請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90604完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭光成 | zh_TW |
| dc.contributor.advisor | Kuan-Chen Cheng | en |
| dc.contributor.author | 黃筱筑 | zh_TW |
| dc.contributor.author | Hsiao-Chu Huang | en |
| dc.date.accessioned | 2023-10-03T16:49:30Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | 郭耀綸 (2008)。紅藜推廣手冊。屏東科技大學。
黃山內 (2002)。農產保健食品的發展現況與展望。農糧署。 加值農產原料鏈結國際機能性食品產業。科技處 (2018)。 健康食品之延緩衰老保健功效評估方法。衛福部。食藥署 (2015)。 邱弘毅 (2017)。國民健康訪問調查結果報告。衛福部。國衛院。 鄭伊娟 (2010)。臺灣藜之開發應用成果介紹。農政與農情。農委會。行政院。 簡則宇 (2018)。以固態發酵開發機能性臺灣藜產品。國立臺灣大學生物資源暨農 學院食品科技研究所碩士學位論文。臺北,臺灣。 盧宛萱 (2021)。評估發芽臺灣藜發酵產物對延緩皮膚光衰老之潛力。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。 劉于維 (2021)。評估固態發酵發芽臺灣藜減緩PM2.5誘導ROS之潛力。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。 吳蓉安 (2021)。評估發芽糙薏仁之發酵產物對於抵抗氧化壓力的能力。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。 黃姿瑄 (2017)。臺灣藜種子之蛋白質鑑定及其潛在活性胜肽探討。國立臺灣海洋大學食品科學系。碩士學位論文。基隆。 謝承哲 (2018)。利用 Lactobacillus sp. FPS 2520 和 Bacillus sp. N1 菌株發酵豆粕開發飼料營養添加劑及利用細胞膜是探討發酵產品之抗肥胖和促進葡萄糖吸收活性。國立臺灣海洋大學研究所碩士論文。基隆,臺灣。 嚴婗 (2022)。評估臺灣藜甘糀延緩人類纖維母細胞衰老之功效。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。 李宗貴 (2000)。含硫胺基酸及賀爾蒙調控肝細胞穀胱甘肽生合成之研究。行政院國科會專題研究。中山醫學大學。臺中。臺灣。 黃子芸 (2020)。臺灣藜臺東一號之育成。臺東區農業改良場研究彙報。臺東,臺灣。 Abedimanesh, N., Asghari, S., Mohammadnejad, K., Daneshvar, Z., Rahmani, S., Shokoohi, S., Farzaneh, A. H., Hosseini, S. H., Jafari Anarkooli, I., Noubarani, M., Andalib, S., Eskandari, M. R., & Motlagh, B. (2021). The anti-diabetic effects of betanin in streptozotocin-induced diabetic rats through modulating AMPK/SIRT1/NF-κB signaling pathway. Nutrition & Metabolism, 18(1), 92. Acosta, J. C., O’Loghlen, A., Banito, A., Guijarro, M. v, Augert, A., Raguz, S., Fumagalli, M., da Costa, M., Brown, C., Popov, N., Takatsu, Y., Melamed, J., d’Adda di Fagagna, F., Bernard, D., Hernando, E., & Gil, J. (2008). Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence. Cell, 133(6), 1006–1018. Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J., & Tang, X. (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(2), 585–597. Ahmed, W., & Lingner, J. (2018). Impact of oxidative stress on telomere biology. Differentiation, 99, 21–27. Ajibola, C. F., Fashakin, J. B., Fagbemi, T. N., & Aluko, R. E. (2011). Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. International journal of molecular sciences, 12(10), 6685-6702. Ak, P., & Levine, A. J. (2010). p53 and NF-κB: different strategies for responding to stress lead to a functional antagonism. The FASEB Journal, 24(10), 3643–3652. Altintas, O., Park, S., & Lee, S.-J. v. (2016). The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Reports, 49(2), 81–92. An, J. H., & Blackwell, T. K. (2003). SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes & Development, 17(15), 1882–1893. An, J. H., Vranas, K., Lucke, M., Inoue, H., Hisamoto, N., Matsumoto, K., & Blackwell, T. K. (2005). Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. Proceedings of the National Academy of Sciences, 102(45), 16275–16280. Anderson, G. L. (1978). Responses of dauerlarvae of Caenorhabditis elegans (Nematoda: Rhabditidae) to thermal stress and oxygen deprivation. Canadian Journal of Zoology, 56(8), 1786–1791. Aoki, H., Uda, I., Tagami, K., Furuya, Y., Endo, Y., & Fujimoto, K. (2003). The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus. Bioscience, biotechnology, and biochemistry, 67(5), 1018-1023. Artan, M., Jeong, D.-E., Lee, D., Kim, Y.-I., Son, H. G., Husain, Z., Kim, J., Altintas, O., Kim, K., & Alcedo, J. (2016). Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides. Genes & Development, 30(9), 1047–1057. Babu, K. R., & Satyanarayana, T. (1996). Production of bacterial enzymes by solid state fermentation. Journal of Scientific & Industrial Research, 55(5–6), 464–467. Baker, G. T., & Sprott, R. L. (1988). Biomarkers of aging. Experimental Gerontology, 23(4), 223–239. Bansal, A., Zhu, L. J., Yen, K., & Tissenbaum, H. A. (2015). Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proceedings of the National Academy of Sciences, 112(3), E277–E286. Beak, S. M., Paek, S. H., Jahng, Y., Lee, Y. S., & Kim, J. A. (2004). Inhibition of UVA irradiation-modulated signaling pathways by rutaecarpine, a quinazolinocarboline alkaloid, in human keratinocytes. European journal of pharmacology, 498(1-3), 19-25. Berlett, B. S., & Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry, 272(33), 20313–20316. Berneburg, M., Gattermann, N., Stege, H., Grewe, M., Vogelsang, K., Ruzicka, T., & Krutmann, J. (1997). Chronically Ultraviolet-exposed Human Skin Shows a Higher Mutation Frequency of Mitochondrial DNA as Compared to Unexposed Skin and the Hematopoietic System. Photochemistry and Photobiology, 66(2), 271–275. Beuchat, L. R. (1987). Traditional fermented food products. Bewley, J. D. (2001). Seed germination and reserve mobilization. e LS. Blackburn, E. H. (2001). Switching and signaling at the telomere. Cell, 106(6), 661–673. Brassard, J. A., Fekete, N., Garnier, A., & Hoesli, C. A. (2016). Hutchinson–Gilford progeria syndrome as a model for vascular aging. Biogerontology, 17(1), 129–145. Brinegar, C., & Goundan, S. (1993). Isolation and characterization of chenopodin, the 11S seed storage protein of quinoa (Chenopodium quinoa). Journal of Agricultural and Food Chemistry, 41(2), 182–185. Brinegar, C., Sine, B., & Nwokocha, L. (1996). High-cysteine 2S seed storage proteins from quinoa (Chenopodium quinoa). Journal of Agricultural and Food Chemistry, 44(7), 1621–1623. Burton, G. J., & Jauniaux, E. (2011). Oxidative stress. Best Practice & Research Clinical Obstetrics & Gynaecology, 25(3), 287–299. Byerly, L., Cassada, R. C., & Russell, R. L. (1976). The life cycle of the nematode Caenorhabditis elegans: I. Wild-type growth and reproduction. Developmental Biology, 51(1), 23–33. Cavazos, A., & Gonzalez de Mejia, E. (2013). Identification of Bioactive Peptides from Cereal Storage Proteins and Their Potential Role in Prevention of Chronic Diseases. Comprehensive Reviews in Food Science and Food Safety, 12(4), 364–380. Chen, H. Y., Hsieh, C. W., Chen, P. C., Lin, S. P., Lin, Y. F., & Cheng, K. C. (2021). Development and optimization of djulis sourdough bread fermented by lactic acid bacteria for antioxidant capacity. Molecules, 26(18), 5658. Chen, L., Yang, R., Qiao, W., Zhang, W., Chen, J., Mao, L., Goltzman, D., & Miao, D. (2019). 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell, 18(3), e12951. Chen, Q. M. (2000). Replicative senescence and oxidant‐induced premature senescence: beyond the control of cell cycle checkpoints. Annals of the New York Academy of Sciences, 908(1), 111-125. Chen, S. Y., Chu, C. C., Chyau, C. C., Yang, J. W., & Duh, P. D. (2019). Djulis (Chenopodium formosanum) and its bioactive compounds affect vasodilation, angiotensin converting enzyme activity, and hypertension. Food Bioscience, 32, 100469. Chen, Y., Kwon, S. W., Kim, S. C., & Zhao, Y. (2005). Integrated Approach for Manual Evaluation of Peptides Identified by Searching Protein Sequence Databases with Tandem Mass Spectra. Journal of Proteome Research, 4(3), 998–1005. Cheng, K. C., Lin, J. T., Wu, J. Y., & Liu, W. H. (2010). Isoflavone conversion of black soybean by immobilized Rhizopus spp. Food Biotechnology, 24(4), 312-331. Chio, E. H., Yang, E. C., Huang, H. T., Hsu, E. L., Chen, C. R., Huang, C. G., & Huang, R. N. (2013). Toxicity and repellence of Taiwanese indigenous djulis, Chenopodium formosaneum, against Aedes albopictus (Diptera: Culicidae) and Forcipomyia taiwana (Diptera: Ceratopogonidae). Journal of pest science, 86, 705-712. Chu, C. C., Chen, S. Y., Chyau, C. C., Fu, Z. H., Liu, C. C., & Duh, P. D. (2016). Protective effect of Djulis (Chenopodium formosanum) and its bioactive compounds against carbon tetrachloride-induced liver injury, in vivo. Journal of Functional Foods, 26, 585-597. Chu, Q., Zhang, S., Yu, X., Wang, Y., Zhang, M., & Zheng, X. (2021). Fecal microbiota transplantation attenuates nano-plastics induced toxicity in Caenorhabditis elegans. Science of The Total Environment, 779, 146454. Chung, H. Y., Kim, H. J., Kim, K. W., Choi, J. S., & Yu, B. P. (2002). Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction. Microscopy Research and Technique, 59(4), 264–272. Chyau, C. C., Chu, C. C., Chen, S. Y., & Duh, P. D. (2018). The inhibitory effects of djulis (Chenopodium formosanum) and its bioactive compounds on adipogenesis in 3T3-L1 adipocytes. Molecules, 23(7), 1780. Coon, J. T., & Ernst, E. (2002). Panax ginseng. Drug Safety, 25(5), 323–344. Coppe, J. P., Patil, C. K., Rodier, F., Krtolica, A., Beausejour, C. M., Parrinello, S., ... & Campisi, J. (2010). A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PloS one, 5(2), e9188. Coppé, J. P., Patil, C. K., Rodier, F., Sun, Y. U., Muñoz, D. P., Goldstein, J., ... & Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS biology, 6(12), e301. d’Adda di Fagagna, F. (2008). Living on a break: cellular senescence as a DNA-damage response. Nature Reviews Cancer, 8(7), 512–522. Daliri, E. B. M., Oh, D. H., & Lee, B. H. (2017). Bioactive peptides. Foods, 6(5), 32. Das, P. M., Ramachandran, K., vanWert, J., & Singal, R. (2004). Chromatin immunoprecipitation assay. BioTechniques, 37(6), 961–969. De Ruiz, A. C., & Bressani, R. (1990). Effect of germination on the chemical composition and nutritive value of amaranth grain. Cereal chemistry, 67(6), 519-522. Dean, R. T., FU, S., Stocker, R., & Davies, M. J. (1997). Biochemistry and pathology of radical-mediated protein oxidation. Biochemical journal, 324(1), 1-18. Debacq-Chainiaux, F., Ben Ameur, R., Bauwens, E., Dumortier, E., Toutfaire, M., & Toussaint, O. (2016). Stress-induced (premature) senescence. Cellular Ageing and Replicative Senescence, 243-262. Demirci, D., Dayanc, B., Mazi, F. A., & Senturk, S. (2021). The Jekyll and Hyde of cellular senescence in cancer. Cells, 10(2), 208. Devaraj, R. D., Jeepipalli, S. P. K., & Xu, B. (2020). Phytochemistry and health promoting effects of Job’s tears (Coix lacryma-jobi) - A critical review. Food Bioscience, 34, 100537. Dhakal, R., Bajpai, V. K., & Baek, K. H. (2012). Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Brazilian Journal of Microbiology, 43, 1230-1241. Dierick, J. F., Eliaers, F., Remacle, J., Raes, M., Fey, S. J., Larsen, P. M., & Toussaint, O. (2002). Stress-induced premature senescence and replicative senescence are different phenotypes, proteomic evidence. Biochemical pharmacology, 64(5-6), 1011-1017. D’Orazio, J., Jarrett, S., Amaro-Ortiz, A., & Scott, T. (2013). UV radiation and the skin. International Journal of Molecular Sciences, 14(6), 12222–12248. Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A., Kostić, I., Komes, D., Bugarski, B., & Nedović, V. (2015). Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Engineering Reviews, 7(4), 452–490. Duong-Ly, K. C., & Gabelli, S. B. (2014). Salting out of proteins using ammonium sulfate precipitation. In Methods in enzymology (Vol. 541, pp. 85-94). Academic Press. Elwood, J. M., & Jopson, J. (1997). Melanoma and sun exposure: An overview of published studies. International Journal of Cancer, 73(2), 198–203. Emonet, N., Leccia, M. T., Favier, A., Beani, J. C., & Richard, M. J. (1997). Thiols and selenium: protective effect on human skin fibroblasts exposed to UVA radiation. Journal of Photochemistry and Photobiology B: Biology, 40(1), 84–90. Emonet-Piccardi, N., Richard, M. J., Ravanat, J. L., Signorini, N., Cadet, J., & Beani, J. C. (1998). Protective effects of antioxidants against UVA-induced DNA damage in human skin fibroblasts in culture. Free radical research, 29(4), 307-313. Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. Fan, X., Guo, H., Teng, C., Zhang, B., Blecker, C., & Ren, G. (2022). Anti-colon cancer activity of novel peptides isolated from in vitro digestion of quinoa protein in Caco-2 cells. Foods, 11(2), 194. Farinazzi-Machado, F. M. V., Barbalho, S. M., Oshiiwa, M., Goulart, R., & Pessan Junior, O. (2012). Use of cereal bars with quinoa (Chenopodium quinoa W.) to reduce risk factors related to cardiovascular diseases. Food Science and Technology, 32, 239–244. Fei, T., Fei, J., Huang, F., Xie, T., Xu, J., Zhou, Y., & Yang, P. (2017). The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans. Experimental Gerontology, 97, 89–96. Feng, Q., Lu, X., Yuan, G., Zhang, Q., & An, L. (2020). Effects of Agaricus blazei polypeptide on cell senescence by regulation of Keap1/Nrf2/ARE and TLR4/NF-κBp65 signaling pathways and its mechanism in D-gal-induced NIH/3T3 cells. Journal of Functional Foods, 72, 104037. Fields, K., Falla, T. J., Rodan, K., & Bush, L. (2009). Bioactive peptides: signaling the future. Journal of Cosmetic Dermatology, 8(1), 8–13. Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247. Fischer, S., Wilckens, R., Jara, J., Aranda, M., Valdivia, W., Bustamante, L., Graf, F., & Obal, I. (2017). Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Industrial Crops and Products, 107, 558–564. Fisher, G. J., Datta, S. C., Talwar, H. S., Wang, Z. Q., Varani, J., Kang, S., & Voorhees, J. J. (1996). Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature, 379(6563), 335-339. Fisher, G. J., & Voorhees, J. J. (1998). Molecular Mechanisms of Photoaging and its Prevention by Retinoic Acid: Ultraviolet Irradiation Induces MAP Kinase Signal Transduction Cascades that Induce Ap-1-Regulated Matrix Metalloproteinases that Degrade Human Skin In Vivo. Journal of Investigative Dermatology Symposium Proceedings, 3(1), 61–68. FitzGerald, R. J., & Meisel, H. (2003). Milk protein hydrolysates and bioactive peptides. Advanced Dairy Chemistry—1 Proteins: Part A/Part B, 675-698. Formenti, L. R., Nørregaard, A., Bolic, A., Hernandez, D. Q., Hagemann, T., Heins, A. L., Larsson, H., Mears, L., Mauricio-Iglesias, M., Krühne, U., & Gernaey, K. V. (2014). Challenges in industrial fermentation technology research. Biotechnology Journal, 9(6), 727–738. Freund, A., Patil, C. K., & Campisi, J. (2011). p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. The EMBO Journal, 30(8), 1536–1548. Friedman, D. B., & Johnson, T. E. (1988). A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics, 118(1), 75–86. Fumagalli, M., Rossiello, F., Clerici, M., Barozzi, S., Cittaro, D., Kaplunov, J. M., Bucci, G., Dobreva, M., Matti, V., Beausejour, C. M., Herbig, U., Longhese, M. P., & d’Adda di Fagagna, F. (2012). Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biology, 14(4), 355–365. García-Tejedor, A., Sánchez-Rivera, L., Castelló-Ruiz, M., Recio, I., Salom, J. B., & Manzanares, P. (2014). Novel Antihypertensive Lactoferrin-Derived Peptides Produced by Kluyveromyces marxianus: Gastrointestinal Stability Profile and In Vivo Angiotensin I-Converting Enzyme (ACE) Inhibition. Journal of Agricultural and Food Chemistry, 62(7), 1609–1616. Gharahdaghi, F., Weinberg, C. R., Meagher, D. A., Imai, B. S., & Mische, S. M. (1999). Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. ELECTROPHORESIS, 20(3), 601–605. Girard, L. R., Fiedler, T. J., Harris, T. W., Carvalho, F., Antoshechkin, I., Han, M., Sternberg, P. W., Stein, L. D., & Chalfie, M. (2007). WormBook: the online review of Caenorhabditis elegans biology. Nucleic Acids Research, 35(suppl_1), D472–D475. Gomes, M. J. C., Lima, S. L. S., Alves, N. E. G., Assis, A., Moreira, M. E. C., Toledo, R. C. L., Rosa, C. O. B., Teixeira, O. R., Bassinello, P. Z., De Mejía, E. G., & Martino, H. S. D. (2020). Common bean protein hydrolysate modulates lipid metabolism and prevents endothelial dysfunction in BALB/c mice fed an atherogenic diet. Nutrition, Metabolism and Cardiovascular Diseases, 30(1), 141–150. González-Muñoz, A., Valle, M., Aluko, R. E., Bazinet, L., & Enrione, J. (2022). Production of antihypertensive and antidiabetic peptide fractions from quinoa (Chenopodium quinoa Willd.) by electrodialysis with ultrafiltration membranes. Food Science and Human Wellness, 11(6), 1650–1659. Görgüç, A., Gençdağ, E., & Yılmaz, F. M. (2020). Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments – A review. Food Research International, 136, 109504. Greider, C. W. (1996). Telomere length regulation. Annual Review of Biochemistry, 65(1), 337–365. Griffith, O. W. (1999). Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radical Biology and Medicine, 27(9), 922–935. Guo, H., Hao, Y., Fan, X., Richel, A., Everaert, N., Yang, X., & Ren, G. (2021). Administration with quinoa protein reduces the blood pressure in spontaneously hypertensive rats and modifies the fecal microbiota. Nutrients, 13(7), 2446. Guo, H., Richel, A., Hao, Y., Fan, X., Everaert, N., Yang, X., & Ren, G. (2020). Novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides released from quinoa protein by in silico proteolysis. Food Science & Nutrition, 8(3), 1415–1422. Guru, A., Lite, C., Freddy, A. J., Issac, P. K., Pasupuleti, M., Saraswathi, N. T., Arasu, M. V., Al-Dhabi, N. A., Arshad, A., & Arockiaraj, J. (2021). Intracellular ROS scavenging and antioxidant regulation of WL15 from cysteine and glycine-rich protein 2 demonstrated in zebrafish in vivo model. Developmental & Comparative Immunology, 114, 103863. Han, B. I., Hwang, S. H., & Lee, M. (2017). A progressive reduction in autophagic capacity contributes to induction of replicative senescence in Hs68 cells. The International Journal of Biochemistry & Cell Biology, 92, 18–25. Han, E. S., Muller, F. L., Pérez, V. I., Qi, W., Liang, H., Xi, L., Fu, C., Doyle, E., Hickey, M., Cornell, J., Epstein, C. J., Roberts, L. J., van Remmen, H., & Richardson, A. (2008). The in vivo gene expression signature of oxidative stress. Physiological Genomics, 34(1), 112–126. Handoyo, T., & Morita, N. (2006). Structural and Functional Properties of Fermented Soybean (Tempeh) by Using Rhizopus oligosporus. International Journal of Food Properties, 9(2), 347–355. Hansen, G. H., Lübeck, M., Frisvad, J. C., Lübeck, P. S., & Andersen, B. (2015). Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation. Process Biochemistry, 50(9), 1327–1341. Harman, D. (2006). Free radical theory of aging: an update: increasing the functional life span. Annals of the New York Academy of Sciences, 1067(1), 10–21. Harvey, C. J., Thimmulappa, R. K., Singh, A., Blake, D. J., Ling, G., Wakabayashi, N., Fujii, J., Myers, A., & Biswal, S. (2009). Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radical Biology and Medicine, 46(4), 443–453. Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37(3), 614–636. Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25(3), 585–621. Herranz, N., & Gil, J. (2018). Mechanisms and functions of cellular senescence. The Journal of Clinical Investigation, 128(4), 1238–1246. Hieb, W. F., & Rothstein, M. (1968). Sterol Requirement for Reproduction of a Free-Living Nematode. Science, 160(3829), 778–780. Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175–186. Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Géloën, A., Even, P. C., Cervera, P., & le Bouc, Y. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 421(6919), 182–187. Hong, Y. H., Huang, Y. L., Liu, Y. C., & Tsai, P.-J. (2016). Djulis (Chenopodium formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models. BioMed Research International, 2016, 7368797. Hou, C. Y., Hsieh, C. C., Huang, Y. C., Kuo, C. H., Chen, M. H., Hsieh, C. W., & Cheng, K. C. (2022). Development of Functional Fermented Dairy Products Containing Taiwan Djulis (Chenopodium formosanum Koidz.) in Regulating Glucose Utilization. Fermentation, 8(9), 423. Hseu, Y. C., Korivi, M., Lin, F. Y., Li, M. L., Lin, R. W., Wu, J. J., & Yang, H. L. (2018). Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. Journal of Dermatological Science, 90(2), 123–134. Hsiao, Y., Shao, Y., Wu, Y., Hsu, W., Cheng, K., Yu, C., Chou, C., & Hsieh, C. (2023). Physicochemical properties and protective effects on UVA-induced photoaging in Hs68 cells of Pleurotus ostreatus polysaccharides by fractional precipitation. International Journal of Biological Macromolecules, 228, 537–547. Hsieh, C. C., Yu, S. H., Cheng, K. W., Liou, Y. W., Hsu, C. C., Hsieh, C. W., Kuo, C. H., & Cheng, K. C. (2023). Production and analysis of metabolites from solid-state fermentation of Chenopodium formosanum (Djulis) sprouts in a bioreactor. Food Research International, 168, 112707. Hsieh, Y. Y., Shen, C. H., Huang, W. S., Chin, C. C., Kuo, Y. H., Hsieh, M. C., ... & Tung, S. Y. (2014). Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/NFκB signaling pathway in gastric cancer cells. Journal of biomedical science, 21(1), 1-10. Hsu, A. L., Murphy, C. T., & Kenyon, C. (2003). Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science, 300(5622), 1142-1145. Hsu, B. Y., Lin, S. W., Inbaraj, B. S., & Chen, B. H. (2017). Simultaneous determination of phenolic acids and flavonoids in Chenopodium formosanum Koidz. (djulis) by HPLC-DAD-ESI–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 132, 109–116. Huang, C., Xiong, C., & Kornfeld, K. (2004). Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 101(21), 8084–8089. Hung, P. van, Hatcher, D. W., & Barker, W. (2011). Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities. Food Chemistry, 126(4), 1896–1901. Hung, P. van, Maeda, T., Yamamoto, S., & Morita, N. (2012). Effects of germination on nutritional composition of waxy wheat. Journal of the Science of Food and Agriculture, 92(3), 667–672. Hur, J., Nguyen, T. T. H., Park, N., Kim, J., & Kim, D. (2018). Characterization of quinoa (Chenopodium quinoa) fermented by Rhizopus oligosporus and its bioactive properties. AMB Express, 8(1), 143. Irvine, G. B. (2003). High-performance size-exclusion chromatography of peptides. Journal of Biochemical and Biophysical Methods, 56(1), 233–242. Clancy, D. J., Gems, D., Harshman, L. G., Oldham, S., Stocker, H., Hafen, E., ... & Partridge, L. (2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science, 292(5514), 104-106. Jin, B., van Leeuwen, H. J., Patel, B., Doelle, H. W., & Yu, Q. (1999). Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater. Process Biochemistry, 34(1), 59–65. Jurkiewicz, B. A., Bissett, D. L., & Buettner, G. R. (1995). Effect of Topically Applied Tocopherol on Ultraviolet Radiation-Mediated Free Radical Damage in Skin. Journal of Investigative Dermatology, 104(4), 484–488. Kahn, N. W., Rea, S. L., Moyle, S., Kell, A., & Johnson, T. E. (2007). Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochemical Journal, 409(1), 205–213. Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., le Bot, N., Moreno, S., Sohrmann, M., Welchman, D. P., Zipperlen, P., & Ahringer, J. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421(6920), 231–237. Kampkötter, A., Timpel, C., Zurawski, R. F., Ruhl, S., Chovolou, Y., Proksch, P., & Wätjen, W. (2008). Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 149(2), 314–323. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., & Tokimatsu, T. (2007). KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36(suppl_1), D480–D484. Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., & Tanabe, M. (2019). New approach for understanding genome variations in KEGG. Nucleic Acids Research, 47(D1), D590–D595. Kawanishi, S., & Oikawa, S. (2004). Mechanism of telomere shortening by oxidative stress. Annals of the New York Academy of Sciences, 1019(1), 278-284. Kell, A., Ventura, N., Kahn, N., & Johnson, T. E. (2007). Activation of SKN-1 by novel kinases in Caenorhabditis elegans. Free Radical Biology and Medicine, 43(11), 1560–1566. Kim, J. M., Lee, E. K., Kim, D. H., Yu, B. P., & Chung, H. Y. (2010). Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase. AGE, 32(2), 197–208. Kirkwood, T. B. L. (2017). Why and how are we living longer? Experimental Physiology, 102(9), 1067–1074. Kishido, T., Unno, K., Yoshida, H., Choba, D., Fukutomi, R., Asahina, S., Iguchi, K., Oku, N., & Hoshino, M. (2007). Decline in glutathione peroxidase activity is a reason for brain senescence: consumption of green tea catechin prevents the decline in its activity and protein oxidative damage in ageing mouse brain. Biogerontology, 8(4), 423–430. Kitts, D. D., & Weiler, K. (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design, 9(16), 1309–1323. Klass, M., & Hirsh, D. (1976). Non-ageing developmental variant of Caenorhabditis elegans. Nature, 260(5551), 523-525. Koller, D., Mayer, A. M., Poljakoff-Mayber, A., & Klein, S. (1962). Seed germination. Annual Review of Plant Physiology, 13(1), 437–464. Kook, D., Wolf, A. H., Yu, A. L., Neubauer, A. S., Priglinger, S. G., Kampik, A., & Welge-Lüssen, U. C. (2008). The Protective Effect of Quercetin against Oxidative Stress in the Human RPE In Vitro. Investigative Ophthalmology & Visual Science, 49(4), 1712–1720. Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16(9), 945–960. Krutmann, J. (2000). Ultraviolet A radiation-induced biological effects in human skin: relevance for photoaging and photodermatosis. Journal of Dermatological Science, 23, S22–S26. Kumar, V., Ahluwalia, V., Saran, S., Kumar, J., Patel, A. K., & Singhania, R. R. (2021). Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technology, 323, 124566. Kuo, H. C., Kwong, H. K., Chen, H. Y., Hsu, H. Y., Yu, S. H., Hsieh, C. W., Lin, H. W., Chu, Y. L., & Cheng, K. C. (2021). Enhanced antioxidant activity of Chenopodium formosanum Koidz. by lactic acid bacteria: Optimization of fermentation conditions. PloS One, 16(5), e0249250. Kuo, T. N., Lin, C. S., Li, G. D., Kuo, C. Y., & Kao, S. H. (2020). Sesamin inhibits cervical cancer cell proliferation by promoting p53/PTEN-mediated apoptosis. International Journal of Medical Sciences, 17(15), 2292–2298. Kwon, O. S., Jung, S. H., & Yang, B. S. (2013). Topical Administration of Manuka Oil Prevents UV-B Irradiation-Induced Cutaneous Photoaging in Mice. Evidence-Based Complementary and Alternative Medicine, 2013, 930857. Lai, C. H., Chou, C. Y., Ch'ang, L. Y., Liu, C. S., & Lin, W. C. (2000). Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome research, 10(5), 703-713. Lee, C. W., Chen, H. J., Xie, G. R., & Shih, C. K. (2019). Djulis (Chenopodium formosanum) prevents colon carcinogenesis via regulating antioxidative and apoptotic pathways in rats. Nutrients, 11(9), 2168. Lee, S. J., Murphy, C. T., & Kenyon, C. (2009). Glucose Shortens the Life Span of C. elegans by Downregulating DAF-16/FOXO Activity and Aquaporin Gene Expression. Cell Metabolism, 10(5), 379–391. Li, P. H., Chan, Y. J., Hou, Y. W., Lu, W. C., Chen, W. H., Tseng, J. Y., & Mulio, A. T. (2021). Functionality of djulis (Chenopodium formosanum) by-products and in vivo anti-diabetes effect in type 2 diabetes mellitus patients. Biology, 10(2), 160. Liao, V. H. C. (2018). Use of Caenorhabditis elegans To Study the Potential Bioactivity of Natural Compounds. Journal of Agricultural and Food Chemistry, 66(8), 1737–1742. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., & Bonaduce, D. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757. Lin, Y. K., Chung, Y. M., Lin, Y. H., Lin, Y. H., Hu, W. C., & Chiang, C. F. (2021). Health functional properties of unhulled red djulis (Chenopodium formosanum) in anti-aging. International Journal of Food Properties, 24(1), 833–844. Liu, C., Erh, M., Lin, S., Lo, K., Chen, K., & Cheng, K. (2016). Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor. Journal of the Science of Food and Agriculture, 96(11), 3779–3786. Liu, S., Wang, W., Lu, H., Shu, Q., Zhang, Y., & Chen, Q. (2022). New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends in Food Science & Technology, 123, 187–197. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. Lu, J. J., Cheng, M. C., Khumsupan, D., Hsieh, C. C., Hsieh, C. W., & Cheng, K. C. (2023). Evaluation of Fermented Turmeric Milk by Lactic Acid Bacteria to Prevent UV-Induced Oxidative Stress in Human Fibroblast Cells. Fermentation, 9(3), 230. Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30(1), 42–59. Lyu, J. L., Liu, Y. J., Wen, K. C., Chiu, C. Y., Lin, Y. H., & Chiang, H. M. (2022). Protective Effect of Djulis (Chenopodium formosanum) Extract against UV-and AGEs-Induced Skin Aging via Alleviating Oxidative Stress and Collagen Degradation. Molecules, 27(7), 2332. Marionnet, C., Pierrard, C., Lejeune, F., Sok, J., Thomas, M., & Bernerd, F. (2010). Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation. PloS one, 5(8), e12059. Matsuo, M. (2005). In vivo antioxidant activity of methanol extract from quinoa fermented with Rhizopus oligosporus. Journal of Nutritional Science and Vitaminology, 51(6), 449–452. Matsuo, M. (2006). Suitability of quinoa fermented with Rhizopus oligosporus as an ingredient of biscuit. Journal of the Japanese Society for Food Science and Technology (Japan). Matyash, V., Geier, C., Henske, A., Mukherjee, S., Hirsh, D., Thiele, C., Grant, B., Maxfield, F. R., & Kurzchalia, T. V. (2001). Distribution and Transport of Cholesterol in Caenorhabditis elegans. Molecular Biology of the Cell, 12(6), 1725–1736. Min, W., Liu, X., Qian, Q., Lin, B., Wu, D., Wang, M., Ahmad, I., Yusuf, N., & Luo, D. (2014). The Effects of Baicalin Against UVA-Induced Photoaging in Skin Fibroblasts. The American Journal of Chinese Medicine, 42(03), 709–727. Montemurro, M., Pontonio, E., Gobbetti, M., & Rizzello, C. G. (2019). Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. International Journal of Food Microbiology, 302, 47–58. Morley, N., Curnow, A., Salter, L., Campbell, S., & Gould, D. (2003). N-acetyl-l-cysteine prevents DNA damage induced by UVA, UVB and visible radiation in human fibroblasts. Journal of Photochemistry and Photobiology B: Biology, 72(1), 55–60. Mudgil, P., Kilari, B. P., Kamal, H., Olalere, O. A., FitzGerald, R. J., Gan, C.-Y., & Maqsood, S. (2020). Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. Journal of Cereal Science, 96, 103130. Muhl, L., Genové, G., Leptidis, S., Liu, J., He, L., Mocci, G., Sun, Y., Gustafsson, S., Buyandelger, B., Chivukula, I. v, Segerstolpe, Å., Raschperger, E., Hansson, E. M., Björkegren, J. L. M., Peng, X.-R., Vanlandewijck, M., Lendahl, U., Betsholtz, C. (2020). Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nature Communications, 11(1), 3953. Murray, L. A., Knight, D. A., Laurent, G. J. (2008). Fibroblasts. In Asthma and COPD: Basic Mechanisms and Clinical Management. Nelson, W. G., & Kastan, M. B. (1994). DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Molecular and Cellular Biology, 14(3), 1815–1823. Nguyen Thai, H., Van Camp, J., Smagghe, G., & Raes, K. (2014). Improved release and metabolism of flavonoids by steered fermentation processes: a review. International journal of molecular sciences, 15(11), 19369-19388. Nowak, V., Du, J., & Charrondière, U. R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47–54. Nwachukwu, I. D., & Aluko, R. E. (2019). Structural and functional properties of food protein-derived antioxidant peptides. Journal of Food Biochemistry, 43(1), e12761. Oh, S. I., Park, J. K., & Park, S. K. (2015). Lifespan extension and increased resistance to environmental stressors by N-acetyl-L-cysteine in Caenorhabditis elegans. Clinics, 70, 380-386. Pan, M. H., Lai, C. S., Tsai, M. L., Wu, J. C., & Ho, C. T. (2012). Molecular mechanisms for anti‐aging by natural dietary compounds. Molecular nutrition & food research, 56(1), 88-115. Paradis, S., Ailion, M., Toker, A., Thomas, J. H., & Ruvkun, G. (1999). A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes & Development, 13(11), 1438–1452. Paradis, S., & Ruvkun, G. (1998). Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes & Development, 12(16), 2488–2498. Park, M. J., & Bae, Y. S. (2016). Fermented Acanthopanax koreanum root extract reduces UVB-and H 2 O 2-induced senescence in human skin fibroblast cells. Journal of Microbiology and Biotechnology, 26(7), 1224–1233. Park, S. Y., Kim, Y. S., Ahn, C. B., & Je, J. Y. (2016). Partial purification and identification of three antioxidant peptides with hepatoprotective effects from blue mussel (Mytilus edulis) hydrolysate by peptic hydrolysis. Journal of Functional Foods, 20, 88–95. Paśko, P., Bartoń, H., Zagrodzki, P., Gorinstein, S., Fołta, M., & Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry, 115(3), 994–998. Pereira, E., Encina-Zelada, C., Barros, L., Gonzales-Barron, U., Cadavez, V., & C.F.R. Ferreira, I. (2019). Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chemistry, 280, 110–114. Pincus, Z., Mazer, T. C., & Slack, F. J. (2016). Autofluorescence as a measure of senescence in C. elegans: look to red, not blue or green. Aging, 8(5), 889–898. Pincus, Z., Smith-Vikos, T., & Slack, F. J. (2011). MicroRNA Predictors of Longevity in Caenorhabditis elegans. PLOS Genetics, 7(9), e1002306. Pinnell, S. R. (2003). Cutaneous photodamage, oxidative stress, and topical antioxidant protection. Journal of the American Academy of Dermatology, 48(1), 1–22. Rajapakse, N., Mendis, E., Byun, H. G., & Kim, S. K. (2005). Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. The Journal of Nutritional Biochemistry, 16(9), 562–569. Ramachandran, S., Patel, A. K., Nampoothiri, K. M., Francis, F., Nagy, V., Szakacs, G., & Pandey, A. (2004). Coconut oil cake––a potential raw material for the production of α-amylase. Bioresource Technology, 93(2), 169–174. Ravisankar, S., Campos Gutierrez, D., Chirinos, R., & Noratto, G. (2015). Quinoa (Chenopodium quinoa) peptides protect human umbilical vein endothelial cells (HUVEC) against risk markers for cardiovascular disease (CVD). The FASEB Journal, 29, 923-10. Rea, S. L., Wu, D., Cypser, J. R., Vaupel, J. W., & Johnson, T. E. (2005). A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nature Genetics, 37(8), 894–898. Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biology and Medicine, 49(11), 1603–1616. Rizzello, C. G., Lorusso, A., Russo, V., Pinto, D., Marzani, B., & Gobbetti, M. (2017). Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. International Journal of Food Microbiology, 241, 252–261. Rodehutscord, M., Mandel, S., Pack, M., Jacobs, S., & Pfeffer, E. (1995). Free Amino Acids Can Replace Protein-Bound Amino Acids in Test Diets for Studies in Rainbow Trout (Oncorhynchus mykiss). The Journal of Nutrition, 125(4), 956–963. Ruan, Q., Qiao, Y., Zhao, Y., Xu, Y., Wang, M., Duan, J., & Wang, D. (2016). Beneficial effects of Glycyrrhizae radix extract in preventing oxidative damage and extending the lifespan of Caenorhabditis elegans. Journal of Ethnopharmacology, 177, 101–110. Ryšavá, A., Čížková, K., Franková, J., Roubalová, L., Ulrichová, J., Vostálová, J., Vrba, J., Zálešák, B., & Rajnochová Svobodová, A. (2020). Effect of UVA radiation on the Nrf2 signalling pathway in human skin cells. Journal of Photochemistry and Photobiology B: Biology, 209, 111948. Salminen, A., Kauppinen, A., & Kaarniranta, K. (2012). Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cellular Signalling, 24(4), 835–845. Sánchez-Blanco, A., & Kim, S. K. (2011). Variable Pathogenicity Determines Individual Lifespan in Caenorhabditis elegans. PLOS Genetics, 7(4), e1002047. Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949–1956. Schurch, N. J., Schofield, P., Gierliński, M., Cole, C., Sherstnev, A., Singh, V., Wrobel, N., Gharbi, K., Simpson, G. G., & Owen-Hughes, T. (2016). How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? Rna, 22(6), 839–851. Seo, H. W., Cheon, S. M., Lee, M. H., Kim, H. J., Jeon, H., & Cha, D. S. (2015). Catalpol modulates lifespan via DAF-16/FOXO and SKN-1/Nrf2 activation in Caenorhabditis elegans. Evidence-Based Complementary and Alternative Medicine, 2015. Shang, J., Schwarz, C., Sanchez Ruderisch, H., Hertting, T., Orfanos, C. E., & Tebbe, B. (2002). Effects of UVA and L-Ascorbic Acid on Nuclear Factor-κB in Melanocytes and in HaCaT Keratinocytes. Skin Pharmacology and Physiology, 15(5), 353–359. Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Analytical Chemistry, 68(5), 850–858. Shi, H., Hu, X., Zheng, H., Li, C., Sun, L., Guo, Z., Huang, W., Yu, R., Song, L., & Zhu, J. (2021). Two novel antioxidant peptides derived from Arca subcrenata against oxidative stress and extend lifespan in Caenorhabditis elegans. Journal of Functional Foods, 81, 104462. Shi, Y. C., Yu, C. W., Liao, V. H. C., & Pan, T. M. (2012). Monascus-Fermented Dioscorea Enhances Oxidative Stress Resistance via DAF-16/FOXO in Caenorhabditis elegans. PLOS ONE, 7(6), e39515. Shimizu, M. (2004). Food-derived peptides and intestinal functions. BioFactors, 21, 43–47. Shurtleff, W., & Aoyagi, A. (1979). The book of tempeh (Vol. 1). Soyinfo Center. Sies, H. (2020). Oxidative stress: Concept and some practical aspects. Antioxidants, 9(9), 852. Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative Stress. Annual Review of Biochemistry, 86(1), 715–748. Singh, B., & Bhat, H. K. (2012). Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage and is associated with inhibition of estrogen-induced breast cancer. Carcinogenesis, 33(12), 2601–2610. Soccol, C. R., Pandey, A., & Larroche, C. (2013). Fermentation processes engineering in the food industry. CRC Press. Sohal, R. S., Mockett, R. J., & Orr, W. C. (2002). Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radical Biology and Medicine, 33(5), 575-586. Son, H. G., Altintas, O., Kim, E. J. E., Kwon, S., & Lee, S.-J. v. (2019). Age-dependent changes and biomarkers of aging in Caenorhabditis elegans. Aging Cell, 18(2), e12853. Song, B., Zheng, B., Li, T., & Liu, R. H. (2020). Raspberry extract ameliorates oxidative stress in Caenorhabditis elegans via the SKN-1/Nrf2 pathway. Journal of Functional Foods, 70, 103977. Song, F., Zuo, X., Zhao, Y., Li, Q., Tian, Z., & Yang, Y. (2019). Betanin-enriched red beet extract attenuated platelet activation and aggregation by suppressing Akt and P38 Mitogen-activated protein kinases phosphorylation. Journal of Functional Foods, 61, 103491. Sparringa, R. A., & Owens, J. D. (1999). Protein Utilization during Soybean Tempe Fermentation. Journal of Agricultural and Food Chemistry, 47(10), 4375–4378. Starzyńska-Janiszewska, A., Bączkowicz, M., Sabat, R., Stodolak, B., & Witkowicz, R. (2017). Quinoa Tempe as a Value-Added Food: Sensory, Nutritional, and Bioactive Parameters of Products from White, Red, and Black Seeds. Cereal Chemistry, 94(3), 491–496. Starzyńska-Janiszewska, A., Duliński, R., Stodolak, B., Mickowska, B., & Wikiera, A. (2016). Prolonged tempe-type fermentation in order to improve bioactive potential and nutritional parameters of quinoa seeds. Journal of Cereal Science, 71, 116–121. Subramaniyam, R., & Vimala, R. (2012). Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat, 3(3), 480–486. SUGIYAMA, K., KAWAMURA, A., IZAWA, S., & INOUE, Y. (2000). Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Biochemical Journal, 352(1), 71–78. Tanigawa, S., Fujii, M., & Hou, D.-X. (2007). Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radical Biology and Medicine, 42(11), 1690–1703. Tatar, M. (2009). Can we develop genetically tractable models to assess healthspan (rather than life span) in animal models?. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 64(2), 161-163. . Teyssier, C., Amiot, M.-J., Mondy, N., Auger, J., Kahane, R., & Siess, M.-H. (2001). Effect of onion consumption by rats on hepatic drug-metabolizing enzymes. Food and Chemical Toxicology, 39(10), 981–987. Thomas, P. D., Hill, D. P., Mi, H., Osumi-Sutherland, D., Van Auken, K., Carbon, S., Balhoff, J. P., Albou, L. P., Good, B., Gaudet, P., Lewis, S. E., & Mungall, C. J. (2019). Gene Ontology Causal Activity Modeling (GO-CAM) moves beyond GO annotations to structured descriptions of biological functions and systems. Nature Genetics, 51(10), 1429–1433. Tsai, P. J., Sheu, C. H., Wu, P. H., & Sun, Y. F. (2010). Thermal and pH Stability of Betacyanin Pigment of Djulis (Chenopodium formosanum) in Taiwan and Their Relation to Antioxidant Activity. Journal of Agricultural and Food Chemistry, 58(2), 1020–1025. Tullet, J. M. A., Green, J. W., Au, C., Benedetto, A., Thompson, M. A., Clark, E., Gilliat, A. F., Young, A., Schmeisser, K., & Gems, D. (2017). The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell, 16(5), 1191–1194. Tullet, J. M. A., Hertweck, M., An, J. H., Baker, J., Hwang, J. Y., Liu, S., Oliveira, R. P., Baumeister, R., & Blackwell, T. K. (2008). Direct Inhibition of the Longevity-Promoting Factor SKN-1 by Insulin-like Signaling in C. elegans. Cell, 132(6), 1025–1038. van de Vondel, J., Lambrecht, M. A., & Delcour, J. A. (2022). Heat-induced denaturation and aggregation of protein in quinoa (Chenopodium quinoa Willd.) seeds and whole meal. Food Chemistry, 372, 131330. van de Vondel, J., Lambrecht, M. A., Housmans, J. A. J., Rousseau, F., Schymkowitz, J., & Delcour, J. A. (2021). Impact of hydrothermal treatment on denaturation and aggregation of water-extractable quinoa (Chenopodium quinoa Willd.) protein. Food Hydrocolloids, 115, 106611. Van Deursen, J. M. (2014). The role of senescent cells in ageing. Nature, 509(7501), 439–446. Vincent, A. T., Derome, N., Boyle, B., Culley, A. I., & Charette, S. J. (2017). Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money. Journal of Microbiological Methods, 138, 60–71. Wagenknecht, A. C., Mattick, L. R., Lewin, L. M., Hand, D. B., & Steinkraus, K. H. (1961). Changes in Soybean Lipids During Tempeh Fermentation a, b. Journal of Food Science, 26(4), 373-376. Wang, A. S., & Dreesen, O. (2018). Biomarkers of cellular senescence and skin aging. Frontiers in Genetics, 9, 247. Wang, J., Wu, Y., Chen, Z., Chen, Y., Lin, Q., & Liang, Y. (2022). Exogenous bioactive peptides have a potential therapeutic role in delaying aging in rodent models. International Journal of Molecular Sciences, 23(3), 1421. Wang, L., Cui, Y. R., Lee, H.-G., Fu, X., Wang, K., Xu, J., Gao, X., & Jeon, Y.-J. (2022). Fucoidan isolated from fermented Sargassum fusiforme suppresses oxidative stress through stimulating the expression of superoxidase dismutase and catalase by regulating Nrf2 signaling pathway. International Journal of Biological Macromolecules, 209, 935–941. Wang, L., Feng, Z., Wang, X., Wang, X., & Zhang, X. (2010). DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 26(1), 136–138. Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International journal of molecular sciences, 14(4), 7370-7390. Wang, Q., Huang, Y., Qin, C., Liang, M., Mao, X., Li, S., Zou, Y., Jia, W., Li, H., Ma, C. W., & Huang, Z. (2016). Bioactive Peptides from Angelica sinensis Protein Hydrolyzate Delay Senescence in Caenorhabditis elegans through Antioxidant Activities. Oxidative Medicine and Cellular Longevity, 2016, 8956981. Wang, S., Su, G., Zhang, X., Song, G., Zhang, L., Zheng, L., & Zhao, M. (2021). Characterization and Exploration of Potential Neuroprotective Peptides in Walnut (Juglans regia) Protein Hydrolysate against Cholinergic System Damage and Oxidative Stress in Scopolamine-Induced Cognitive and Memory Impairment Mice and Zebrafish. Journal of Agricultural and Food Chemistry, 69(9), 2773–2783. Wang, S., Zheng, L., Zhao, T., Zhang, Q., Liu, Y., Sun, B., Su, G., & Zhao, M. (2020). Inhibitory Effects of Walnut (Juglans regia) Peptides on Neuroinflammation and Oxidative Stress in Lipopolysaccharide-Induced Cognitive Impairment Mice. Journal of Agricultural and Food Chemistry, 68(8), 2381–2392. Wang, T., Jian, Z., Baskys, A., Yang, J., Li, J., Guo, H., Hei, Y., Xian, P., He, Z., Li, Z., Li, N., & Long, Q. (2020). MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Biomaterials, 257, 120264. Wang, X., Li, H., Liu, Y., Wu, H., Wang, H., Jin, S., Lu, Y., Chang, S., Liu, R., Peng, Y., Guo, Z., & Wang, X. (2020). Velvet antler methanol extracts (MEs) protects against oxidative stress in Caenorhabditis elegans by SKN-1. Biomedicine & Pharmacotherapy, 121, 109668. Wang, Z., Ma, X., Li, J., & Cui, X. (2016). Peptides from sesame cake extend healthspan of Caenorhabditis elegans via upregulation of skn-1 and inhibition of intracellular ROS levels. Experimental Gerontology, 82, 139–149. Yang, B. Y., Cheng, M. H., Ko, C. H., Wang, Y. N., Chen, W. H., Hwang, W. S., ... & Chang, F. C. (2014). Potential bioethanol production from Taiwanese chenopods (Chenopodium formosanum). Energy, 76, 59-65. Yang, M. S., Chan, H. W., & Yu, L. C. (2006). Glutathione peroxidase and glutathione reductase activities are partially responsible for determining the susceptibility of cells to oxidative stress. Toxicology, 226(2), 126–130. Yang, N. C., & Hu, M. L. (2004). A fluorimetric method using fluorescein di-β-d-galactopyranoside for quantifying the senescence-associated β-galactosidase activity in human foreskin fibroblast Hs68 cells. Analytical Biochemistry, 325(2), 337–343. Yang, S., & Lian, G. (2020). ROS and diseases: role in metabolism and energy supply. Molecular and Cellular Biochemistry, 467(1), 1–12. Yin, B., & Jiang, X. (2013). Original paperTelomere shortening in cultured human dermal fibroblasts is associated with acute photodamage induced by UVA irradiation. Advances in Dermatology and Allergology/Postępy Dermatologii i Alergologii, 30(1), 13–18. Yin, S., Wang, Y., Liu, N., Yang, M., Hu, Y., Li, X., Fu, Y., Luo, M., Sun, J., & Yang, X. (2019). Potential skin protective effects after UVB irradiation afforded by an antioxidant peptide from Odorrana andersonii. Biomedicine & Pharmacotherapy, 120, 109535. Yujia, X. I. E., Wang, J., Li, Z., Luan, Y., Li, M., Peng, X., ... & Zhang, S. (2022). Damage prevention effect of milk-derived peptides on UVB irradiated human foreskin fibroblasts and regulation of photoaging related indicators. Food Research International, 161, 111798. ZečićOrcI, A., & Braeckman, B. P. (2020). DAF-16/FoxO in Caenorhabditis elegans and Its Role in Metabolic Remodeling. Cells (2073-4409), 9(1). Zhang, Y., Jiang, W., Hao, X., Tan, J., Wang, W., Yu, M., Zhang, G., & Zhang, Y. (2021). Preparation of the Enzymatic Hydrolysates from Chlorella vulgaris Protein and Assessment of Their Antioxidant Potential Using Caenorhabditis elegans. Molecular Biotechnology, 63(11), 1040–1048. Zhou, H., Safdar, B., Li, H., Yang, L., Ying, Z., & Liu, X. (2023). Identification of a novel α-amylase inhibitory activity peptide from quinoa protein hydrolysate. Food Chemistry, 403, 134434. Žilić, S., Barać, M., Pešić, M., Dodig, D., & Ignjatović-Micić, D. (2011). Characterization of proteins from grain of different bread and durum wheat genotypes. International Journal of Molecular Sciences, 12(9), 5878-5894. Zurawski, K. A. G. N. C., & Watjen, R. F. T. C. C. Y. (2007). W. Kahl R. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch Toxicol, 81, 849–858. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90604 | - |
| dc.description.abstract | 衰老是一種隨著時間的推移、年齡的增長所發生的自然現象,同時由於細胞和組織中各種有害變化的累積所引發的現象。當生物體暴露於某些外源性物質,可能導致內源性和外源性 ROS 之間不平衡,從而降低抗氧化防禦能力而引起衰老等現象發生。本研究目的為評估自發酵發芽臺灣藜中所分離出之 < 2 kDa 小分子胜肽產量於生物反應器發酵之最適發酵天數,並進一步鑑定其序列,運用 UVA 誘導細胞光衰老及動物模式生物秀麗隱桿線蟲評估胜肽延緩衰老之功效。將臺灣藜發芽四天並且接種 Rhizopus oligosporus 於生物反應器進行發酵,以發酵第四天為最適生產胜肽之天數,產量增加 5.89 倍。依據快速蛋白質液相層析圖譜得知同樣於發酵第 4 天有最高之 UV 280 nm 吸光值933.27,相比第 0 天增加 3.08 倍;透過蛋白質鑑定結果得知此胜肽之序列為 GGGGGKP (GRP)。評估 GRP 經 UVA 誘導 Hs68 細胞光衰老之保護效果,50 及 100 ug/mL GRP 分別回復細胞存活率至 85.52±14.96% 及 83.45±7.83%,增加 1.29 及 1.26 倍;並且分別減少 ROS 相對螢光強度 1.85 及 2.46 倍;於衰老指標酵素活性 SA-β‐gal 分別減少 8.13 及 7.00 倍。利用 RNA-seq 之基因富集結果推測預先添加 GRP 可能具有減緩經 UVA 所誘導之氧化壓力,因而回復細胞週期停滯,接著 mRNA 表現量顯示,50 及 100 ug/mL GRP 分別顯著增加 Nrf2 基因 3.96 與 10.69 倍的表現,此外其下游 HO-1 基因亦分別提升 6.67 與 9.30 倍,表示其可能透過 Nrf2 途徑減少 ROS 生成;另外於 50 及 100 ug/mL兩種 GRP 濃度可顯著降低 p53 基因表現達 4.09 及 2.69 倍 並且可延緩 p21 基因表現至 14.15 與 24.00 倍;接著利用 ChIP 分析,相比控制組,分別顯著上調各基因 GSR 61.94 與 28.79 倍、SOD 8.37 與 16.76 倍 及 NQO1 3.63 與 3.98 倍,證實 GRP 透過 Nrf2 轉錄因子調節途徑。研究顯示 GRP 有助於緩解 UVA 誘導之細胞週期停滯,達到延緩細胞衰老之功效。50 及 100 ug/mL GRP 相較於控制組,顯著延長秀麗隱桿線蟲之平均生命週期分別顯著提升 13.4% 及 11.0%,使生存曲線向右移;同時顯著增加咽部抽動速率 1.08 與 1.35 倍,以及改善 1.33 與 1.34 倍由促氧化劑誘導氧化壓力的生存率,接著 mRNA 表現量相較於控制組,50 ug/mL GRP 分別顯著提升 skn-1 下游基因 gcs-1、gst-4 與 gst-7 ( 3.3 倍、2.32 倍和 6.00 倍 )。本研究證實發酵發芽臺灣藜胜肽於體內及體外試驗皆具有延緩衰老之功效。 | zh_TW |
| dc.description.abstract | Population aging is an international concern. Taiwan has confronted an aging society since 1993. By the end of January 2021, the proportion of 65-year-olds has accounted for 16.2%, over 14% of the aging society defined by the United Nations. The purpose of this study is to evaluate the optimal fermentation days of < 2 kDa peptides isolated from fermented Chenopodium formosanum sprouts. Then evaluate the anti-aging effect of peptides through UVA-irradiation and the animal model Caenorhabditis elegans. The fourth day of fermentation was the optimum day for peptide production, and the yield increased by 5.89 times. The sequence is GGGGGKP (GRP), which is identified by protein identificaiton. To evaluate the protective effect of GRP on UVA-induced aging of Hs68 cells, 50 and 100 ug/mL GRP restored cell viability to 85.52±14.96% and 83.45±7.83%, respectively, increasing by 1.29 and 1.26 times; and reduced the ROS fluorescence intensity by 1.85 and 2.46 times; the aging indicator enzyme activity SA-β‐gal is reduced by 8.13 and 7.00 times respectively. Using the Gene Ontology results of RNA-seq, it is speculated that the pretreatment with GRP may relieve the oxidative stress induced by UVA irradiation, thereby restoring cell cycle arrest. Then mRNA expression showed that 50 and 100 ug/mL GRP significantly increased the overall gene expression of Nrf2 by 3.96, 10.69 times and its downstream HO-1 gene by 6.67, 9.30 times, respectively, indicating that the ROS generation may be reduced through the Nrf2 pathway. The gene expression of p53 was increased by 4.09, 2.69 times, p21 was improved by 14.15, 24.00 times, help to relieve UVA-induced cell cycle arrest and achieve the effect of delaying cell aging. Then, using ChIP analysis, compared with the control group, the genes GSR was significantly up-regulated by 61.94 and 28.79 times, SOD by 8.37 and 16.76 times, and NQO1 by 3.63 and 3.98 times, confirming that GRP regulates the pathway through the Nrf2 transcription factor. Compared with the control group, 50, 100 ug/mL GRP significantly prolong the average lifespan of C. elegans by 13.4±3.78 %, 11.0±2.77 % and increase the pharyngeal pumping rate by 1.08, 1.35 times. At the same time, it could improve survival of oxidative stress induced by juglone by 1.33, 1.34 times. Then, 50 ug/mL GRP increases gene expression of gcs-1, gst-4, gst-7 by 3.3, 2.32 and 6.00 times, respectively. This study confirmed that the fermented and germinated Chenopodium formosanum peptide has the effect of delaying aging both in vivo and in vitro. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:49:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:49:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II Abstract IV 目錄 VI 圖目錄 XII 表目錄 XIV List of Figures XV List of Tables XVII 壹、 前言 1 貳、 文獻回顧 2 2.1 老化 2 2.1.1 衰老簡介及與慢性疾病關聯 2 2.1.2 我國高齡化現況 2 2.1.3 細胞衰老成因 2 2.1.4 細胞衰老可能機制 3 2.2 氧化壓力 6 2.2.1 簡介 6 2.2.2 活性含氧物的產生 6 2.2.3 活性含氧物對於生物體的影響 6 2.2.4 延緩衰老可能機制 7 2.3 臺灣藜 8 2.3.1 藜麥簡介 8 2.3.2 臺灣藜簡介 9 2.3.3 一般營養成分 9 2.3.4 機能性成分 10 2.3.5 具延緩衰老之成分 12 2.3.6 種子發芽的優點 13 2.4 發酵 13 2.4.1 定義 13 2.4.2 液態發酵 14 2.4.3 固態發酵 14 2.4.4 少孢根黴菌 (Rhizopus oligosporus) 15 2.4.5 Rhizopus oligosporus 發酵藜麥 16 2.5 生物活性胜肽 17 2.5.1 臺灣藜蛋白質 17 2.5.2 製備活性胜肽 18 2.5.3 抗氧化活性胜肽與延緩老化研究 20 2.6 誘導細胞光衰老 21 2.6.1 人類纖維母細胞 21 2.6.2 紫外線 (UV) 21 2.6.3 誘導細胞衰老 22 2.6.4 細胞光衰老機制 23 2.7 秀麗隱桿線蟲 (C. elegans) 23 2.7.1 簡介 23 2.7.2 衰老之生物指標 (Biomarker of aging) 24 2.7.3 調節線蟲壽命因素之研究 25 2.8 次世代定序 (Next Generation Sequencing, NGS) 27 2.8.1 次世代定序技術 27 2.8.2 高通量核糖核酸定序 (RNA-sequencing) 27 2.9 具延緩衰老功效之健康食品 28 2.9.1 健康食品之延緩衰老保健評估方法 28 2.9.2 相關之高齡食品及開發 28 參、 研究目的與實驗架構 29 3.1 研究目的 29 3.2 實驗架構 30 肆、 實驗材料研究目的與實驗架構 32 4.1 實驗材料 32 4.1.1 實驗原料 32 4.1.2 實驗菌株 32 4.1.3 實驗細胞株 32 4.1.4 細胞實驗材料 32 4.1.5 培養基配置藥品 33 4.1.6 分析實驗藥品 33 4.1.7 培養基配置 34 4.1.8 儀器設備 36 4.2 實驗方法 37 4.2.1 原料臺灣藜發芽 37 4.2.1.1 培養基配置 37 4.2.1.2 R. oligosporus 菌株活化 37 4.2.1.3 種菌培養 37 4.2.1.4 孢子懸浮液製作 37 4.2.2 固態發酵產物製備 37 4.2.2.1 以生物反應器培養 R. oligosporus 發酵發芽臺灣藜 37 4.2.3 分離純化發芽臺灣藜之發酵產物中的蛋白質及胜肽 38 4.2.3.1 發酵產物脫脂 38 4.2.3.2 粗蛋白質萃取 38 4.2.3.3 硫酸胺鹽析 38 4.2.3.4 以 FPLC 脫鹽分離純化 < 2 kDa 胜肽 40 4.2.3.5 蛋白質及胜肽之產率計算 42 4.2.4 蛋白質身分鑑定 (Protein identification) 42 4.2.4.1 小於 2 kDa 胜肽樣品前處理 42 4.2.4.2 胜肽身分鑑定 44 4.2.5 紫外線誘導光衰老對 Hs68 細胞試驗 46 4.2.5.1 實驗細胞株及細胞培養基 46 4.2.5.2 細胞計數 46 4.2.5.3 Hs68 細胞凍管保存 46 4.2.5.4 細胞實驗樣品前處理 47 4.2.5.5 細胞存活率之測定 48 4.2.5.6 建立UVA照射致 Hs68 細胞光老化平台 48 4.2.5.7 細胞內 ROS 測定 48 4.2.5.8 細胞SA-β-gal之測定 49 4.2.5.9 染色質免疫沉澱Chromatin immunoprecipitation (ChIP) 49 4.2.5.9.1 Hs68 細胞樣品前處理 49 4.2.5.9.2 染色質免疫沉澱 49 4.2.6 RNA 定序資料分析 51 4.2.6.1 Hs68 細胞樣品製備 51 4.2.6.2 萃取 Hs68 細胞 RNA 51 4.2.7 高通量核糖核酸定序 (RNA-Sequencing) 52 4.2.8 建立以 C. elegans 為模式動物之延緩衰老平台 53 4.2.8.1 品系來源、保存與解凍 53 4.2.8.2 C. elegans 保存與解凍 53 4.2.8.3 E. coli OP50 活化及含有 E. coli OP50 之 NGM agar 之製備 53 4.2.8.4 蟲卵分離及同步化 54 4.2.8.5 利用胜肽以培養 C. elegans 之相關試驗 55 4.2.8.5.1 樣品前處理 55 4.2.8.5.2 延長壽命測試 (Lifespan assay) 55 4.2.8.5.4 咽部抽動速率計數 (Pharyngeal pumping rate) 56 4.2.8.5.5 抵禦壓力能力 56 4.2.9 相關基因表現測定 57 4.2.9.1 萃取 RNA 57 4.2.9.2 RNA 反轉錄成 cDNA 57 4.2.9.3 即時定量聚合酶連鎖反應 (Quantitative Real-Time PCR, qPCR) 58 4.2.10 統計分析 60 伍、 結果與討論 61 5.1 發芽臺灣藜胜肽於生物反應器 (Bioreactor) 發酵最適條件 61 5.1.1 發芽臺灣藜之條件參考 61 5.1.2 R. oligosporus 接種條件參考 61 5.1.3 於生物反應器發酵發芽臺灣藜之外觀型態 61 5.1.4 臺灣藜 < 2 kDa胜肽之產率及快速蛋白質液相層析圖譜 64 5.2 小於 2kDa 胜肽之分子量區間證明及序列鑑定結果 67 5.3 評估胜肽經 UVA 誘導 Hs68 光衰老之保護效果 69 5.3.1 臺灣藜胜肽對 Hs68 細胞毒性 69 5.3.2 GRP 對 UVA 誘導 Hs68 細胞存活率及 ROS 產生之影響 70 5.3.3 利用 RNA-Sequencing 分析 GRP 減緩 UVA 誘導細胞衰老轉錄體分析 73 5.3.3.1 基因表達差異 (Differential Expressing Genes, DEGs) 73 5.3.3.2 基因富集功能差異分析 (Gene Ontology, GO) 75 5.3.4 GRP 對 UVA 誘導 Hs68 細胞之 SA--gal 之影響 81 5.3.5 GRP 對調節 UVA 誘導細胞衰老的基因表現 83 5.3.6 GRP 對調節 UVA 誘導細胞衰老的 ChIP 分析 86 5.4 評估 GRP 延緩秀麗隱桿線蟲模式生物衰老之功效 89 5.4.1 生命週期 (Lifespan assay) 89 5.4.2 咽部抽動速率計數 (Pharyngeal pumping rate) 91 5.4.3 壓力抵抗能力試驗 (Resistance to oxidative stress) 93 5.4.4 GRP 延長線蟲壽命之基因表現 95 陸、 結論與未來展望 97 柒、 參考文獻 99 捌、 附錄 123 附錄一、論文原創性比對 123 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 延緩衰老 | zh_TW |
| dc.subject | 臺灣藜 | zh_TW |
| dc.subject | 秀麗隱桿線蟲 | zh_TW |
| dc.subject | 固態發酵 | zh_TW |
| dc.subject | 胜肽 | zh_TW |
| dc.subject | Caenorhabditis elegans | en |
| dc.subject | Chenopodium formosanum | en |
| dc.subject | solid-state fermentation | en |
| dc.subject | anti-senescence | en |
| dc.subject | peptide | en |
| dc.title | 評估固態發酵發芽臺灣藜胜肽其延緩衰老之功效 | zh_TW |
| dc.title | Evaluation of Solid-state Fermentation of Chenopodium formosanum Sprouts Peptide with Anti-senescence Activity | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭星君;陳勁初;游舒涵;黃崇雄 | zh_TW |
| dc.contributor.oralexamcommittee | Hsing-Chun Kuo;Chin-Chu Chen;Shu-Han Yu;Chung-Hsiung Huang | en |
| dc.subject.keyword | 延緩衰老,秀麗隱桿線蟲,臺灣藜,固態發酵,胜肽, | zh_TW |
| dc.subject.keyword | anti-senescence,Caenorhabditis elegans,Chenopodium formosanum,solid-state fermentation,peptide, | en |
| dc.relation.page | 150 | - |
| dc.identifier.doi | 10.6342/NTU202302822 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
