請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90619
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅翊禎 | zh_TW |
dc.contributor.advisor | Yi-Chen Lo | en |
dc.contributor.author | 林琦芳 | zh_TW |
dc.contributor.author | Chi-Fang Lin | en |
dc.date.accessioned | 2023-10-03T16:53:22Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-13 | - |
dc.identifier.citation | 李貞誼. 酒香酵母外切β-1,3-葡聚醣酶之酵素淳畫與特性分析. 國立台灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 台灣. 2019.
林子淳. 探討不同β-葡聚醣酶進行羅漢果皂苷轉醣作用. 國立台灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 台灣. 2020. 郭思妤. 探討酵母菌中EXG1轉醣合成昆布寡醣. 國立台灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 台灣. 2022. 郭宜蓓. 酒香酵母外切β-1,3-葡聚醣酶之生化特性與結構分析. 國立台灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 台灣. 2018 賴怡珊. 探討酵母菌中β-葡萄糖苷酶之特性及受植水解特異性. 國立台灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 台灣. 2020. Abdul Manas, N. H.; Md Illias, R.; Mahadi, N. M. Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Crit Rev Biotechnol. 2018, 38(2), 272-293. Abdul Manas, N. H.; Pachelles, S.; Mahadi, N. M.; Illias, R. M. The characterisation of an alkali-stable maltogenic amylase from Bacillus lehensis G1 and improved malto-oligosaccharide production by hydrolysis suppression. PLoS One. 2014, 9(9), e106481. Arreola-Barroso, R. A.; Llopiz, A.; Olvera, L.; Saab-Rincon, G. Modulating Glycoside Hydrolase Activity between Hydrolysis and Transfer Reactions Using an Evolutionary Approach. Molecules. 2021, 26(21). Bohlin, C.; Praestgaard, E.; Baumann, M. J.; Borch, K.; Praestgaard, J.; Monrad, R. N.; Westh, P. A comparative study of hydrolysis and transglycosylation activities of fungal beta-glucosidases. Appl Microbiol Biotechnol. 2013, 97(1), 159-169. Brakowski, R.; Pontius, K.; Franzreb, M. Investigation of the transglycosylation potential of ß-Galactosidase from Aspergillus oryzae in the presence of the ionic liquid [Bmim][PF6]. J. Mol. Catal. B Enzym. 2016, 130, 48-57. Bridiau, N.; Issaoui, N.; Maugard, T. The effects of organic solvents on the efficiency and regioselectivity of N-acetyl-lactosamine synthesis, using the beta-galactosidase from Bacillus circulans in hydro-organic media. Biotechnol. Prog. 2010, 26(5), 1278-1289. Chen, S.; Xing, X. H.; Huang, J. J.; Xu, M. S. Enzyme-assisted extraction of flavonoids from Ginkgo biloba leaves: improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase. Enzyme Microb. Technol. 2011, 48(1), 100-105. Cui, S.; Zang, Y.; Xie, L.; Mo, C.; Su, J.; Jia, X.; Luo, Z.; Ma, X. Post-Ripening and Key Glycosyltransferase Catalysis to Promote Sweet Mogrosides Accumulation of Siraitia grosvenorii Fruits. Molecules. 2023, 28(12). Grun, C. H.; Dekker, N.; Nieuwland, A. A.; Klis, F. M.; Kamerling, J. P.; Vliegenthart, J. F.; Hochstenbach, F. Mechanism of action of the endo-(1-->3)-alpha-glucanase MutAp from the mycoparasitic fungus Trichoderma harzianum. FEBS Lett. 2006, 580(16), 3780-3786. Gruno, M.; Valjamae, P.; Pettersson, G.; Johansson, G. Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol. Bioeng. 2004, 86(5), 503-511. Hattori, T.; Ogata, M.; Kameshima, Y.; Totani, K.; Nikaido, M.; Nakamura, T.; Koshino, H.; Usui, T. Enzymatic synthesis of cellulose II-like substance via cellulolytic enzyme-mediated transglycosylation in an aqueous medium. Carbohydr. Res. 2012, 353, 22-26. Itkin, M.; Davidovich-Rikanati, R.; Cohen, S.; Portnoy, V.; Doron-Faigenboim, A.; Oren, E.; Freilich, S.; Tzuri, G.; Baranes, N.; Shen, S.; Petreikov, M.; Sertchook, R.; Ben-Dor, S.; Gottlieb, H.; Hernandez, A.; Nelson, D. R.; Paris, H. S.; Tadmor, Y.; Burger, Y.; Lewinsohn, E.; Katzir, N.; Schaffer, A. The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. PNAS. 2016, 113(47), E7619-E7628. Jenab, E.; Omidghane, M.; Mussone, P.; Armada, D. H.; Cartmell, J.; Montemagno, C. Enzymatic conversion of lactose into galacto-oligosaccharides: The effect of process parameters, kinetics, foam architecture, and product characterization. J. Food Eng. 2018, 222, 63-72. Jia, Z.; Yang, X. A minor, sweet cucurbitane glycosidase from Siraitia grosvenorii. Nat. Prod. Commun. 2009, 4(6), 769-722. Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 2008, 77, 521-555. Li, C.; Lin, L. M.; Sui, F.; Wang, Z. M.; Huo, H. R.; Dai, L.; Jiang, T. L. Chemistry and pharmacology of Siraitia grosvenorii: a review. Chin J Nat Med. 2014, 12(2), 89-102. Lundemo, P.; Karlsson, E. N.; Adlercreutz, P. Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 beta-glucosidase. Appl. Microbiol. Biotechnol. 2017, 101(3), 1121-1131. Mangas-Sánchez, J.; Adlercreutz, P. Enzymatic preparation of oligosaccharides by transglycosylation: A comparative study of glucosidases. J. Mol. Catal. B Enzym. 2015, 122, 51-55. Manohar, B.; Divakar, S. Enzymatic synthesis of cholecalciferol glycosides using beta-glucosidase from sweet almond. J. Food Sci. Technol. 2010, 47(5), 469-475. Mendez-Liter, J. A.; Tundidor, I.; Nieto-Dominguez, M.; de Toro, B. F.; Gonzalez Santana, A.; de Eugenio, L. I.; Prieto, A.; Asensio, J. L.; Canada, F. J.; Sanchez, C.; Martinez, M. J. Transglycosylation products generated by Talaromyces amestolkiae GH3 beta-glucosidases: effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells. Microb. Cell Fact. 2019, 18(1), 97. Murata, T.; Honda, H.; Hattori, T.; Usui, T. Enzymatic synthesis of poly-N-acetyllactosamines as potential substrates for endo-beta-galactosidase-catalyzed hydrolytic and transglycosylation reactions. BBA. 2005, 1722(1), 60-68. Muzard, M.; Aubry, N.; Plantier-Royon, R.; O’Donohue, M.; Rémond, C. Evaluation of the transglycosylation activities of a GH 39 β-d-xylosidase for the synthesis of xylose-based glycosides. J. Mol. Catal. B Enzym. 2009, 58(1-4), 1-5. Pei, X.; Zhao, J.; Cai, P.; Sun, W.; Ren, J.; Wu, Q.; Zhang, S.; Tian, C. Heterologous expression of a GH3 beta-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides. Protein Expr. Purif. 2016, 119, 75-84. Ranade, S. C.; Demchenko, A. V. Mechanism of Chemical Glycosylation: Focus on the Mode of Activation and Departure of Anomeric Leaving Groups. J. Carbohydr. Chem. 2013, 32(1), 1-43. Ribeirao, M.; Pereira-Chioccola, V. L.; Eichinger, D.; M.Rodrigues, M.; S., S. <Temperature differences for transglycosylation and hydrolysis reaction reveal an acceptor binding site in the catalytic mechanism of Trypanosoma cruzi trans-sialidase.pdf>. Glycobiology. 1997, 7(8), 1237-1246. Seidle, H. F.; Huber, R. E. Transglucosidic reactions of the Aspergillus niger family 3 beta-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH. Arch. Biochem. Biophys. 2005, 436(2), 254-264. Tumhom, S.; Nimpiboon, P.; Wangkanont, K.; Pongsawasdi, P. Streptococcus agalactiae amylomaltase offers insight into the transglycosylation mechanism and the molecular basis of thermostability among amylomaltases. Sci. Rep. 2021, 11(1), 6740. Virly; Chiu, C. H.; Tsai, T. Y.; Yeh, Y. C.; Wang, R. Encapsulation of beta-Glucosidase within PVA Fibers by CCD-RSM-Guided Coelectrospinning: A Novel Approach for Specific Mogroside Sweetener Production. J. Agric. Food Chem. 2020, 68(42), 11790-11801. Wang, B.; Yang, Z.; Xin, Z.; Ma, G.; Qian, Y.; Xie, T.; Prakash, I. Analysis of Mogrosides in Siraitia grosvenorii Fruits at Different Stages of Maturity. Nat. Prod. Commun. 2019, 14(9). Wang, R.; Chen, Y. C.; Lai, Y. J.; Lu, T. J.; Huang, S. T.; Lo, Y. C. Dekkera bruxellensis, a beer yeast that specifically bioconverts mogroside extracts into the intense natural sweetener siamenoside I. Food Chem. 2019, 276, 43-49. Weiz, G.; Mazzaferro, L. S.; Kotik, M.; Neher, B. D.; Halada, P.; Kren, V.; Breccia, J. D. The flavonoid degrading fungus Acremonium sp. DSM 24697 produces two diglycosidases with different specificities. Appl. Microbiol. Biotechnol. 2019, 103(23-24), 9493-9504. Woudenberg-van Oosterom, M.; Van Belle, H. J. A.; Van Rantwijk, F.; & Sheldon, R. A. Immobilised β-galactosidases and their use in galactoside synthesis. J Mol Catal A Chem. 1998, 134(1-3), 267-274. Xu, F.; Li, D. P.; Huang, Z. C.; Lu, F. L.; Wang, L.; Huang, Y. L.; Wang, R. F.; Liu, G. X.; Shang, M. Y.; Cai, S. Q. Exploring in vitro, in vivo metabolism of mogroside V and distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MS(n). J Pharm Biomed Anal. 2015, 115, 418-430. Zeuner, B.; Jers, C.; Mikkelsen, J. D.; Meyer, A. S. Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. J. Agric. Food Chem. 2014, 62(40), 9615-9631. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90619 | - |
dc.description.abstract | Mogroside V (MG V) 與Iso-mogroside V (IM V)為具甜味的羅漢果三萜類皂苷。MG V甜度為蔗糖的300倍,但具有明顯的餘後味;IM V 甜度為蔗糖的500倍,無不良風味,但含量相當稀少,因此若能將結構相似之MG V轉變為IM V,將可增加羅漢果皂苷作為代糖的使用。而MG V與IM V之間的差異在於醣苷配基mogrol在三號碳處雙醣的鍵結方式,因此如何選擇具有良好專一性的酵素和糖基轉換方法將MG V轉變為IM V是目前最大的挑戰。醣基水解酶(Glycosyl hydrolases, GHs)對於受體和供體具有廣泛的靈活性,且在特定條件下可以將糖轉移到多種生物分子上,因此利用GHs對羅漢果皂苷進行轉醣是個有潛力的方式。 在我們的研究中,利用Kluyveromyces marxianus 的BGL1酵素(KmBGL1)、Trichoderma Reesei的纖維素酶、與Dekkera bruxellensis 的 EXG1 酵素 (DbEXG1)對羅漢果皂苷進行轉糖,然後以薄層層析(Thin layer chromatography, TLC)和高效能液相層析串聯質譜進行分析轉醣結果。在三種酵素中僅DbEXG1在0.02 U酵素濃度下,以MG V與羅漢果皂苷siamenoside I (S I)作為醣基受體,以pNP-glucose作為醣基供體時,能夠產生IM V,其中以MG V作為受體時轉換出的IM V產量 (2.99%) 較S I作為受體時 (0.22%) 高;而DbEXG1除了轉醣形成IM V外,亦能夠以β-1,6與β-1,2醣苷鍵的方式將醣基接於羅漢果皂苷上,形成多樣的醣基化羅漢果皂苷,如MG VI、MG VI a與MG VI b。綜上所述,DbEXG1的多醣基化能力具有合成新的羅漢果皂苷的潛力。 | zh_TW |
dc.description.abstract | Mogroside V (MG V) and Iso-mogroside V (IM V) are sweet-tasting triterpene glycosides found in monk fruit. MG V has a sweetness that is 300 times that of sucrose, but with a noticeable aftertaste; IM V has a sweetness that is 500 times that of sucrose, without any unpleasant flavor, but it is present in very small quantities. Therefore, if the structurally similar MG V can be transformed into IM V, it would increase the usage of monk fruit mogrosides as sugar substitutes. The main challenge in this transformation is the difference in the way the glycosyl moieties is bound to the mogrol at C3 position in MG V and IM V. Finding enzymes with high specificity and glycosylation methods to convert MG V into IM V is currently a significant challenge. Glycosyl hydrolases (GHs) have broad flexibility for both acceptors and donors, and under certain conditions can transfer sugars onto various biomolecules, making them a promising method for glycosylation of mogrosides. In our research, we utilized the enzymes BGL1 from Kluyveromyces marxianus (KmBGL1), cellulase from Trichoderma Reesei, and EXG1 from Dekkera bruxellensis (DbEXG1) to perform glycosylation on mogrosides, and then analyzed the glycosylation results using thin-layer chromatography (TLC) and high-performance liquid chromatography coupled with mass spectrometry. Among the three enzymes, only DbEXG1, at a 0.02 U enzyme concentration, was able to produce IM V using MG V or siamenoside I (SI) as glycosyl acceptors and pNP-glucose as the glycosyl donor. The yield of IM V produced using MG V as an acceptor (2.99%) was higher than when SI was used as an acceptor (0.22%). Furthermore, DbEXG1 was not only able to form IM V through glycosylation but could also attach sugar mogrosides in a β-1,6 and β-1,2 glycosidic linkage manner, forming various glycosylated mogrosides such as MG VI, MG VI a, and MG VI b. In conclusion, the glycosylation ability of DbEXG1 has the potential for synthesizing new mogrosides. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:53:22Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:53:22Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝誌 i
摘要 ii Abstract iii Graphical abstract v 目錄 vi 圖目錄 ix 表目錄 xi 附錄目錄 xii 第一章、前言 1 第二章、文獻回顧 2 第一節、羅漢果 2 第二節、羅漢果皂苷 2 第三節、轉醣基化 (Transglycosylation) 4 第四節、轉醣酵素 4 一、醣基轉移酶 (Glycosyltransferase, GTs) 4 二、醣基水解酶 (Glycosyl hydrolases, GHs) 7 第五節、影響轉醣的因素 9 一、酵素種類 9 二、酵素濃度 11 三、受質濃度 11 四、反應pH值 14 五、反應溫度 14 六、醣基供體的添加 15 第三章、研究目的與實驗架構 16 第一節、研究目的 16 第二節、實驗架構 - 17 - 第四章、材料與方法 18 第一節、實驗材料 18 一、化學材料 18 二、微生物培養材料 19 三、酵素 20 第二節、耗材與儀器設備 20 第三節、套裝軟體 21 第四節、實驗方法 22 一、DbExg1蛋白質表現 22 三、S I crude extract製備 23 四、受質溶液配製 23 五、酵素轉醣反應 23 六、薄層層析(Thin layer chromatography, TLC) 24 七、固相萃取管柱(Solid Phase Extraction, SPE)純化樣品 24 八、液相層析串聯質譜(HPLC-ESI-MS)分析條件 24 第五章、實驗結果 26 第一節、羅漢果皂苷的 HPLC-MS/MS 分析 26 一、羅漢果皂苷6-1 (Mogroside 6-1, MG 6-1) 26 二、羅漢果皂苷5-1 (Mogorside 5-1, MG 5-1) 30 第二節、β-葡萄糖苷酶 (exo β-glucosidase from Kluyveromyces marxianus, KmBGL1) 34 第三節、纖維素酶(cellulase from Trichoderma Reesei) 40 一、降低酵素濃度促使纖維素酶轉醣 40 二、醣基受體種類對纖維素酶轉醣影響 40 第四節、外切β-1,3葡聚醣酶(exo β-1,3 glucanase from Dellera bruxellensis, DbEXG1) 48 一、酵素濃度的調整無助於DbEXG1轉醣活性 48 二、反應溫度對於DbExg1轉醣無顯著影響 58 三、反應pH值對轉醣無顯著影響 62 四、增加受質濃度對DbExg1轉醣無顯著影響 66 五、額外醣基供體對轉醣的影響 70 六、DbExg1轉醣途徑確認 76 第六章、結論與展望 84 第七章、參考資料 85 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用醣基水解酶進行羅漢果皂苷轉醣作用 | zh_TW |
dc.title | Effect of glycosyl hydrolase on transglycosylation of mogrosides | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 呂廷章;高承福;邱群惠;張舜延 | zh_TW |
dc.contributor.oralexamcommittee | Ting-Jang Lu;Cheng-Fu Kao;Chun-Hui Chiu;Shin-Yen Chong | en |
dc.subject.keyword | 醣基水解酶,轉醣,DbEXG1,纖維素酶,羅漢果皂苷,Iso-mogroside V, | zh_TW |
dc.subject.keyword | glycosyl hydrolase,transglycosylation,DbEXG1,Iso-mogroside V,mogrosides, | en |
dc.relation.page | 95 | - |
dc.identifier.doi | 10.6342/NTU202304102 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-13 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 食品科技研究所 | - |
dc.date.embargo-lift | 2028-08-11 | - |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 4.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。