Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90766
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋zh_TW
dc.contributor.advisorTing-Jang Luen
dc.contributor.author鄧凱尹zh_TW
dc.contributor.authorKai-Yin Tengen
dc.date.accessioned2023-10-03T17:31:26Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-12-
dc.identifier.citationAgopian, R. G. D.; Soares, C. A.; Purgatto, E.; Cordenunsi, B. R.; Lajolo, F. M., Identification of Fructooligosaccharides in Different Banana Cultivars. J. Agric. Food Chem. 2008, 56, 3305-3310.
Aldrete-Herrera, P. I.; Lopez, M. G.; Medina-Torres, L.; Ragazzo-Sanchez, J. A.; Calderon-Santoyo, M.; Gonzalez-Avila, M.; Ortiz-Basurto, R. I., Physicochemical Composition and Apparent Degree of Polymerization of Fructans in Five Wild Agave Varieties: Potential Industrial Use. Foods 2019, 8.
Benkeblia, N., Fructooligosaccharides and fructans analysis in plants and food crops. J. Chromatogr. A, 1313, 54-61.
Campbell, J. M.; Bauer, L. L.; Fahey, G. C.; Hogarth, A. J. C. L.; Wolf, B. W.; Hunter, D. E., Selected Fructooligosaccharide (1-Kestose, Nystose, and 1F-β-Fructofuranosylnystose) Composition of Foods and Feeds. J. Agric. Food Chem. 1997, 45, 3076-3082.
Davies, G. J.; Wilson, K. S.; Henrissat, B., Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 1997, 321, 557-559.
De Oliveira, A. J. B.; Goncalves, R. A. C.; Chierrito, T. P. C.; Dos Santos, M. M.; de Souza, L. M.; Gorin, P. A. J.; Sassaki, G. L.; Iacomini, M., Structure and degree of polymerisation of fructooligosaccharides present in roots and leaves of Stevia rebaudiana (Bert.) Bertoni. Food Chem. 2011, 129, 305-311.
Ernits, K.; Eek, P.; Lukk, T.; Visnapuu, T.; Alamae, T., First crystal structure of an endolevanase - the BT1760 from a human gut commensal Bacteroides thetaiotaomicron. Sci. Rep. 2019, 9, 8443.
Huebner, J.; Wehling, R. L.; Hutkins, R. W., Functional activity of commercial prebiotics. Int. Dairy J. 2007, 17, 770-775.
Harrison, S.; Xue, H.; Lane, G.; Villas-Boas, S.; Rasmussen, S., Linear ion trap MS(n) of enzymatically synthesized 13C-labeled fructans revealing differentiating fragmentation patterns of beta (1-2) and beta (1-6) fructans and providing a tool for oligosaccharide identification in complex mixtures. Anal. Chem. 2012, 84, 1540-1548.
Hernandez-Hernandez, O.; Calvillo, I.; Lebron-Aguilar, R.; Moreno, F. J.; Sanz, M. L., Hydrophilic interaction liquid chromatography coupled to mass spectrometry for the characterization of prebiotic galactooligosaccharides. J. Chromatogr. A, 2012, 1220, 57-67.
Hsu, H. C.; Liew, C. Y.; Huang, S. P.; Tsai, S. T.; Ni, C. K., Simple Method for De Novo Structural Determination of Underivatised Glucose Oligosaccharides. Sci. Rep. 2018, 8, 5562.
Ispiryan, L.; Heitmann, M.; Hoehnel, A.; Zannini, E.; Arendt, E. K., Optimization and Validation of an HPAEC-PAD Method for the Quantification of FODMAPs in Cereals and Cereal-Based Products. J. Agric. Food Chem. 2019, 67, 4384-4392.
Kawakami, A.; Yoshida, M., Fructan:fructan 1-fructosyltransferase, a key enzyme for biosynthesis of graminan oligomers in hardened wheat. Planta 2005, 223, 90-104.
Kawakami, A.; Yoshida, M., Graminan breakdown by fructan exohydrolase induced in winter wheat inoculated with snow mold. J. Plant Physiol. 2012, 169, 294-302.
Król, B.; Grzelak, K., Qualitative and quantitative composition of fructooligosaccharides in bread. Eur. Food Res. Technol. 2006, 223, 755-758.
Li, J.; Hu, D.; Zong, W.; Lv, G.; Zhao, J.; Li, S., Determination of inulin-type fructooligosaccharides in edible plants by high-performance liquid chromatography with charged aerosol detector. J. Agric. Food Chem. 2014, 62, 7707-7713.
Lin, A. H.-M.; Chang, Y.-H.; Chou, W.-B.; Lu, T.-J., Interference Prevention in Size-Exclusion Chromatographic Analysis of Debranched Starch Glucans by Aqueous System. J. Agric. Food Chem. 2011, 59, 5890-5898.
Logtenberg, M. J.; Donners, K. M. H.; Vink, J. C. M.; van Leeuwen, S. S.; de Waard, P.; de Vos, P.; Schols, H. A., Touching the High Complexity of Prebiotic Vivinal Galacto-oligosaccharides Using Porous Graphitic Carbon Ultra-High-Performance Liquid Chromatography Coupled to Mass Spectrometry. J. Agric. Food Chem. 2020, 68, 7800-7808.
Martin-Ortiz, A.; Carrero-Carralero, C.; Hernandez-Hernandez, O.; Lebron-Aguilar, R.; Moreno, F. J.; Sanz, M. L.; Ruiz-Matute, A. I., Advances in structure elucidation of low molecular weight carbohydrates by liquid chromatography-multiple-stage mass spectrometry analysis. J. Chromatogr. A, 2020, 1612, 460-664.
McCleary, B. V.; Charmier, L. M. J.; McKie, V. A.; McLoughlin, C.; Rogowski, A., Determination of Fructan (Inulin, FOS, Levan, and Branched Fructan) in Animal Food (Animal Feed, Pet Food, and Ingredients): Single-Laboratory Validation, First Action 2018.07. J. AOAC Int. 2019, 102, 883-892.
Mutanda, T.; Wilhelmi, B. S.; Whiteley, C. G., Response surface methodology: Synthesis of inulooligosaccharides with an endoinulinase from Aspergillus niger. Enzyme Microb. Technol. 2008a, 43, 362-368.
Nagai, A.; Yamamoto, T.; Wariishi, H., Identification of fructo- and maltooligosaccharides in cured tobacco leaves (Nicotiana tabacum). J. Agric. Food Chem. 2012, 60, 6606-6612.
Nagem, R. A.; Rojas, A. L.; Golubev, A. M.; Korneeva, O. S.; Eneyskaya, E. V.; Kulminskaya, A. A.; Neustroev, K. N.; Polikarpov, I., Crystal structure of exoinulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. J. Mol. Biol. 2004, 344, 471-480.
Neri-Numa, I. A.; Arruda, H. S.; Geraldi, M. V.; Maróstica Júnior, M. R.; Pastore, G. M., Natural prebiotic carbohydrates, carotenoids and flavonoids as ingredients in food systems. Curr. Opin. Food Sci. 2020, 33, 98-107.
Pang, W. C.; Ramli, A. N. M.; Johari, N. D., Structural Properties, Production, and Commercialisation of Invertase. Sains Malays. 2019, 48, 523-531.
Pouyez, J.; Mayard, A.; Vandamme, A. M.; Roussel, G.; Perpete, E. A.; Wouters, J.; Housen, I.; Michaux, C., First crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum: discovery of an extra-pocket in the catalytic domain responsible for its endo-activity. Biochimie 2012, 94, 2423-2430.
Ritsema, T.; Smeekens, S., Fructans: beneficial for plants and humans. Curr. Opin. Plant Biol. 2003, 6, 223-230.
Silva, M. F.; Rigo, D.; Mossi, V.; Golunski, S.; de Oliveira Kuhn, G.; Di Luccio, M.; Dallago, R.; de Oliveira, D.; Oliveira, J. V.; Treichel, H., Enzymatic synthesis of fructooligosaccharides by inulinases from Aspergillus niger and Kluyveromyces marxianus NRRL Y-7571 in aqueous–organic medium. Food Chem. 2013a, 138, 148-153.
Silva, M. F.; Rigo, D.; Mossi, V.; Golunski, S.; Kuhn Gde, O.; Di Luccio, M.; Dallago, R.; de Oliveira, D.; Oliveira, J. V.; Treichel, H., Enzymatic synthesis of fructooligosaccharides by inulinases from Aspergillus niger and Kluyveromyces marxianus NRRL Y-7571 in aqueous-organic medium. Food Chem. 2013b, 138, 148-153.
Spichtig, V.; Austin, S.; Brunt, K.; Van Soest, J.; Sanders, P., Determination of Fructans in Infant Formula and Adult/Pediatric Nutritional Formula by Anion-Exchange Chromatography with Pulsed Amperometric Detection after Enzymatic Treatment: Collaborative Study, Final Action 2016.14. J. AOAC Int. 2020a, 103, 1301-1317.
Spichtig, V.; Austin, S.; Brunt, K.; Van Soest, J.; Sanders, P., Determination of Fructans in Infant Formula and Adult/Pediatric Nutritional Formula by Anion-Exchange Chromatography with Pulsed Amperometric Detection after Enzymatic Treatment: Collaborative Study, Final Action 2016.14. J. AOAC Int. 2020b, 103, 1301-1317.
Tamiya, T.; Hirose, H.; Kunihiro, K.; Yamamoto, T.; Toyohara, K.; Nakayama, Y.; Kitazono, E., Mass spectrometry imaging of BARLEYmax fructooligosaccharides. J. Cereal Sci. 2020, 95.
Tsai, S. T.; Chen, J. L.; Ni, C. K., Does low-energy collision-induced dissociation of lithiated and sodiated carbohydrates always occur at anomeric carbon of the reducing end? Rapid Commun. Mass Spectrom. 2017, 31, 1835-1844.
Vallejo-Garcia, L. C.; Rodriguez-Alegria, M. E.; Lopez Munguia, A., Enzymatic Process Yielding a Diversity of Inulin-Type Microbial Fructooligosaccharides. J. Agric. Food Chem. 2019, 67, 10392-10400.
Van Den Ende, W.; Clerens, S.; Vergauwen, R.; Van Riet, L.; Van Laere, A.; Yoshida, M.; Kawakami, A., Fructan 1-exohydrolases. beta-(2,1)-trimmers during graminan biosynthesis in stems of wheat? Purification, characterization, mass mapping, and cloning of two fructan 1-exohydrolase isoforms. Plant Physiol. 2003, 131, 621-631.
Van den Ende, W., Multifunctional fructans and raffinose family oligosaccharides. Front. Plant Sci. 2013, 4, 247.
Verspreet, J.; Holmgaard Hansen, A.; Dornez, E.; Delcour, J. A.; Harrison, S. J.; Courtin, C. M., Liquid chromatography/mass spectrometry analysis of branched fructans produced in vitro with 13C-labeled substrates. Rapid Commun. Mass Spectrom. 2014, 28, 2191-2200.
Verspreet, J.; Holmgaard Hansen, A.; Dornez, E.; Delcour, J. A.; Van den Ende, W.; Harrison, S. J.; Courtin, C. M., LC-MS analysis reveals the presence of graminanand neo-type fructans in wheat grains. J. Cereal Sci. 2015, 61, 133-138.
Verspreet, J.; Hansen, A. H.; Harrison, S. J.; Vergauwen, R.; Van den Ende, W.; Courtin, C. M., Building a fructan LC-MS(2) library and its application to reveal the fine structure of cereal grain fructans. Carbohydr. Polym. 2017, 174, 343-351.
Zhang, W.; Xu, W.; Ni, D.; Dai, Q.; Guang, C.; Zhang, T.; Mu, W., An overview of levandegrading enzyme from microbes. Appl. Microbiol. Biotechnol. 2019, 103, 7891-7902.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90766-
dc.description.abstract果寡/聚醣依其醣結構骨幹可分為五大類群,包含分別以β-(2,1)、β-(2,6)為主幹的兩種直線型果寡/聚醣,以及包含兩種鍵結的三種分支型果寡/聚醣。不僅如此,同類型的果寡/聚醣有GFn 與Fn 兩種形式,自然界中大部分為GFn 型,以α-glucose 為核心,以fructose 進行延伸的異質多醣,不具有還原端;少部分為Fn 型,僅由fructose 進行延伸的同質多醣,具有還原端。由於果寡/聚醣種類繁多,且其含量分布及組成較不明確,為了確認農作物及果寡醣商品中含有何種果寡/聚醣,需建立判別β-(2,1)、β-(2,6) 鍵結果寡/聚醣的方式。本研究利用市售果寡醣樣品以及農作物,先以 sucrase、maltose、beta-amylase、pullulanase等酵素先水解非果寡/聚醣的醣類分子以減少干擾,接著以 Exo-inulinase、Endo-inulinase 及 Endo-levanase 等專一性酵素將保留了果寡/聚醣的水解液進一步水解出葡萄糖及果糖等單醣,再以高效陰離子交換層析-脈衝安培流檢測法求得單醣含量後,將兩次水解後的單醣含量進行比較進而得到果寡/聚醣含量。同種樣品中,若使用 Endo-levanase 處理後單醣含量明顯上升,代表該樣品具有 β-(2,6) 鍵結的果寡/聚醣,此方式可以推導出樣品中含有不同鍵結類型的果寡/聚醣結構及含量差異。為進一步驗證這些結果,另外進行了比色法測定樣品中果寡/聚醣含量,一樣利用Endo-inulinase 及 Endo-levanase專一性酵素的差異來比較是有含有不同種類之果寡/聚醣,結果顯示部分樣品含有 β-(2,6) 鍵結的果寡/聚醣,且觀察層析圖中的波峰分布,可以推論有些樣品可能含有分支型的果寡/聚醣。本研究之結果可應用於開發更精確的營養配方,以將這種功能性食品成分包含在人類和動物飲食中,也可應用於具有還原以及非還原端的果寡醣結構特徵鑑別。zh_TW
dc.description.abstractFructan/fructooligosaccharide (FOS) can be classified into five subfamilies according to the backbone of their structure, including two linear types fructan/FOS composed with β-(2,1) or β-(2,6) backbone, and three branched types fructan/FOS with both types of linkages. Not only that, the same type fructan/FOS has two forms, GFn and Fn. Most of which are GFn type in nature, the heterooligosaccharide with α-glucose as the core and fructose for β-extension, without reducing end; A few are Fn type, the homooligosaccharides that are β-extended only by fructose, with reducing ends. Due to the wide variety of fructan/FOS, and their content distribution and composition are not clear, in order to confirm what kind of fructan/FOS are contained in crops and FOS products., it is necessary to establish a method to differentiate the bonding between β-(2,1), β-(2,6). In this study, commercially available fructan and FOS samples and crops were used to hydrolyze sugar molecules other than fructan with sucrase, maltose, beta-amylase, pullulanase and other enzymes in order to reduce interference, followed by specific enzymes such as exo-inulinase, endo-inulinase and endo-levanase, they will further hydrolyze the hydrolyzate that remains fructan/FOS to monosaccharides such as glucose and fructose, and then use high-performance anion-exchange chromatography with pulsed amperometric detection method to detect the content of monosaccharides, comparing the monosaccharide content in first and second hydrolyzation to obtain the fructan/FOS content. In the same sample, if the monosaccharide content increases significantly after treatment with endo-levanase, it means that the sample has β-(2,6) linkage fructan or FOS. This method can deduce that the sample contains different types and content of fructan/FOS. In order to further verify these results, a colorimetric method was also carried out to measure the content of fructan/FOS. The difference of specificity between the endo-inulinase and endo-levanase was also used to compare the contents of different types of fructan/FOS. The results indicate that some samples contain β-(2,6)-linked fructan/FOS. Additionally, based on the peak distribution observed in the chromatogram, it can be inferred that certain samples may contain branched fructan/FOS. The results of this study can be applied to the development of more precise nutritional formulas to include this functional food ingredient, It can also be used to identify the structural characteristics of FOS with reducing and non-reducing ends.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:31:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:31:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents第一章、前言 ................................................................................................................ 1
第二章、文獻回顧 ........................................................................................................ 2
2-1 果聚醣&果寡醣 ................................................................................................ 2
2-2 果寡醣水解酵素 ............................................................................................... 6
2-3 轉醣反應 ......................................................................................................... 10
2-4 常見聚寡/聚醣鍵結種類解析 ........................................................................ 12
2-5 果寡/聚醣含量分析 ........................................................................................ 16
2-6 Fructan 水解酵素 ............................................................................................ 21
第三章、實驗目的與研究架構 .................................................................................. 23
第四章、材料與方法 .................................................................................................. 24
I. 實驗材料 ............................................................................................................. 24
II. 實驗藥品 ............................................................................................................. 25
III. 儀器設備 ......................................................................................................... 27
IV. 實驗方法 ......................................................................................................... 29
4-1 總醣含量測定 (Phenol-sulfuric acid method) ........................................... 29
4-2 還原醣含量測定方法 (Somogyi-Nelson method) .................................... 29
4-3 Fructan 分析方法 - 比色法 ..................................................................... 29
4-4 Fructan 分析方法 - Ion Chromatography (IC) 法 ................................... 31
4-5 以石墨化碳SPE 去除酵素 Fructan 水解反應後之單醣 ........................ 36
4-6 Fructan 含量計算 ....................................................................................... 38
第五章、結果與討論 .................................................................................................. 42
5-1 農產品的選定 ................................................................................................. 42
5-2 酵素水解專一性差異 ..................................................................................... 42
5-3 比色法和 IC 法之實驗差異 .......................................................................... 43
5-4 液相層析系統條件建立 ................................................................................. 43
5-5 比色法實驗結果 ............................................................................................. 44
5-6 IC 法實驗結果 (IC-endo-L(+) & IC-endo-L(-)) ............................................ 46
第六章、結論 .............................................................................................................. 82
第七章、參考文獻 ...................................................................................................... 83
-
dc.language.isozh_TW-
dc.title利用比色法與層析法測定果寡醣與果聚醣zh_TW
dc.titleMeasurement of fructo-oligosaccharides and fructans by colorimetric and chromatographic methodsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張永和;王惠珠;方銘志;羅翊禎zh_TW
dc.contributor.oralexamcommitteeChang-Yung Ho;Huei-Ju Wang;Ming-Chih Fang;Yi-Chen Loen
dc.subject.keyword果寡醣,果聚醣,酵素水解,比色法,高效陰離子交換層析-脈衝安培流 檢測法,zh_TW
dc.subject.keywordfructan,fructo-oligosaccharides (FOS),enzymatic hydrolysis,colorimetry method,high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD),en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202304006-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2028-08-09-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
4.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved