptic properties of Japanese sake. Journal of Agricultural and Food Chemistry, 62(33), 8478-8485.
Takahashi, M., Morikawa, K., Kita, Y., Shimoda, T., Akao, T., & Goto-Yamamoto, N. (2021). Changes in bacterial and chemical components and growth prediction for Lactobacillus sakei during kimoto-style fermentation starter preparation in sake brewing: a comprehensive analysis. Applied and Environmental Microbiology, 87(6), e02546-02520.
Takao, Y., Takahashi, T., Yamada, T., Goshima, T., Isogai, A., Sueno, K., Fujii, T., & Akao, T. (2018). Characteristic features of the unique house sake yeast strain Saccharomyces cerevisiae Km67 used for industrial sake brewing. Journal of Bioscience and Bioengineering, 126(5), 617-623.
Taniguchi, M., Takao, Y., Kawasaki, H., Yamada, T., & Fukusaki, E. (2020). Profiling of taste-related compounds during the fermentation of Japanese sake brewed with or without a traditional seed mash (kimoto). Journal of Bioscience and Bioengineering, 130(1), 63-70.
Tatsukami, Y., Morisaka, H., Aburaya, S., Aoki, W., Kohsaka, C., Tani, M., Hirooka, K., Yamamoto, Y., Kitaoka, A., & Fujiwara, H. (2018). Metabolite profiling of the fermentation process of" yamahai-ginjo-shikomi" Japanese sake. PLoS One, 13(1), e0190040.
Tanino, S., Singh, D., Jang, E. S., Shin, H. W., Moon, B. S., & Lee, C. H. (2017). Time-resolved comparative metabolomes for Koji fermentation with brown-, white-, and giant embryo-rice. Food Chemistry, 231, 258-266.
Tian, Y., Feng, Y., Zhao, M., & Su, G. (2022). Comparison and application of the extraction method for the determination of enzymatic profiles in matured soybean koji. Food Bioscience, 49, 101875.
Tempère, S., Marchal, A., Barbe, J.-C., Bely, M., Masneuf-Pomarede, I., Marullo, P., Albertin, W.(2018). The complexity of wine: clarifying the role of microorganisms. Applied Microbiology and Biotechnology, 102 (9), 3995-4007.
Todokoro, T., Negoro, H., Kotaka, A., Hata, Y., & Ishida, H. (2022). Aspergillus oryzae FaeA is responsible for the release of ferulic acid, a precursor of off-odor 4-vinylguaiacol in sake brewing. Journal of Bioscience and Bioengineering, 133(2), 140-145.
Tofalo, R., Schirone, M., Torriani, S., Rantsiou, K., Cocolin, L., Perpetuini, G., & Suzzi, G. (2012). Diversity of Candida zemplinina strains from grapes and Italian wines. Food Microbiology, 29(1), 18-26.
Tristezza, M., Tufariello, M., Capozzi, V., Spano, G., Mita, G., & Grieco, F. (2016). The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for industrial wine production. Frontiers in Microbiology, 670.
Tristezza, M., Vetrano, C., Bleve, G., Spano, G., Capozzi, V., Logrieco, A., Mita, G., & Grieco, F. (2013). Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiology, 36(2), 335-342.
Tsutsumi, S., Mochizuki, M., Sakai, K., Ieda, A., Ohara, R., Mitsui, S., Ito, A., Hirano, T., Shimizu, M., & Kato, M. (2019). Ability of Saccharomyces cerevisiae MC87-46 to assimilate isomaltose and its effects on sake taste. Scientific Reports, 9(1), 1-9.
Tufariello, M., Fragasso, M., Pico, J., Panighel, A., Castellarin, S. D., Flamini, R., & Grieco, F. (2021). Influence of non-Saccharomyces on wine chemistry: A focus on aroma-related compounds. Molecules, 26(3), 644.
Tufariello, M., Capozzi, V., Spano, G., Cantele, G., Venerito, P., Mita, G., Grieco, F. (2020). Effect of co-inoculation of Candida zemplinina, Saccharomyces cerevisiae and Lactobacillus plantarum for the industrial production of Negroamaro wine in Apulia (Southern Italy). Microorganisms. 8 (5), 726.
Varela, C., Barker, A., Tran, T., Borneman, A., Curtin, C. (2017). Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum. International Journal of Food Microbiology, 252, 1-9.
Van Gemert, L. (2011). Odour thresholds: Compilations of odour threshold values in air, water and other media, 2.
Vicente, J., Baran, Y., Navascués, E., Santos, A., Calderón, F., Marquina, D., Rauhut, D., Benito, S. (2022). Biological management of acidity in wine industry: A review. International Journal of Food Microbiology, 109726.
Vidal, L., Antúnez, L., Ares, G., Cuffia, F., Lee, P.-Y., Le Blond, M., Jaeger, S. R. (2019). Sensory product characterisations based on check-all-that-apply questions: Further insights on how the static (CATA) and dynamic (TCATA) approaches perform. Food Research International, 125, 108510.
Vilela, A., Bacelar, E., Pinto, T., Anjos, R., Correia, E., Gonçalves, B., Cosme, F. (2019) Beverage and food fragrance biotechnology, novel applications, sensory and sensor techniques: An overview. Foods. 8 (12), 643.
Walker, G. M., & Stewart, G. G. (2016). Saccharomyces cerevisiae in the production of fermented beverages. Beverages, 2(4), 30.
Walker, G. M., & Walker, R. S. (2018). Enhancing yeast alcoholic fermentations. Advances in Applied Microbiology, 105, 87-129.
Wang, C., Mas, A., & Esteve-Zarzoso, B. (2015). Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during alcoholic fermentation. International Journal of Food Microbiology, 206, 67-74.
Wang, R., Zhao, T., Zhuo, J., Zhan, C., Zhang, F., Linhardt, R. J., Bai, Z., & Yang, Y. (2021). MAPK/HOG signaling pathway induced stress‐responsive damage repair is a mechanism for Pichia pastoris to survive from hyperosmotic stress. Journal of Chemical Technology & Biotechnology, 96(2), 412-422.
Xia, Y., Song, J., Zhong, F., Halim, J., O'Mahony, M. (2020). The 9-point hedonic scale: Using R-Index Preference Measurement to compute effect size and eliminate artifactual ties. Food Research International, 133, 109140.
Xiao, Q.; Zhou, X.; Xiao, Z.; Niu, Y. (2017). Characterization of the differences in the aroma of cherry wines from different price segments using gas chromatography–mass spectrometry, odor activity values, sensory analysis, and aroma reconstitution. Food Science and Biotechnology, 26 (2), 331-338.
Yamashita, H. (2021). Koji starter and Koji world in Japan. Journal of Fungi, 7(7), 569.
Yan, G., Zhang, B., Joseph, L., & Waterhouse, A. L. (2020). Effects of initial oxygenation on chemical and aromatic composition of wine in mixed starters of Hanseniaspora vineae and Saccharomyces cerevisiae. Food Microbiology, 90, 103460.
Yang, Y., Xia, Y., Lin, X., Wang, G., Zhang, H., Xiong, Z., Yu, H., Yu, J., & Ai, L. (2018). Improvement of flavor profiles in Chinese rice wine by creating fermenting yeast with superior ethanol tolerance and fermentation activity. Food Research International, 108, 83-92.
Yu, Z., Zhao, H., Li, H., Zhang, Q., Lei, H., & Zhao, M. (2012). Selection of Saccharomyces pastorianus variants with improved fermentation performance under very high gravity wort conditions. Biotechnology Letters, 34, 365-370.
Zha, M., Sun, B., Wu, Y., Yin, S., & Wang, C. (2018). Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Wickerhamomyces anomalus for Chinese Baijiu making. Journal of Bioscience and Bioengineering, 126(2), 189-195.
Zhang, B. Q., Shen, J. Y., Duan, C.-Q., Yan, G.-L. (2018). Use of Indigenous Hanseniaspora vineae and Metschnikowia pulcherrima Co-fermentation With Saccharomyces cerevisiae to Improve the Aroma Diversity of Vidal Blanc Icewine. Frontiers in Microbiology, 9.
Zhang, K., Wu, W., & Yan, Q. (2020). Research advances on sake rice, koji, and sake yeast: A review. Food Science & Nutrition, 8(7), 2995-3003.
Zhao, G., Ding, L.-L., Yao, Y., Cao, Y., Pan, Z.-H., & Kong, D.-H. (2018). Extracellular proteome analysis and flavor formation during soy sauce fermentation. Frontiers in Microbiology, 9, 1872.
Zhao, X., Procopio, S., & Becker, T. (2015). Flavor impacts of glycerol in the processing of yeast fermented beverages: a review. Journal of Food Science and Technology, 52(12), 7588-7598.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90781-
dc.description.abstract清酒是日本國酒,其以稻米為原料,經由米麴菌與酵母菌並行複式發酵製成。微生物發酵過程中會產生多種二級代謝物,進而影響酒類品質與消費者購買意願。非釀酒酵母菌存在於天然環境中,由於其容易造成發酵的停滯,因此多被視為腐敗菌,近期許多研究顯示非釀酒酵母菌可以有效提升紅酒香氣複雜度,而較少有應用於清酒發酵的研究。本實驗目的為使用多種酵母菌共發酵以提升清酒風味與品質。實驗透過分析米麴酶活性與小分子產量評估不同米種與麴菌菌株之影響,後續選擇臺南十一號與吉野一號為清酒原料;從水果純化、鑑定與篩選野生酵母菌,選用 Saccharomyces cerevisiae NTUAFM-Y018和 Hanseniaspora uvarum NTUAFM-G001進行共培養,並以順序接種優化清酒發酵製程;清酒成品使用氣相層析分析揮發性香氣圖譜,並以 CATA 與9分喜好性品評進行感官分析。米麴分析結果顯示,實驗室菌株 Aspergillus oryzae NTUAFM-M001具有較高的 b-葡萄糖苷酶活性,吉野一號組別高出60 %,臺南十一號組別高出63 %,而益全香米組別高出32%。酵母菌共培養實驗結果顯示順序式接種進行清酒發酵可以延長 H. uvarum 存活時間並延後發酵天數。相較於單一培養,共培養方式顯著了提升酯類與高級醇含量,吉野一號與臺南十一號組別的酯類總量分別增加15% 和12%;高級醇總量分別增加14% 和8%,並在感官品評中的香氣、風味與整體喜好度獲得較高評分。本研究以 H. uvarum 與 S. cerevisiae 進行清酒的共發酵,可以有助於提升清酒的風味。zh_TW
dc.description.abstractSake is a Japanese traditional alcoholic beverage. The brewing process include multiple parallel fermentation which is performed by Aspergillus oryzae and Saccharomyces cerevisiae, respectively. Non-Saccharomyces yeasts is naturally present on the environment. Many studies showed their capacity for modulating wine aroma recently, however, the effect of non-Saccharomyces yeast in co-fermentation on sake flavor remains unclear. The study aims to evaluate the influence on sake flavor with mixed fermentation. Tainan-11 and Yoshino-1 were selected to make koji by enzyme activity analysis. Wild yeasts were screened from fruits and identified by 5.8S ribosome DNA sequencing. S. cerevisiae NTUAFM-Y018 and Hanseniaspora uvarum NTUAFM-G001 were selected to carry out co-fermentation by sequential inoculation. Gas chromatography (GC) analysis would be used to analyze aroma compounds. Finally, we performed sensory evaluation by CATA and 9-point hedonic scale test. Based on the results, A. oryzae NTUAFM-M001 had higher b-glucosidase activity compared with commercial A. oryzae. Yoshino-1, Tainan-11 and Tai-Nong-1 increased 60, 63 and 32% higher b-glucosidase activity respectively. Sake fermented by the co-culture of S. cerevisiae/H. uvarum improved the aroma compound contents, Yoshino-1 and Tainan-11 increased 15 and 12% higher content of the total ester than the pure culture of S. cerevisiae respectively. Yoshino-1 and Tainan-11 enhanced 14 and 8% higher content of the total higher alcohol. Furthermore, the sensory evaluation showed that the co-fermentation by S. cerevisiae and H. uvarum enhanced the sake flavor. This study provides a contribution to answer the influence of the non-Saccharomyces yeast on sake organoleptic properties.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:35:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:35:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 ix
List of figures x
List of tables xii
壹、 前言 1
貳、 文獻回顧 2
1. 酒的簡介 2
1.1. 法規定義及分類 2
2. 清酒的發展及特性 2
2.1. 清酒的歷史 2
2.2. 清酒的特色 3
2.3. 原料米 3
2.4. 清酒的分類 6
2.5. 清酒中的微生物 7
2.6. 清酒的釀造製程 8
2.7. 清酒相關法規 10
3. 清酒中的風味 14
3.1. 非揮發性化合物 14
3.2. 揮發性化合物 16
4. 米麴菌 19
4.1. Aspergillus oryzae 19
4.2. 麴的介紹 19
4.3. 清酒中的米麴 20
5. 酵母菌 20
5.1. 酒精發酵 20
5.2. 酵母菌之應用 23
5.3. Saccharomyces cerevisiae 23
5.4. Non-Saccharomyces yeast 23
6. 感官品評 26
6.1. 差異性品評(Discrimination tests) 26
6.2. 描述性分析 (Descriptive analysis) 26
6.3. 接受性品評 (Acceptance tests) 27
參、 研究目的與架構 28
1. 研究目的 28
2. 研究架構 28
肆、 材料與方法 30
1. 實驗原料 30
1.1. 實驗菌株 30
1.2. 稻米 30
1.3. 水果 30
2. 實驗儀器及器材 30
2.1. 主要儀器 30
2.2. 實驗試劑 31
2.3. 實驗培養基 34
3. 實驗方法 35
3.1. 非釀酒酵母菌篩選 35
3.2. 基因定序 35
3.3. 生化試驗 38
3.4. 製麴 40
3.5. 佈麴 41
3.6. 米麴酵素活性測定 41
3.7. 米麴小分子代謝物測定 43
3.8. 酒精發酵 44
3.9. 清酒中的化合物分析 46
3.10. 感官品評 50
3.11. 統計分析 51
伍、 結果與討論 52
1. 非釀酒酵母菌篩選 52
2. 酵母菌生理生化特性試驗 54
2.1. 菌落外觀型態 54
2.2. 碳源同化試驗 55
2.3. 氮源同化試驗 55
2.4. 不同滲透壓耐受度試驗 55
2.5. 溫度耐受度試驗 56
2.6. 發酵能力試驗 56
3. 米麴發酵之方法建立 62
3.1. 米麴製備 62
4. 不同白米及麴菌對米麴中酵素活性的探討 64
4.1. a-澱粉酶活性 64
4.2. b-葡萄糖苷酶活性 67
4.3. 蛋白酶活性 69
5. 不同白米及麴菌對米麴中小分子代謝物含量的探討 71
5.1. 還原糖含量 71
5.2. 游離胜肽含量 73
6. 清酒發酵特性探討 75
6.1. 清酒之物化性質分析 75
6.2. 酵母菌之菌數變化 77
6.3. 葡萄糖與酒精含量變化 80
6.4. 甘油含量變化 82
6.5. 揮發性化合物 84
7. 不同發酵組別之主成份分析及樣品分群 93
8. 清酒感官品評 96
陸、 結論與未來展望 101
柒、 參考文獻 102
捌、 附錄 xiv
-
dc.language.isozh_TW-
dc.title利用非釀造清酒酵母菌共培養製備清酒之品質分析zh_TW
dc.titleProduction and property analysis of sake by co-cultivation with non-Saccharomyces yeastsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐國強;蘇正德;侯智耀;陳千浩zh_TW
dc.contributor.oralexamcommitteeKuo-Chiang Hsu;Jeng-De Su;Chih-Yao Hou;Chien-Hao Chenen
dc.subject.keyword清酒,發酵,酵母菌,風味,共培養,zh_TW
dc.subject.keywordsake,fermentation,yeast,aroma,co-fermentation,en
dc.relation.page161-
dc.identifier.doi10.6342/NTU202302441-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2028-07-14-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
5.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved