Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90695
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘敏雄zh_TW
dc.contributor.advisorMin-Hsiung Panen
dc.contributor.author秦妍zh_TW
dc.contributor.authorYan Qinen
dc.date.accessioned2023-10-03T17:13:14Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-02-
dc.identifier.citationHahn, M. J. (2018). GRAS notice 791 for Urolithin A. Washington, DC: U.S. Food and Drug Administration
Health Promotion Administration Ministry of Health and Welfare. (2020). Cancer registry annual report, 2020 Taiwan. Taiwan: Health Promotion Administration Ministry of Health and Welfare Retrieved from https://www.hpa.gov.tw/File/Attach/16434/File_21196.pdf
International Organization for Standardization. (2009). Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. In ISO 10993-5:2009(E) (pp. 34). Switzerland.
Storz, P. (2013). Oxidative stress in cancer. In U. Jakob & D. Reichmann (Eds.), Oxidative Stress and Redox Regulation (pp. 427-447). Dordrecht: Springer Netherlands.
Wessel, M., Wyant, T., Cabrera, M., Alteri, R., Lubejko, B., Robertson, D., Eidsmoe, K., Greene, B., & Delfin-Davis, R. (2020). Colorectal Cancer——Treatment of colon cancer by stage. Retrieved from https://www.cancer.org/cancer/colon-rectal-cancer/treating/by-stage-colon.html#references
Ahmed, D., Eide, P. W., Eilertsen, I. A., Danielsen, S. A., Eknæs, M., Hektoen, M., Lind, G. E., & Lothe, R. A. (2013). Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis, 2(9), e71-e71.
Anderson, K. J., Teuber, S. S., Gobeille, A., Cremin, P., Waterhouse, A. L., & Steinberg, F. M. (2001). Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. The Journal of Nutrition, 131(11), 2837-2842.
Andreux, P. A., Blanco-Bose, W., Ryu, D., Burdet, F., Ibberson, M., Aebischer, P., Auwerx, J., Singh, A., & Rinsch, C. (2019). The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nature Metabolism, 1(6), 595-603.
Arfin, S., Jha, N. K., Jha, S. K., Kesari, K. K., Ruokolainen, J., Roychoudhury, S., Rathi, B., & Kumar, D. (2021). Oxidative stress in cancer cell metabolism. Antioxidants, 10(5), 642.
Ashkenazi, A., & Dixit, V. M. (1998). Death receptors: signaling and modulation. Science, 281(5381), 1305-1308.
Assaye, M. A., & Gizaw, S. T. (2022). Chaperone-mediated autophagy and its implications for neurodegeneration and cancer. International Journal of General Medicine, 15, 5635-5649.
Atsumi, Y., Inase, A., Osawa, T., Sugihara, E., Sakasai, R., Fujimori, H., Teraoka, H., Saya, H., Kanno, M., Tashiro, F., Nakagama, H., Masutani, M., & Yoshioka, K. i. (2013). The Arf/p53 protein module, which induces apoptosis, down-regulates histone H2AX to allow normal cells to survive in the presence of anti-cancer drugs. Journal of Biological Chemistry, 288(19), 13269-13277.
Barnum, K. J., & O'Connell, M. J. (2014). Cell cycle regulation by checkpoints. Methods in Molecular Biology, 1170, 29-40.
Bata, N., & Cosford, N. D. P. (2021). Cell survival and cell death at the intersection of autophagy and apoptosis: implications for current and future cancer therapeutics. Acs Pharmacology & Translational Science, 4(6), 1728-1746.
Belkahla, S., Haq Khan, A. U., Gitenay, D., Alexia, C., Gondeau, C., Vo, D. N., Orecchioni, S., Talarico, G., Bertolini, F., Cartron, G., Hernandez, J., Daujat-Chavanieu, M., Allende-Vega, N., & Gonzalez, M. V. (2018). Changes in metabolism affect expression of ABC transporters through ERK5 and depending on p53 status. Oncotarget, 9(1), 1114-1129.
Bell, B. D., Leverrier, S., Weist, B. M., Newton, R. H., Arechiga, A. F., Luhrs, K. A., Morrissette, N. S., & Walsh, C. M. (2008). FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proceedings of the National Academy of Sciences, 105(43), 16677-16682.
Bernstein, H., & Bernstein, C. (2023). Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system. Experimental Biology and Medicine, 248(1), 79-89.
Betin, V. M., & Lane, J. D. (2009). Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. Journal of Cell Science, 122(14), 2554-2566.
Bonfili, L., Cecarini, V., Amici, M., Cuccioloni, M., Angeletti, M., Keller, J. N., & Eleuteri, A. M. (2008). Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. Febs Journal, 275(22), 5512-5526.
Boya, P., Reggiori, F., & Codogno, P. (2013). Emerging regulation and functions of autophagy. Nature Cell Biology, 15(7), 713-720.
Bretones, G., Delgado, M. D., & León, J. (2015). Myc and cell cycle control. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1849(5), 506-516.
Brierley, J. D., Gospodarowicz, M. K., & Wittekind, C. (2017). TNM classification of malignant tumours: John Wiley & Sons.
Britannica, T., & Augustyn, A. (2023). Encyclopedia Britannica——Large intestine (15th ed.). Edinburgh, Scotland: Encyclopædia Britannica, Inc.
Brockmueller, A., Samuel, S. M., Mazurakova, A., Busselberg, D., Kubatka, P., & Shakibaei, M. (2023). Curcumin, calebin A and chemosensitization: How are they linked to colorectal cancer? Life Sciences, 318, 12.
Broz, D. K., Mello, S. S., Bieging, K. T., Jiang, D., Dusek, R. L., Brady, C. A., Sidow, A., & Attardi, L. D. (2013). Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes & Development, 27(9), 1016-1031.
Calcagno, A. M., Ludwig, J. A., Fostel, J. M., Gottesman, M. M., & Ambudkar, S. V. (2006). Comparison of drug transporter levels in normal colon, colon cancer, and Caco-2 cells:  Impact on drug disposition and discovery. Molecular Pharmaceutics, 3(1), 87-93.
Cerdá, B., Llorach, R., Cerón, J. J., Espín, J. C., & Tomás-Barberán, F. A. (2003). Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. European Journal of Nutrition, 42(1), 18-28.
Cerdá, B., Periago, P., Espín, J. C., & Tomás-Barberán, F. A. (2005). Identification of urolithin A as a metabolite produced by human colon microflora from ellagic acid and related compounds. Journal of Agricultural and Food Chemistry, 53(14), 5571-5576.
Chen, Z., Liu, L., Cheng, Q., Li, Y., Wu, H., Zhang, W., Wang, Y., Sehgal, S. A., Siraj, S., Wang, X., Wang, J., Zhu, Y., & Chen, Q. (2017). Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Reports, 18(3), 495-509.
Choi, B. H., Chakraborty, G., Baek, K., & Yoon, H. S. (2013). Aspirin-induced Bcl-2 translocation and its phosphorylation in the nucleus trigger apoptosis in breast cancer cells. Experimental & Molecular Medicine, 45(10), e47-e47.
Cortés-Martín, A., García-Villalba, R., González-Sarrías, A., Romo-Vaquero, M., Loria-Kohen, V., Ramírez-de-Molina, A., Tomás-Barberán, F. A., Selma, M. V., & Espín, J. C. (2018). The gut microbiota urolithin metabotypes revisited: the human metabolism of ellagic acid is mainly determined by aging. Food & Function, 9(8), 4100-4106.
Cuellar-Nunez, M. L., Luzardo-Ocampo, I., Lee-Martinez, S., Larrauri-Rodriguez, M., De Larrea, G. Z. L., Perez-Serrano, R. M., & Camacho-Calderon, N. (2022). Isothiocyanate-rich extracts from Cauliflower (Brassica oleracea Var. Botrytis) and Radish (Raphanus sativus) inhibited metabolic activity and induced ROS in selected human HCT116 and HT-29 colorectal cancer cells. International Journal of Environmental Research and Public Health, 19(22), 19.
D’Onofrio, N., Martino, E., Mele, L., Colloca, A., Maione, M., Cautela, D., Castaldo, D., & Balestrieri, M. L. (2021). Colorectal cancer apoptosis induced by dietary δ-valerobetaine involves PINK1/Parkin dependent-mitophagy and SIRT3. International Journal of Molecular Sciences, 22(15), 8117.
Diepstraten, S. T., Anderson, M. A., Czabotar, P. E., Lessene, G., Strasser, A., & Kelly, G. L. (2022). The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nature Reviews Cancer, 22(1), 45-64.
Donovan, M. G., Selmin, O. I., Doetschman, T. C., & Romagnolo, D. F. (2017). Mediterranean diet: prevention of colorectal cancer. Frontiers in Nutrition, 4, 59.
Doyle, B., & Griffiths, L. (1980). The metabolism of ellagic acid in the rat. Xenobiotica, 10(4), 247-256.
Dukel, M., Tavsan, Z., & Kayali, H. A. (2021). Flavonoids regulate cell death-related cellular signaling via ROS in human colon cancer cells. Process Biochemistry, 101, 11-25.
Espin, J. C., Gonzalez-Barrio, R., Cerda, B., Lopez-Bote, C., Rey, A. I., & Tomas-Barberan, F. A. (2007). Iberian pig as a model to clarify obscure points in the Bioavailability and metabolism of ellagitannins in humans. Journal of Agricultural and Food Chemistry, 55(25), 10476-10485.
Galaine, J., Turco, C., Vauchy, C., Royer, B., Mercier‐Letondal, P., Queiroz, L., Loyon, R., Mouget, V., Boidot, R., & Laheurte, C. (2019). CD4 T cells target colorectal cancer antigens upregulated by oxaliplatin. International Journal of Cancer, 145(11), 3112-3125.
Galluzzi, L., Kepp, O., & Kroemer, G. (2012). Mitochondria: master regulators of danger signalling. Nature Reviews Molecular Cell Biology, 13(12), 780-788.
Garcia-Munoz, C., & Vaillant, F. (2014). Metabolic fate of ellagitannins: Implications for health, and research perspectives for innovative functional foods. Critical Reviews in Food Science and Nutrition, 54(12), 1584-1598.
Garcia-Villalba, R., Gimenez-Bastida, J. A., Cortes-Martin, A., Avila-Galvez, M. A., Tomas-Barberan, F. A., Selma, M. V., Espin, J. C., & Gonzalez-Sarrias, A. (2022). Urolithins: a comprehensive update on their metabolism, bioactivity, and associated gut microbiota. Molecular Nutrition & Food Research, 66(21), 22.
Garcia, J. L., Rosa, I., da Silva, J. P., Moleiro, J., & Claro, I. (2023). Incidence and risk factors for neoplasia in inflammatory bowel disease. Asia-Pacific Journal of Clinical Oncology, 6.
Garufi, A., Pistritto, G., Baldari, S., Toietta, G., Cirone, M., & D’Orazi, G. (2017). p53-Dependent PUMA to DRAM antagonistic interplay as a key molecular switch in cell-fate decision in normal/high glucose conditions. Journal of Experimental & Clinical Cancer Research, 36(1), 126.
Gasperotti, M., Masuero, D., Guella, G., Palmieri, L., Martinatti, P., Pojer, E., Mattivi, F., & Vrhovsek, U. (2013). Evolution of ellagitannin content and profile during fruit ripening in fragaria spp. Journal of Agricultural and Food Chemistry, 61(36), 8597-8607.
Gaya, P., Peirotén, Á., Medina, M., Álvarez, I., & Landete, J. M. (2018). Bifidobacterium pseudocatenulatum INIA P815: The first bacterium able to produce urolithins A and B from ellagic acid. Journal of Functional Foods, 45, 95-99.
Gomes, L. C., Benedetto, G. D., & Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology, 13(5), 589-598.
Gonzalez-Barrio, R., Borges, G., Mullen, W., & Crozier, A. (2010). Bioavailability of anthocyanins and ellagitannins following consumption of raspberries by healthy humans and subjects with an ileostomy. Journal of Agricultural and Food Chemistry, 58(7), 3933-3939.
González-Sarrías, A., García-Villalba, R., Núñez-Sánchez, M. Á., Tomé-Carneiro, J., Zafrilla, P., Mulero, J., Tomás-Barberán, F. A., & Espín, J. C. (2015). Identifying the limits for ellagic acid bioavailability: A crossover pharmacokinetic study in healthy volunteers after consumption of pomegranate extracts. Journal of Functional Foods, 19, 225-235.
González-Sarrías, A., Giménez-Bastida, J. A., García-Conesa, M. T., Gómez-Sánchez, M. B., García-Talavera, N. V., Gil-Izquierdo, A., Sánchez-Alvarez, C., Fontana-Compiano, L. O., Morga-Egea, J. P., Pastor-Quirante, F. A., Martínez-Díaz, F., Tomás-Barberán, F. A., & Espín, J. C. (2010). Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. Molecular Nutrition & Food Research, 54(3), 311-322.
González-Sarrías, A., Giménez-Bastida, J. A., Núñez-Sánchez, M. Á., Larrosa, M., García-Conesa, M. T., Tomás-Barberán, F. A., & Espín, J. C. (2014). Phase-II metabolism limits the antiproliferative activity of urolithins in human colon cancer cells. European Journal of Nutrition, 53(3), 853-864.
González-Sarrías, A., Miguel, V., Merino, G., Lucas, R., Morales, J. C., Tomás-Barberán, F., Álvarez, A. I., & Espín, J. C. (2013). The Gut microbiota ellagic acid-derived metabolite urolithin A and its sulfate conjugate are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP). Journal of Agricultural and Food Chemistry, 61(18), 4352-4359.
González-Sarrías, A., Núñez-Sánchez, M. Á., García-Villalba, R., Tomás-Barberán, F. A., & Espín, J. C. (2017). Antiproliferative activity of the ellagic acid-derived gut microbiota isourolithin A and comparison with its urolithin A isomer: the role of cell metabolism. European Journal of Nutrition, 56(2), 831-841.
González-Sarrías, A., Núñez-Sánchez, M. Á., Tomé-Carneiro, J., Tomás-Barberán, F. A., García-Conesa, M. T., & Espín, J. C. (2016). Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key-associated molecular hallmarks: MicroRNA cell specific induction of CDKN1A (p21) as a common mechanism involved. Molecular Nutrition & Food Research, 60(4), 701-716.
Guan, X., & Guan, Y. (2020). Artemisinin induces selective and potent anticancer effects in drug resistant breast cancer cells by inducing cellular apoptosis and autophagy and G2/M cell cycle arrest. Journal of B.U. ON, 25(3), 1330-1336.
Gustavsson, B., Carlsson, G., Machover, D., Petrelli, N., Roth, A., Schmoll, H. J., Tveit, K. M., & Gibson, F. (2015). A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clinical Colorectal Cancer, 14(1), 1-10.
Han, Q. A., Yan, C., Wang, L., Li, G., Xu, Y., & Xia, X. (2016). Urolithin A attenuates ox-LDL-induced endothelial dysfunction partly by modulating microRNA-27 and ERK/PPAR-γ pathway. Molecular Nutrition & Food Research, 60(9), 1933-1943.
Hanson, C. J., Bootman, M. D., Distelhorst, C. W., Maraldi, T., & Roderick, H. L. (2008). The cellular concentration of Bcl-2 determines its pro-or anti-apoptotic effect. Cell Calcium, 44(3), 243-258.
Hasheminezhad, S. H., Boozari, M., Iranshahi, M., Yazarlu, O., Sahebkar, A., Hasanpour, M., & Iranshahy, M. (2022). A mechanistic insight into the biological activities of urolithins as gut microbial metabolites of ellagitannins. Phytotherapy Research, 36(1), 112-146.
Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J.-L., Schneider, P., Seed, B., & Tschopp, J. (2000). Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nature Immunology, 1(6), 489-495.
Hou, W., Han, J., Lu, C., Goldstein, L. A., & Rabinowich, H. (2010). Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy, 6(7), 891-900.
Hu, D. G., Marri, S., Hulin, J.-A., McKinnon, R. A., Mackenzie, P. I., & Meech, R. (2022). The somatic mutation landscape of UDP-Glycosyltransferase (UGT) genes in human cancers. Cancers, 14(22), 5708.
Ichim, G., & Tait, S. W. G. (2016). A fate worse than death: apoptosis as an oncogenic process. Nature Reviews Cancer, 16(8), 539-548.
Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S. O., Masuda, K., Otera, H., Nakanishi, Y., Nonaka, I., & Goto, Y. i. (2009). Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature Cell Biology, 11(8), 958-966.
Jayatunga, D. P. W., Hone, E., Khaira, H., Lunelli, T., Singh, H., Guillemin, G. J., Fernando, B., Garg, M. L., Verdile, G., & Martins, R. N. (2021). Therapeutic potential of mitophagy-inducing microflora metabolite, urolithin A for Alzheimer's disease. Nutrients, 13(11), 22.
Jiang, Y., Zhang, H., Dong, L., Wang, D., & An, W. (2008). Increased hepatic UCP2 expression in rats with nonalcoholic steatohepatitis is associated with upregulation of Sp1 binding to its motif within the proximal promoter region. Journal of Cellular Biochemistry, 105(1), 277-289.
Johansson, M. E. V., Sjövall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology & Hepatology, 10(6), 352-361.
Kale, J., Osterlund, E. J., & Andrews, D. W. (2018). BCL-2 family proteins: changing partners in the dance towards death. Cell Death & Differentiation, 25(1), 65-80.
Karasawa, T., & Steyger, P. S. (2015). An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicology Letters, 237(3), 219-227.
Kim, J., & Klionsky, D. J. (2000). Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annual Review of Biochemistry, 69(1), 303-342.
Kim, J., Woo, A. J., Chu, J., Snow, J. W., Fujiwara, Y., Kim, C. G., Cantor, A. B., & Orkin, S. H. (2010). A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell, 143(2), 313-324.
Ku, B., Liang, C., Jung, J. U., & Oh, B. H. (2011). Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Research, 21(4), 627-641.
Labianca, R., Beretta, G. D., Kildani, B., Milesi, L., Merlin, F., Mosconi, S., Pessi, M. A., Prochilo, T., Quadri, A., Gatta, G., de Braud, F., & Wils, J. (2010). Colon cancer. Critical Reviews in Oncology/Hematology, 74(2), 106-133.
Landes, T., Emorine, L. J., Courilleau, D., Rojo, M., Belenguer, P., & Arnauné‐Pelloquin, L. (2010). The BH3‐only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Reports, 11(6), 459-465.
Landmann, H., Proia, D., He, S., Ogawa, L., Kramer, F., Beißbarth, T., Grade, M., Gaedcke, J., Ghadimi, M., & Moll, U. (2014). UDP glucuronosyltransferase 1A expression levels determine the response of colorectal cancer cells to the heat shock protein 90 inhibitor ganetespib. Cell Death & Disease, 5(9), e1411-e1411.
Larrubia, J. R., Lokhande, M. U., García-Garzón, S., Miquel, J., Subirá, D., & Sanz-de-Villalobos, E. (2013). Role of T cell death in maintaining immune tolerance during persistent viral hepatitis. World Journal of Gastroenterology, 19(12), 1877-1889.
Lee, G., Park, J. S., Lee, E. J., Ahn, J. H., & Kim, H. S. (2019). Anti-inflammatory and antioxidant mechanisms of urolithin B in activated microglia. Phytomedicine, 55, 50-57.
Leermakers, P. A., Schols, A. M. W. J., Kneppers, A. E. M., Kelders, M. C. J. M., de Theije, C. C., Lainscak, M., & Gosker, H. R. (2018). Molecular signalling towards mitochondrial breakdown is enhanced in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Scientific Reports, 8(1), 15007.
Levy, J. M. M., Towers, C. G., & Thorburn, A. (2017). Targeting autophagy in cancer. Nature Reviews Cancer, 17(9), 528-542.
Li, H., Wang, C., Li, L., Bu, W., Zhang, M., Wei, J., Tao, L., Qian, K., & Ma, P. (2019). Adapalene suppressed the proliferation of melanoma cells by S-phase arrest and subsequent apoptosis via induction of DNA damage. European Journal of Pharmacology, 851, 174-185.
Li, K. L., Xiao, Y., Bian, J., Han, L., He, C. A., El-Omar, E., Gong, L., & Wang, M. (2022). Ameliorative effects of gut microbial metabolite urolithin A on pancreatic diseases. Nutrients, 14(12), 18.
Li, Y. J., Lei, Y. H., Yao, N., Wang, C. R., Hu, N., Ye, W. C., Zhang, D. M., & Chen, Z. S. (2017). Autophagy and multidrug resistance in cancer. Chinese Journal of Cancer, 36(1), 52.
Lin, X. H., Ye, X. J., Li, Q. F., Gong, Z., Cao, X., Li, J. H., Zhao, S. T., Sun, X. D., He, X. S., & Xuan, A. G. (2020). Urolithin A prevents focal cerebral ischemic injury via attenuating apoptosis and neuroinflammation in mice. Neuroscience, 448, 94-106.
Liu, H., Li, Q., Cheng, X., Wang, H., Wang, G., & Hao, H. (2015). UDP-glucuronosyltransferase 1A determinates intracellular accumulation and anti-cancer effect of β-lapachone in human colon cancer cells. PLoS One, 10(2), e0117051.
Liu, M., Wang, Q., Liu, F., Cheng, X., Wu, X., Wang, H., Wu, M., Ma, Y., Wang, G., & Hao, H. (2013). UDP-glucuronosyltransferase 1A compromises intracellular accumulation and anti-cancer effect of tanshinone IIA in human colon cancer cells. PLoS One, 8(11), e79172.
Liu, Y., Kang, X., Niu, G., He, S., Zhang, T., Bai, Y., Li, Y., Hao, H., Chen, C., Shou, Z., & Li, B. (2019). Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 626-635.
Locksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 104(4), 487-501.
Lujan, L. M. L., McCarty, M. F., Di Nicolantonio, J. J., Ruiz, J. C. G., Rosas-Burgos, E. C., Plascencia-Jatomea, M., & Assanga, S. B. I. (2022). Nutraceuticals/Drugs promoting mitophagy and mitochondrial biogenesis may combat the mitochondrial dysfunction driving progression of dry age-related macular degeneration. Nutrients, 14(9), 13.
Ma, X., Liu, H., Foyil, S. R., Godar, R. J., Weinheimer, C. J., Hill, J. A., & Diwan, A. (2012). Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation, 125(25), 3170-3181.
Maiuri, M. C., Galluzzi, L., Morselli, E., Kepp, O., Malik, S. A., & Kroemer, G. (2010). Autophagy regulation by p53. Current Opinion in Cell Biology, 22(2), 181-185.
Maiuri, M. C., Le Toumelin, G., Criollo, A., Rain, J. C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., & Tavernarakis, N. (2007). Functional and physical interaction between Bcl‐XL and a BH3‐like domain in Beclin‐1. The EMBO Journal, 26(10), 2527-2539.
Makarem, N., Bandera, E. V., Nicholson, J. M., & Parekh, N. (2018). Consumption of sugars, sugary foods, and sugary beverages in relation to cancer risk: A systematic review of longitudinal studies. Annual Review of Nutrition, 38, 17-39.
Malik, S. A., Orhon, I., Morselli, E., Criollo, A., Shen, S., Marino, G., BenYounes, A., Benit, P., Rustin, P., & Maiuri, M. C. (2011). BH3 mimetics activate multiple pro-autophagic pathways. Oncogene, 30(37), 3918-3929.
Malpartida, A. B., Williamson, M., Narendra, D. P., Wade-Martins, R., & Ryan, B. J. (2021). Mitochondrial dysfunction and mitophagy in Parkinson’s disease: From mechanism to therapy. Trends in Biochemical Sciences, 46(4), 329-343.
Mao, L., Liu, H., Zhang, R., Deng, Y., Hao, Y., Liao, W., Yuan, M., & Sun, S. (2021). PINK1/Parkin-mediated mitophagy inhibits warangalone-induced mitochondrial apoptosis in breast cancer cells. Aging, 13(9), 12955-12972.
Marchese, E., Orlandi, V., Turrini, F., Romeo, I., Boggia, R., Alcaro, S., & Costa, G. (2023). In silico and in vitro study of antioxidant potential of urolithins. Antioxidants, 12(3), 697.
Marino, G., Niso-Santano, M., Baehrecke, E. H., & Kroemer, G. (2014). Self-consumption: the interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 15(2), 81-94.
Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C. A., Sou, Y. S., Saiki, S., Kawajiri, S., Sato, F., Kimura, M., Komatsu, M., Hattori, N., & Tanaka, K. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology, 189(2), 211-221.
McKnight, N. C., & Zhenyu, Y. (2013). Beclin 1, an essential component and master regulator of PI3K-III in health and disease. Current Pathobiology Reports, 1(4), 231-238.
Mendl, N., Occhipinti, A., Müller, M., Wild, P., Dikic, I., & Reichert, A. S. (2011). Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2. Journal of Cell Science, 124(8), 1339-1350.
Menrad, H., Werno, C., Schmid, T., Copanaki, E., Deller, T., Dehne, N., & Brüne, B. (2010). Roles of hypoxia-inducible factor-1α (HIF-1α) versus HIF-2α in the survival of hepatocellular tumor spheroids. Hepatology, 51(6), 2183-2192.
Mishra, A. P., Salehi, B., Sharifi-Rad, M., Pezzani, R., Kobarfard, F., Sharifi-Rad, J., & Nigam, M. (2018). Programmed cell death, from a cancer perspective: An overview. Molecular Diagnosis & Therapy, 22(3), 281-295.
Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E., & Rodriguez Yoldi, M. J. (2017). Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. International Journal of Molecular Sciences, 18(1), 197.
Morselli, E., Galluzzi, L., Kepp, O., Vicencio, J. M., Criollo, A., Maiuri, M. C., & Kroemer, G. (2009). Anti- and pro-tumor functions of autophagy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1793(9), 1524-1532.
Morselli, E., Shen, S., Ruckenstuhl, C., Bauer, M. A., Mariño, G., Galluzzi, L., Criollo, A., Michaud, M., Maiuri, M. C., & Chano, T. (2011). p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle, 10(16), 2763-2769.
Mrakovcic, M., & Frohlich, L. F. (2018). p53-mediated molecular control of autophagy in tumor cells. Biomolecules, 8(2), 18.
Mundade, R., Imperiale, T. F., Prabhu, L., Loehrer, P. J., & Lu, T. (2014). Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience, 1(6), 400-406.
Ni, H., Bockus, A., Boggess, N., Jaeschke, H., & Ding, W. (2012). Activation of autophagy protects against acetaminophen‐induced hepatotoxicity. Hepatology, 55(1), 222-232.
Nigam, Y., Knight, J., & Williams, N. (2019). Gastrointestinal tract 5: the anatomy and functions of the large intestine. Nursing Times, 115(10), 50-53.
Nunez-Sanchez, M. A., Garcia-Villalba, R., Monedero-Saiz, T., Garcia-Talavera, N. V., Gomez-Sanchez, M. B., Sanchez-Alvarez, C., Garcia-Albert, A. M., Rodriguez-Gil, F. J., Ruiz-Marin, M., Pastor-Quirante, F. A., Martinez-Diaz, F., Yanez-Gascon, M. J., Gonzalez-Sarrias, A., Tomas-Barberan, F. A., & Espin, J. C. (2014). Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients. Molecular Nutrition & Food Research, 58(6), 1199-1211.
Nyamba, I., Lechanteur, A., Semde, R., & Evrard, B. (2021). Physical formulation approaches for improving aqueous solubility and bioavailability of ellagic acid: A review. European Journal of Pharmaceutics and Biopharmaceutics, 159, 198-210.
Oberstein, A., Jeffrey, P. D., & Shi, Y. (2007). Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. Journal of Biological Chemistry, 282(17), 13123-13132.
Oral, O., Oz-Arslan, D., Itah, Z., Naghavi, A., Deveci, R., Karacali, S., & Gozuacik, D. (2012). Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis, 17, 810-820.
Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., & Bao, J. K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Proliferation, 45(6), 487-498.
Pandey, P., Khan, F., & Upadhyay, T. K. (2023). Deciphering the modulatory role of apigenin targeting oncogenic pathways in human cancers. Chemical Biology & Drug Design, 13.
Penuelas, J., Krisztin, T., Obersteiner, M., Huber, F., Winner, H., Janssens, I. A., Ciais, P., & Sardans, J. (2020). Country-level relationships of the human intake of N and P, animal and vegetable food, and alcoholic beverages with cancer and life expectancy. International Journal of Environmental Research and Public Health, 17(19), 15.
Portier, B. P., & Taglialatela, G. (2006). Bcl-2 localized at the nuclear compartment induces apoptosis after transient overexpression. Journal of Biological Chemistry, 281(52), 40493-40502.
Qiu, J., Chen, Y., Zhuo, J., Zhang, L., Liu, J., Wang, B., Sun, D., Yu, S., & Lou, H. (2022). Urolithin A promotes mitophagy and suppresses NLRP3 inflammasome activation in lipopolysaccharide-induced BV2 microglial cells and MPTP-induced Parkinson's disease model. Neuropharmacology, 207, 108963.
Ray, S., Panda, S., Nayak, S. R., Behera, S., Bhanja, S. S., & Acharya, V. (2020). A review on cell cycle checkpoints in relation to cancer. The Journal of Medical Sciences, 5(4), 88–95.
Reng, Q., Zhu, L. L., Feng, L., Li, Y. J., Zhu, Y. X., Wang, T. T., & Jiang, F. (2022). Dietary meat mutagens intake and cancer risk: A systematic review and meta-analysis. Frontiers in Nutrition, 9, 11.
Riddick, D. S., Lee, C., Ramji, S., Chinje, E. C., Cowen, R. L., Williams, K. J., Patterson, A. V., Stratford, I. J., Morrow, C. S., & Townsend, A. J. (2005). Cancer chemotherapy and drug metabolism. Drug Metabolism and Disposition, 33(8), 1083-1096.
Romanova, A., Lustigova, M., Urbanova, J., Keil, R., Krollova, P., Stovicek, J., Wasserbauer, M., Hlava, S., Malinovska, J., Drabek, J., & Broz, J. (2023). Factors affecting participation in the colorectal cancer screening program: a cross-sectional population study. Journal of Cancer Research and Clinical Oncology, 9.
Ryu, D., Mouchiroud, L., Andreux, P. A., Katsyuba, E., Moullan, N., Nicolet-dit-Felix, A. A., Williams, E. G., Jha, P., Lo Sasso, G., Huzard, D., Aebischer, P., Sandi, C., Rinsch, C., & Auwerx, J. (2016). Urolithin A induces mitophagy and prolongs lifespan in C-elegans and increases muscle function in rodents. Nature Medicine, 22(8), 879–888.
Savi, M., Bocchi, L., Mena, P., Dall’Asta, M., Crozier, A., Brighenti, F., Stilli, D., & Del Rio, D. (2017). In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovascular Diabetology, 16(1), 80.
Schnekenburger, M., Dicato, M., & Diederich, M. (2014). Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnology Advances, 32(6), 1123-1132.
Schwarten, M., Mohrlüder, J., Ma, P., Stoldt, M., Thielmann, Y., Stangler, T., Hersch, N., Hoffmann, B., Merkel, R., & Willbold, D. (2009). Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy, 5(5), 690-698.
Selma, M. V., Beltrán, D., García-Villalba, R., Espín, J. C., & Tomás-Barberán, F. A. (2014). Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food & Function, 5(8), 1779-1784.
Selma, M. V., Beltrán, D., Luna, M. C., Romo-Vaquero, M., García-Villalba, R., Mira, A., Espín, J. C., & Tomás-Barberán, F. A. (2017). Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin a from ellagic acid. Frontiers in Microbiology, 8, 1521.
Shabir, I., Pandey, V. K., Shams, R., Dar, A. H., Dash, K. K., Khan, S. A., Bashir, I., Jeevarathinam, G., Rusu, A. V., Esatbeyoglu, T., & Pandiselvam, R. (2022). Promising bioactive properties of quercetin for potential food applications and health benefits: A review. Frontiers in Nutrition, 9, 13.
Shimizu, S., Yoshida, T., Tsujioka, M., & Arakawa, S. (2014). Autophagic cell death and cancer. International Journal of Molecular Sciences, 15(2), 3145-3153.
Siddiqui, W. A., Ahad, A., & Ahsan, H. (2015). The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Archives of Toxicology, 89(3), 289-317.
Singh, A. (2011). Negative feedback through mRNA provides the best control of gene-expression noise. IEEE Transactions on NanoBioscience, 10, 194-200.
Stacchiotti, A., & Corsetti, G. (2020). Natural compounds and autophagy: Allies against neurodegeneration. Frontiers in Cell and Developmental Biology, 8, 555409.
Storz, P. (2005). Reactive oxygen species in tumor progression. Frontiers in Bioscience-Landmark, 10(2), 1881-1896.
Sun, Y., & Peng, Z. L. (2009). Programmed cell death and cancer. Postgraduate Medical Journal, 85(1001), 134.
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249.
Surien, O., Masre, S. F., Basri, D. F., & Ghazali, A. R. (2023). Potential chemopreventive role of pterostilbene in its modulation of the apoptosis pathway. International Journal of Molecular Sciences, 24(11), 18.
Tan, Y. Z., Peng, C., Hu, C. J., Li, H. X., Li, W. B., He, J. L., Li, Y. Z., Zhang, H., Zhang, R. Q., Wang, L. X., & Cao, Z. X. (2019). Iridoids from Valeriana jatamansi induce autophagy-associated cell death via the PDK1/Akt/mTOR pathway in HCT116 human colorectal carcinoma cells. Bioorganic Chemistry, 87, 136-141.
Tang, J., Yao, C., Liu, Y., Yuan, J., Wu, L., Hosoi, K., Yu, S., Huang, C., Wei, H., & Chen, G. (2021). Arsenic trioxide induces expression of BCL-2 expression via NF-κB and p38 MAPK signaling pathways in BEAS-2B cells during apoptosis. Ecotoxicology and Environmental Safety, 222, 112531.
Tang, L., Mo, Y., Li, Y., Zhong, Y., He, S., Zhang, Y., Tang, Y., Fu, S., Wang, X., & Chen, A. (2017). Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway. Biochemical and Biophysical Research Communications, 486(3), 774-780.
Tang, Z., Takahashi, Y., Chen, C., Liu, Y., He, H., Tsotakos, N., Serfass, J. M., Gebru, M. T., Chen, H., Young, M. M., & Wang, H. (2017). Atg2A/B deficiency switches cytoprotective autophagy to non-canonical caspase-8 activation and apoptosis. Cell Death & Differentiation, 24(12), 2127-2138.
Tomás-Barberán, F. A., García-Villalba, R., González-Sarrías, A., Selma, M. V., & Espín, J. C. (2014). Ellagic acid metabolism by human gut microbiota: Consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. Journal of Agricultural and Food Chemistry, 62(28), 6535-6538.
Twig, G., & Shirihai, O. S. (2011). The interplay between mitochondrial dynamics and mitophagy. Antioxidants & Redox Signaling, 14(10), 1939-1951.
Vara-Perez, M., Felipe-Abrio, B., & Agostinis, P. (2019). Mitophagy in cancer: A tale of adaptation. Cells, 8(5), 493.
Vargas, J. N. S., Hamasaki, M., Kawabata, T., Youle, R. J., & Yoshimori, T. (2023). The mechanisms and roles of selective autophagy in mammals. Nature Reviews Molecular Cell Biology, 24(3), 167-185.
Vousden, K. H., & Lane, D. P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology, 8(4), 275-283.
Wang, J. H., Ahn, I. S., Fischer, T. D., Byeon, J. I., Dunn Jr, W. A., Behrns, K. E., Leeuwenburgh, C., & Kim, J. S. (2011). Autophagy suppresses age-dependent ischemia and reperfusion injury in livers of mice. Gastroenterology, 141(6), 2188-2199.
Wang, Y., Qiu, Z., Zhou, B., Liu, C., Ruan, J., Yan, Q., Liao, J., & Zhu, F. (2015). In vitro antiproliferative and antioxidant effects of urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells. Toxicology in Vitro, 29(5), 1107-1115.
Wang, Y., Shi, Y., Huang, Y., Liu, W., Cai, G., Huang, S., Zeng, Y., Ren, S., Zhan, H., & Wu, W. (2020). Resveratrol mediates mechanical allodynia through modulating inflammatory response via the TREM2-autophagy axis in SNI rat model. Journal of Neuroinflammation, 17(1), 311.
Wirawan, E., Vande Walle, L., Kersse, K., Cornelis, S., Claerhout, S., Vanoverberghe, I., Roelandt, R., De Rycke, R., Verspurten, J., & Declercq, W. (2010). Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death & Disease, 1(1), e18-e18.
Wu, Q. X., Shi, D. D., Dong, T., Zhang, Z. L., Ou, Q. J., Fang, Y. J., & Zhang, C. X. (2023). Serum saturated fatty acids including very long-chain saturated fatty acids and colorectal cancer risk among chinese population. Nutrients, 15(8), 15.
Wu, Y. T., Tan, H. L., Shui, G., Bauvy, C., Huang, Q., Wenk, M. R., Ong, C. N., Codogno, P., & Shen, H. M. (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. Journal of Biological Chemistry, 285(14), 10850-10861.
Wu, Z. Y., Chen, J. L., Li, H., Su, K., & Han, Y. W. (2023). Different types of fruit intake and colorectal cancer risk: A meta-analysis of observational studies. World Journal of Gastroenterology, 29(17), 23.
Xie, P., Wu, S. Q., Kuo, Z. C., Tian, H. D., He, Q. S., Li, Y. F., Mi, N. N., Hu, L. M., Zhao, H. T., Li, W. J., Xia, B., Yuan, J. Q., Yang, K. H., Zhang, C. H., & He, Y. L. (2023). Association of modifiable lifestyle with colorectal cancer incidence and mortality according to metabolic status: prospective cohort study. Frontiers in Oncology, 13, 9.
Xu, J., Patel, N. H., & Gewirtz, D. A. (2020). Triangular relationship between p53, autophagy, and chemotherapy resistance. International Journal of Molecular Sciences, 21(23), 8991.
Xu, K., Liu, X. F., Ke, Z. Q., Yao, Q., Guo, S., & Liu, C. (2018). Resveratrol modulates apoptosis and autophagy induced by high glucose and palmitate in cardiac cells. Cellular Physiology and Biochemistry, 46(5), 2031-2040.
Young, M. M., Takahashi, Y., Khan, O., Park, S., Hori, T., Yun, J., Sharma, A. K., Amin, S., Hu, C., Zhang, J., Kester, M., & Wang, H. (2012). Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. Journal of Biological Chemistry, 287(15), 12455-12468.
Yu, L., Wan, F., Dutta, S., Welsh, S., Liu, Z., Freundt, E., Baehrecke, E. H., & Lenardo, M. (2006). Autophagic programmed cell death by selective catalase degradation. Proceedings of the National Academy of Sciences, 103(13), 4952-4957.
Zhang, H. C., Xie, L., Zhang, N., Qi, X. Z., Lu, T., Xing, J. Y., Akhtar, M. F., Li, L. J., & Liu, G. Q. (2023). Donkey oil-based ketogenic diet prevents tumor progression by regulating intratumor inflammation, metastasis and angiogenesis in CT26 tumor-bearing mice. Genes, 14(5), 17.
Zhang, L., Zuo, Z., & Lin, G. (2007). Intestinal and hepatic glucuronidation of flavonoids. Molecular Pharmaceutics, 4(6), 833-845.
Zhang, Z. Y., Pan, Y., Zhao, Y., Ren, M. D., Li, Y. R., Lu, G. F., Wu, K. C., & He, S. X. (2021). Delphinidin modulates JAK/STAT3 and MAPKinase signaling to induce apoptosis in HCT116 cells. Environmental Toxicology, 36(8), 1557-1566.
Zhao, C., He, R., Shen, M., Zhu, F., Wang, M., Liu, Y., Chen, H., Li, X., & Qin, R. (2019). PINK1/Parkin-mediated mitophagy regulation by reactive oxygen species alleviates rocaglamide A-induced apoptosis in pancreatic cancer cells. Frontiers in Pharmacology, 10, 00968.
Zhou, R., Yazdi, A. S., Menu, P., & Tschopp, J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329), 221-225.
Ziegler, D. V., Huber, K., & Fajas, L. (2022). The intricate interplay between cell cycle regulators and autophagy in cancer. Cancers, 14(1), 153.
Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., Babenko, V. A., Zorov, S. D., Balakireva, A. V., Juhaszova, M., Sollott, S. J., & Zorov, D. B. (2018). Mitochondrial membrane potential. Analytical Biochemistry, 552, 50-59.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90695-
dc.description.abstract大腸直腸癌 (colorectal cancer, CRC) 是世界範圍內發病率和死亡率最高的惡性腫瘤之一。加工食品的攝入是誘發大腸癌最主要的外源性因素。越來越多的證據表明,蔬果中的天然化合物可以阻止腸癌的進展。尿石素 (urolithins) 為蔬果中富含的鞣花單寧被生物體腸道菌群所代謝的產物。有研究顯示,urolithins透過誘導細胞粒線體自噬來保護神經細胞及延緩老化作用。此外urolithins也表現出出色的抗癌效果,然而鮮少有研究從自噬的角度去探討urolithins對腸癌細胞凋亡的影響。因此,本實驗旨在探討鞣花單寧的腸道微生物代謝物urolithin C (UC) 對腸癌細胞自噬與凋亡的影響。首先以細胞存活率實驗篩選出抗癌效果最佳之化合物以及對化合物最敏感之細胞株。接著再以流式細胞儀對細胞週期及粒線體功能進行分析。此外,以海馬能量測定儀分析在壓力狀況下粒線體的耗氧量,以螢光顯微鏡及RT-qPCR對粒線體自噬及相關基因表現進行偵測。隨後測定不同時間點尿石素對腸癌細胞自噬與凋亡相關表型及蛋白表現量。結果顯示,UC對HCT116細胞存活率表現出最佳之抑制效果,並且可以顯著降低HCT116細胞G0/G1期細胞數量並造成S期停滯。在UC處理12小時後HCT116粒線體呼吸功能、粒線體膜電位與粒線體質量顯著降低。粒線體與溶酶體的染色共定位表明粒線體自噬的發生。RT-qPCR結果顯示UC誘導粒線體自噬基因PARK及BINP3的表現量上調。在細胞自噬方面,UC在12及24小時增加細胞內酸性囊泡胞器水平,自噬蛋白LC3II表現量在24小時顯著上升,p62蛋白有下降的趨勢。p-AMPK及p53蛋白表現量自UC處理後始終高於控制組。在細胞凋亡方面,UC在72小時顯著提升HCT116細胞凋亡數量至30%,BAX、c-caspase 9、c-caspase 3、c-PARP蛋白表現量在UC處理48小時後顯著升高。最後,自噬抑制劑 (3-MA、CQ) 的加入提高了UC處理24小時凋亡細胞的數量,以及凋亡蛋白c-caspase 3與c-PARP的表現量。綜合以上結果表明,UC誘導HCT116腸癌細胞自噬與凋亡,粒線體功能的損傷可能是其機制之一。並建議UC可以與自噬抑制劑共同使用以利於UC發揮更好的抗癌效果。期望未來UC能夠作為臨床上的輔助治療劑,為抑制大腸直腸癌的發展提供新的見解。zh_TW
dc.description.abstractColorectal cancer (CRC) is widely recognized as one of the most common malignancies with a high incidence and mortality. The intake of processed foods is the main exogenous factor inducing CRC. More and more evidence suggesting that natural compounds present in fruits and vegetables can impede the progression of CRC. Urolithins are the metabolites of ellagic acid by gut microbiota, which have been reported to promote mitophagy in muscle and neurodegenerative diseases. Urolithins also shows excellent anticancer effect, however, there is limited research investigating the impact of urolithins on colorectal cancer cell apoptosis from the perspective of autophagy. Therefore, the aim of this study was to investigate the effects of urolithin C (UC) on autophagy and apoptosis of colorectal cancer cell. Firstly, the best anti-cancer compound and the most sensitive cell line were selected by cell viability assay. The cell cycle and mitochondria function were analyzed by flow cytometry. Moreover, the oxygen consumption of mitochondria was measured by seahorse analyzer. Mitophagy and related gene expression was detected by fluorescence microscopy and RT-qPCR. Finally, the phenotype and protein level of autophagy and apoptosis were determined by time course with urolithin treatment. The results showed that urolithin C exhibited the best inhibitory effect on cell viability of HCT116 cells, and significantly reduce cell number in G0/G1 phase and cause S phase arrest. Mitochondrial respiratory function, mitochondrial membrane potential and mitochondrial mass significantly decreased after UC treatment for 12 hours. Staining of mitochondria and lysosome elucidated that mitophagy was activated in colon cancer cells. RT-qPCR results showed that mitophagy genes PARK and BINP3 were upregulated by UC treatment. In terms of autophagy, UC increased intracellular acidic vesicular organelles levels at 12 and 24 hours, the protein level of LC3II increased significantly and p62 decreased at 24 hours. The protein level of p-AMPK and p53 were consistently higher than those of control group after UC treatment. In terms of apoptosis, UC significantly increased the apoptotic cells to 30% after 72 hours of treatment while the protein levels of BAX, c-caspase 9, c-caspase 3 and c-PARP were significantly increased at 48 hours. Finally, autophagy inhibitors (3-MA, CQ) and UC co-treatment increased apoptotic cells and the protein level of c-caspase 3 and c-PARP at 24 hours. In summary, UC induced autophagy and apoptosis in HCT116 colorectal cancer cells, and mitochondrial dysfunction may be one of the underlying mechanisms. It is suggested to co-treatment urolithin C with autophagy inhibitors to enhance its anticancer effects. Hopefully UC may inhibit colorectal cancer as an adjuvant therapeutic agent.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:13:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:13:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 I
摘要 IV
Abstract VI
目錄 VIII
附圖目錄 XI
附表目錄 XII
圖目錄 XIII
縮寫表 XIV
緒論 1
第一章、文獻回顧 2
1.1 大腸癌簡介 2
1.1.1 流行病學數據 2
1.1.2 大腸之生理構造及功能 3
1.1.3 大腸癌之形成、發展及分期 4
1.1.4 大腸癌相關之風險因子 7
1.1.5 大腸癌之預防及治療方法 8
1.2 細胞自噬 (Autophagy) 10
1.2.1 細胞自噬的誘導因素與特徵 10
1.2.2 細胞自噬的分類與分子機制 10
1.2.3 選擇性自噬—粒線體自噬 (Mitophagy) 12
1.3 細胞凋亡 (Apoptosis) 14
1.3.1 細胞凋亡的誘導因素與特徵 14
1.3.2 外源性細胞凋亡 (Extrinsic apoptosis pathway) 15
1.3.3 內源性細胞凋亡 (Intrinsic apoptosis pathway) 16
1.4 癌症中細胞自噬與凋亡之間的串擾 17
1.4.1 細胞自噬與凋亡的主要調控因子 17
1.4.2 細胞自噬與凋亡的相互作用 19
1.5 尿石素簡介 21
1.5.1 尿石素的來源、代謝及組織分佈 21
1.5.2 尿石素的生物活性及安全性 23
第二章、研究目的與實驗架構 25
2.1研究目的 25
2.2實驗架構 25
第三章、實驗材料與方法 27
3.3實驗材料 27
3.3.1 樣品來源及製備 27
3.3.2 實驗儀器 27
3.3.3 藥品試劑 28
3.3.4 商業化試劑盒 29
3.3.5 抗體 30
3.3.6 RT-qPCR引子 31
3.4 實驗方法 32
3.4.1細胞培養 32
3.4.2細胞存活率實驗 34
3.4.3流式細胞儀 (FLOW Cytometry) 分析 35
3.4.4粒線體壓力測試 38
3.4.5螢光顯微鏡分析 39
3.4.6 RNA萃取及純化 40
3.4.7即時定量聚合酶鏈式反應 (RT-qPCR) 42
3.4.8蛋白質萃取與定量 44
3.4.9西方墨點法 46
3.5 統計分析 49
第四章、結果與討論 50
4.1 尿石素對腸癌細胞存活率及細胞週期之影響 50
4.1.1三種尿石素對不同腸癌細胞之抗癌效果 50
4.1.2 Urolithin C處理不同時長對HCT116細胞生長之影響 53
4.1.3 Urolithin C對腸癌細胞HCT116細胞週期之影響 53
4.2 Urolithin C對人類腸癌細胞HCT116粒線體功能之影響 55
4.2.1 Urolithin C對人類腸癌細胞HCT116粒線體壓力之影響 55
4.2.2 Urolithin C降低人類腸癌細胞HCT116粒線體膜電位與粒線體質量 57
4.2.3 Urolithin C誘導人類腸癌細胞HCT116發生粒腺體自噬 58
4.3 Urolithin C誘導人類腸癌細胞HCT116早期細胞自噬與晚期細胞凋亡 59
4.3.1 Urolithin C誘導人類腸癌細胞HCT116細胞自噬 59
4.3.2 Urolithin C誘導人類腸癌細胞HCT116細胞凋亡 60
4.3.3 Urolithin C對人類腸癌細胞HCT116細胞自噬與凋亡蛋白隨時間變化的影響 61
4.4Urolithin C與自噬抑制劑共同作用對人類腸癌細胞HCT116細胞凋亡的影響 63
第五章、圖表 65
第六章、結論 80
第七章、參考文獻 82
-
dc.language.isozh_TW-
dc.titleUrolithin C藉由誘導HCT116人類結腸癌細胞中粒線體功能障礙與粒線體自噬有效調節細胞自噬及凋亡zh_TW
dc.titleUrolithin C potently modulates autophagy and apoptosis via inducing mitochondria dysfunction and mitophagy in HCT116 human colorectal cancer cellsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee何元順;黃步敏;郭靜娟;張嘉哲zh_TW
dc.contributor.oralexamcommitteeYuan-Soon Ho;Bu-Miin Huang;Ching-Chuan Kuo;Chia-Che Changen
dc.subject.keyword大腸直腸癌,尿石素,粒線體,自噬,凋亡,zh_TW
dc.subject.keywordcolorectal cancer,urolithins,mitochondria,autophagy,apoptosis,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202302475-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-04-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2028-07-31-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
5.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved