請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90540
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭光成 | zh_TW |
dc.contributor.advisor | Kuan-Chen Cheng | en |
dc.contributor.author | 洪翎 | zh_TW |
dc.contributor.author | Ling Hong | en |
dc.date.accessioned | 2023-10-03T16:32:52Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | 黃亦尊 (2015) 開發普魯藍抗菌活性包材用於延長冷凍鯛魚片保存期限之研究。國立臺灣大學食品科技研究所學位論文。台北。台灣
盛柳娟 (2022) 以泡沫培養基生產多孔性細菌性纖維與其材料特性分析。國立臺灣大學生物科技研究所學位論文。台北。台灣 Abd El-Hack, M. E., El-Saadony, M. T., Shafi, M. E., Zabermawi, N. M., Arif, M., Batiha, G. E., Khafaga, A. F., Abd El-Hakim, Y. M., &Al-Sagheer, A. A. (2020). Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. International Journal of Biological Macromolecules, 164, 2726–2744. Alves, V. L. C. D., Rico, B. P. M., Cruz, R. M. S., Vicente, A. A., Khmelinskii, I., &Vieira, M. C. (2018). Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). Lwt, 89, 525–534. Amarasekara, A. S., Wang, D., &Grady, T. L. (2020). A comparison of kombucha SCOBY bacterial cellulose purification methods. SN Applied Sciences, 2(2), 240. Argudín, M. Á., Mendoza, M. C., &Rodicio, M. R. (2010). Food poisoning and Staphylococcus aureus enterotoxins. Toxins 2010, Vol. 2, Pages 1751-1773, 2(7), 1751–1773. Atarés, L., &Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51–62. Atta, O. M., Manan, Sehrish, Ul-Islam, Mazhar Ul, Ahmed, Abeer Ahmed Qaed, Ullah, Muhammad Wajid , &Yang, G. (2021). Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials . In ES Food & Agroforestry (Vol. 6, pp. 12–26). Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., &Claro, A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3, 7. Balaban, N., &Rasooly, A. (2000). Staphylococcal enterotoxins. International Journal of Food Microbiology, 61(1), 1–10. Barud, H. S., Barrios, C., Regiani, T., Marques, R. F. C., Verelst, M., Dexpert-Ghys, J., Messaddeq, Y., &Ribeiro, S. J. L. (2008). Self-supported silver nanoparticles containing bacterial cellulose membranes. Materials Science and Engineering: C, 28(4), 515–518. Barud, H. S., deAraújo Júnior, A. M., Santos, D. B., deAssunção, R. M. N., Meireles, C. S., Cerqueira, D. A., Rodrigues Filho, G., Ribeiro, C. A., Messaddeq, Y., &Ribeiro, S. J. L. (2008). Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochimica Acta, 471(1), 61–69. Barud, H. S., Ribeiro, C. A., Crespi, M. S., Martines, M. A. U., Dexpert-Ghys, J., Marques, R. F. C., Messaddeq, Y., &Ribeiro, S. J. L. (2007). Thermal characterization of bacterial cellulose-phosphate composite membranes. Journal of Thermal Analysis and Calorimetry, 87(3), 815–818. Blanco Parte, F. G., Santoso, S. P., Chou, C.-C., Verma, V., Wang, H.-T., Ismadji, S., &Cheng, K.-C. (2020). Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology, 40(3), 397–414. Borchers, A., Teuber, S. S., Keen, C. L., &Gershwin, M. E. (2010). Food safety. clinical reviews in allergy and immunology, 39(2), 95–141. Brown, A. J. (1886). XLIII. On an acetic ferment which forms cellulose. Journal of the Chemical Society, Transactions, 49, 432–439. Brown Jr, R. M. (1985). Cellulose microfibril assembly and orientation: recent developments. Journal of Cell Science, 1985(Supplement_2), 13–32. Brown Jr, R. M. (1989). Bacterial cellulose. Cellulose: Structural and Functional Aspects. Ellis Horwood, Chichester, 145–151. Budhiono, A., Rosidi, B., Taher, H., &Iguchi, M. (1999). Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydrate Polymers, 40(2), 137–143. Cai, Z., Chen, P., Jin, H. J., &Kim, J. (2009). The effect of chitosan content on the crystallinity, thermal stability, and mechanical properties of bacterial cellulose—chitosan composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(10), 2225–2230. Cazón, P., &Vázquez, M. (2021). Improving bacterial cellulose films by ex-situ and in-situ modifications: A review. Food Hydrocolloids, 113, 106514. Chaijan, S., Panpipat, W., Panya, A., Cheong, L.-Z., &Chaijan, M. (2020). Preservation of chilled Asian sea bass (Lates calcarifer) steak by whey protein isolate coating containing polyphenol extract from ginger, lemongrass, or green tea. Food Control, 118, 107400. Charles, F., Sanchez, J., &Gontard, N. (2006). Absorption kinetics of oxygen and carbon dioxide scavengers as part of active modified atmosphere packaging. Journal of Food Engineering, 72(1), 1–7. Charpentier, P. A., Maguire, A., &Wan, W. (2006). Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Applied Surface Science, 252(18), 6360–6367. Chawla, P. R., Bajaj, I. B., Survase, S. A., &Singhal, R. S. (2009). Microbial cellulose: fermentative production and applications. Food Technology & Biotechnology, 47(2). Chen, C., Xu, Z., Ma, Y., Liu, J., Zhang, Q., Tang, Z., Fu, K., Yang, F., &Xie, J. (2018). Properties, vapour-phase antimicrobial and antioxidant activities of active poly(vinyl alcohol) packaging films incorporated with clove oil. Food Control, 88, 105–112. Chen, J., &Rosen, B. P. (2016). Organoarsenical biotransformations by Shewanella putrefaciens. Environmental Science & Technology, 50(15), 7956–7963. Chen, X., &Ayres, N. (2011). Synthesis of low grafting density molecular brush from a poly (N‐alkyl urea peptoid) backbone. Journal of Polymer Science Part A: Polymer Chemistry, 49(14), 3030–3037. Cheng, K.-C., Catchmark, J. M., &Demirci, A. (2009a). Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16(6), 1033–1045. Cheng, K.-C., Catchmark, J. M., &Demirci, A. (2009b). Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. Journal of Biological Engineering, 3(1), 12. Cielecka, I., Szustak, M., Kalinowska, H., Gendaszewska-Darmach, E., Ryngajłło, M., Maniukiewicz, W., &Bielecki, S. (2019). Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity. Cellulose, 26, 5409–5426. Costa, A. F. S., Almeida, F. C. G., Vinhas, G. M., &Sarubbo, L. A. (2017). Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology, 8, 2027. Czaja, W., &Romanovicz, D. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11(3), 403–411. Dara, F., Primadona, I., Srikandace, Y., &Karina, M. (2021). Development of bacterial cellulose/chitosan films: structural, physicochemical and antimicrobial properties. Journal of Polymer Research, 28(3), 1–8. Deborah Chen, H., &Frankel, G. (2005). Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiology Reviews, 29(1), 83–98. Dehnad, D., Mirzaei, H., Emam-Djomeh, Z., Jafari, S.-M., &Dadashi, S. (2014). Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohydrate Polymers, 109, 148–154. Divya, K., Smitha, V., &Jisha, M. S. (2018). Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. International Journal of Biological Macromolecules, 114, 572–577. Dobrucka, R., &Przekop, R. (2019). New perspectives in active and intelligent food packaging. Journal of Food Processing and Preservation, 43(11), e14194. Dotto, G. L., Vieira, M. L. G., &Pinto, L. A. A. (2015). Use of chitosan solutions for the microbiological shelf life extension of papaya fruits during storage at room temperature. LWT - Food Science and Technology, 64(1), 126–130. Dourado, F., Leal, M., Martins, D., Fontão, A., Rodrigues, A. C., &Gama, M. (2016). Celluloses as food ingredients/additives: Is there a room for BNC? In Bacterial nanocellulose (pp. 123–133). Dufresne, C., &Farnworth, E. (2000). Tea, Kombucha, and health: a review. Food Research International, 33(6), 409–421. El-Saied, H., Basta, A. H., &Gobran, R. H. (2004). Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polymer-Plastics Technology and Engineering, 43(3), 797–820. Fang, Z., Lin, D., Warner, R. D., &Ha, M. (2018). Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging. Food Chemistry, 260, 90–96. Fernández-Saiz, P., Sánchez, G., Soler, C., Lagaron, J. M., &Ocio, M. J. (2013). Chitosan films for the microbiological preservation of refrigerated sole and hake fillets. Food Control, 34(1), 61–68. Flórez, M., Guerra-Rodríguez, E., Cazón, P., &Vázquez, M. (2022). Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocolloids, 124, 107328. Gelin, K., Bodin, A., Gatenholm, P., Mihranyan, A., Edwards, K., &Strømme, M. (2007). Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer, 48(26), 7623–7631. Glencross, B. (2006). The nutritional management of barramundi, Lates calcarifer–a review. Aquaculture Nutrition, 12(4), 291–309. Gómez-Estaca, J., López de Lacey, A., López-Caballero, M. E., Gómez-Guillén, M. C., &Montero, P. (2010). Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27(7), 889–896. Gorgieva, S., &Trček, J. (2019). Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. In Nanomaterials (Vol. 9, Issue 10). Goy, R. C., Britto, D.de, &Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros, 19(3), 241–247. Gram, L., &Melchiorsen, J. (1996). Interaction between fish spoilage bacteria Pseudomonas sp. and Shewanella putrefaciens in fish extracts and on fish tissue. Journal of Applied Bacteriology, 80(6), 589–595. Halib, N., &Amin, M. C. I. M. (2012). Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malaysiana. Holt, H. M., Gahrn-Hansen, B., &Bruun, B. (2005). Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics. Clinical Microbiology and Infection, 11(5), 347–352. Huacai, G., Wan, P., &Dengke, L. (2006). Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydrate Polymers, 66(3), 372–378. Huang, L. (2010). Growth kinetics of Escherichia coli O157: H7 in mechanically-tenderized beef. International Journal of Food Microbiology, 140(1), 40–48. Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., &Sun, D. (2014). Recent advances in bacterial cellulose. Cellulose, 21(1), 1–30. Hudson, S. M., &Smith, C. (1998). Polysaccharides: chitin and chitosan: chemistry and technology of their use as structural materials. Biopolymers from Renewable Resources, 96–118. Iguchi, M., Yamanaka, S., &Budhiono, A. (2000). Bacterial cellulose—a masterpiece of nature’s arts. Journal of Materials Science 2000 35:2, 35(2), 261–270. J. Foster, T. (2002). 39 - Staphylococcus aureus (M. B. T.-M. M. M.Sussman (ed.); pp. 839–888). Academic Press. Jovanovic, G. D., Klaus, A. S., &Niksic, M. P. (2016). Antimicrobial activity of chitosan films with essential oils against Listeria monocytogenes on cabbage. Jundishapur Journal of Microbiology, 9(9). Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Qian, H., &Yao, W. (2019). Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science & Technology, 92, 22–32. Kanatt, S. R. (2020). Development of active/intelligent food packaging film containing Amaranthus leaf extract for shelf life extension of chicken/fish during chilled storage. Food Packaging and Shelf Life, 24, 100506. Khalaj, M.-J., Ahmadi, H., Lesankhosh, R., &Khalaj, G. (2016). Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: Nano-clay modified with iron nanoparticles. Trends in Food Science & Technology, 51, 41–48. Kumar, S., Mukherjee, A., &Dutta, J. (2020). Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology, 97, 196–209. Kung, H.-F., Lee, Y.-C., Lin, C.-W., Huang, Y.-R., Cheng, C.-A., Lin, C.-M., &Tsai, Y.-H. (2017). The effect of vacuum packaging on histamine changes of milkfish sticks at various storage temperatures. Journal of Food and Drug Analysis, 25(4), 812–818. Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., &Bigger, S. W. (2011). Antimicrobial activity of natural agents coated on starch-based films against Staphylococcus aureus. Journal of Food Science, 76(8), M531–M537. Lee, K. Y., Buldum, G., Mantalaris, A., &Bismarck, A. (2014). More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience, 14(1), 10–32. Li, T., Li, J., Hu, W., &Li, X. (2013). Quality enhancement in refrigerated red drum (Sciaenops ocellatus) fillets using chitosan coatings containing natural preservatives. Food Chemistry, 138(2–3), 821–826. Liang, J., Wang, R., &Chen, R. (2019). The impact of cross-linking mode on the physical and antimicrobial properties of a chitosan/bacterial cellulose composite. Polymers, 11(3), 491. Lin, S.-P., Huang, S.-H., Ting, Y., Hsu, H.-Y., &Cheng, K.-C. (2022). Evaluation of detoxified sugarcane bagasse hydrolysate by atmospheric cold plasma for bacterial cellulose production. International Journal of Biological Macromolecules, 204, 136–143. Lin, S.-P., Loira Calvar, I., Catchmark, J. M., Liu, J.-R., Demirci, A., &Cheng, K.-C. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20(5), 2191–2219. Lin, S.-P., Singajaya, S., Lo, T.-Y., Santoso, S. P., Hsu, H.-Y., &Cheng, K.-C. (2023). Evaluation of porous bacterial cellulose produced from foam templating with different additives and its application in 3D cell culture. International Journal of Biological Macromolecules, 234, 123680. Lin, W.-C., Lien, C.-C., Yeh, H.-J., Yu, C.-M., &Hsu, S. (2013). Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydrate Polymers, 94(1), 603–611. Liu, J., Lan, W., Sun, X., &Xie, J. (2020). Effects of chitosan grafted phenolic acid coating on microbiological, physicochemical and protein changes of sea bass (Lateolabrax japonicus) during refrigerated storage. Journal of Food Science, 85(8), 2506–2515. López-de-Dicastillo, C., Catalá, R., Gavara, R., &Hernández-Muñoz, P. (2011). Food applications of active packaging EVOH films containing cyclodextrins for the preferential scavenging of undesirable compounds. Journal of Food Engineering, 104(3), 380–386. Meftahi, A., Khajavi, R., Rashidi, A., Sattari, M., Yazdanshenas, M. E., &Torabi, M. (2010). The effects of cotton gauze coating with microbial cellulose. Cellulose, 17(1), 199–204. Mohsin, G. F., Schmitt, F.-J., Kanzler, C., Dirk Epping, J., Flemig, S., &Hornemann, A. (2018). Structural characterization of melanoidin formed from d-glucose and l-alanine at different temperatures applying FTIR, NMR, EPR, and MALDI-ToF-MS. Food Chemistry, 245, 761–767. Mosavinia, S. Z., Mousavi, S. M., Khodanazary, A., &Hosseini, S. M. (2022). Effect of a chitosan-based nanocomposite containing ZnO and Zataria multiflora essential oil on quality properties of Asian sea bass (Lates calcarifer) fillet. Journal of Food Science and Technology, 1–10. Motelica, L., Ficai, D., Ficai, A., Oprea, O. C., Kaya, D. A., &Andronescu, E. (2020). Biodegradable antimicrobial food packaging: trends and perspectives. In Foods (Vol. 9, Issue 10). Nakagaito, A. N., Iwamoto, S., &Yano, H. (2005). Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Applied Physics A, 80(1), 93–97. Navikaite-Snipaitiene, V., Ivanauskas, L., Jakstas, V., Rüegg, N., Rutkaite, R., Wolfram, E., &Yildirim, S. (2018). Development of antioxidant food packaging materials containing eugenol for extending display life of fresh beef. Meat Science, 145, 9–15. Noseda, B., Islam, M. T., Eriksson, M., Heyndrickx, M., DeReu, K., VanLangenhove, H., &Devlieghere, F. (2012). Microbiological spoilage of vacuum and modified atmosphere packaged Vietnamese Pangasius hypophthalmus fillets. Food Microbiology, 30(2), 408–419. Numata, Y., Kono, H., Mori, A., Kishimoto, R., &Tajima, K. (2019). Structural and rheological characterization of bacterial cellulose gels obtained from Gluconacetobacter genus. Food Hydrocolloids, 92, 233–239. Oakes, K. D., &Van DerKraak, G. J. (2003). Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquatic Toxicology, 63(4), 447–463. Okiyama, A., Motoki, M., &Yamanaka, S. (1993). Bacterial cellulose IV. Application to processed foods. Food Hydrocolloids, 6(6), 503–511. Organization, W. H. (1999). Food safety. Otoni, C. G., Espitia, P. J. P., Avena-Bustillos, R. J., &McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60–73. Ougiya, H., Watanabe, K., Morinaga, Y., &Yoshinaga, F. (1997). Emulsion-stabilizing effect of bacterial cellulose. Bioscience, Biotechnology, and Biochemistry, 61(9), 1541–1545. Padrão, J., Gonçalves, S., Silva, J. P., Sencadas, V., Lanceros-Méndez, S., Pinheiro, A. C., Vicente, A. A., Rodrigues, L. R., &Dourado, F. (2016). Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocolloids, 58, 126–140. Paparella, A., Mazzarrino, G., Chaves-López, C., Rossi, C., Sacchetti, G., Guerrieri, O., &Serio, A. (2016). Chitosan boosts the antimicrobial activity of Origanum vulgare essential oil in modified atmosphere packaged pork. Food Microbiology, 59, 23–31. Papastergiadis, A., Mubiru, E., VanLangenhove, H., &DeMeulenaer, B. (2012). Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods. Journal of Agricultural and Food Chemistry, 60(38), 9589–9594. Paździor, E., Pękala-Safińska, A., &Wasyl, D. (2019). Phenotypic diversity and potential virulence factors of the Shewanella putrefaciens group isolated from freshwater fish. Journal of Veterinary Research, 63(3), 321. Peng, J., Calabrese, V., Veen, S. J., Versluis, P., Velikov, K. P., Venema, P., &van derLinden, E. (2018). Rheology and microstructure of dispersions of protein fibrils and cellulose microfibrils. Food Hydrocolloids, 82, 196–208. Petersen, N., &Gatenholm, P. (2011). Bacterial cellulose-based materials and medical devices: current state and perspectives. Applied Microbiology and Biotechnology, 91(5), 1277–1286. Pogorelova, N., Rogachev, E., Digel, I., Chernigova, S., &Nardin, D. (2020). Bacterial cellulose nanocomposites: morphology and mechanical properties. Materials, 13(12), 1–16. Portela, R., Leal, C. R., Almeida, P. L., &Sobral, R. G. (2019). Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microbial Biotechnology, 12(4), 586–610. Priyadarshi, R., &Rhim, J.-W. (2020). Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science & Emerging Technologies, 62, 102346. Puligundla, P., Jung, J., &Ko, S. (2012). Carbon dioxide sensors for intelligent food packaging applications. Food Control, 25(1), 328–333. Puntel, R. L., Nogueira, C. W., &Rocha, J. B. T. (2005). Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochemical Research, 30, 225–235. Raafat, D., &Sahl, H.-G. (2009). Chitosan and its antimicrobial potential – a critical literature survey. Microbial Biotechnology, 2(2), 186–201. Rahman, P. M., Mujeeb, V. M. A., &Muraleedharan, K. (2017). Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. International Journal of Biological Macromolecules, 97, 382–391. Rajwade, J. M., Paknikar, K. M., &Kumbhar, J.V. (2015). Applications of bacterial cellulose and its composites in biomedicine. Applied Microbiology and Biotechnology 2015 99:6, 99(6), 2491–2511. Rammak, T., Boonsuk, P., &Kaewtatip, K. (2021). Mechanical and barrier properties of starch blend films enhanced with kaolin for application in food packaging. International Journal of Biological Macromolecules, 192, 1013–1020. Reesha, K.V, Panda, S. K., Bindu, J., &Varghese, T. O. (2015). Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. International Journal of Biological Macromolecules, 79, 934–942. Romanazzi, G., Feliziani, E., Baños, S. B., &Sivakumar, D. (2017). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57(3), 579–601. Rühs, P. A., Storz, F., López Gómez, Y. A., Haug, M., &Fischer, P. (2018). 3D bacterial cellulose biofilms formed by foam templating. Npj Biofilms and Microbiomes, 4(1), 1–6. Saibuatong, O.-A., &Phisalaphong, M. (2010). Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydrate Polymers, 79(2), 455–460. Santoso, S. P., Chou, C.-C., Lin, S.-P., Soetaredjo, F. E., Ismadji, S., Hsieh, C.-W., &Cheng, K. C. (2020). Enhanced production of bacterial cellulose by Komactobacter intermedius using statistical modeling. Cellulose, 27(5), 2497–2509. Schaefer, D., &Cheung, W. M. (2018). Smart packaging: opportunities and challenges. Procedia Cirp, 72, 1022–1027. Shen, R., Wang, H., Wu, K., Gao, J., &Li, J. (2021). Characterization and antimicrobial properties of ferulic acid grafted self‐assembled bacterial cellulose‐chitosan membranes. Journal of Applied Polymer Science, 138(33), 50824. Shi, Z., Zhang, Y., Phillips, G. O., &Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539–545. Silva, W. B., Silva, G. M. C., Santana, D. B., Salvador, A. R., Medeiros, D. B., Belghith, I., daSilva, N. M., Cordeiro, M. H. M., &Misobutsi, G. P. (2018). Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chemistry, 242, 232–238. Siró, I., &Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17(3), 459–494. Son, H., Heo, M., Kim, Y., &Lee, S. (2001). Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter. Biotechnology and Applied Biochemistry, 33(1), 1–5. Sung, S.-Y., Sin, L. T., Tee, T.-T., Bee, S.-T., Rahmat, A. R., Rahman, W. A. W. A., Tan, A.-C., &Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110–123. Tomé, L. C., Brandao, L., Mendes, A. M., Silvestre, A. J. D., Neto, C. P., Gandini, A., Freire, C. S. R., &Marrucho, I. M. (2010). Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose, 17, 1203–1211. Trajkovska Petkoska, A., Daniloski, D., D’Cunha, N. M., Naumovski, N., &Broach, A. T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Research International, 140, 109981. Ul-Islam, M., Khan, T., &Park, J. K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88(2), 596–603. Ul-Islam, M., Shah, N., Ha, J. H., &Park, J. K. (2011). Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean Journal of Chemical Engineering, 28(8), 1736. t Ullah, H., Santos, H. A., &Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23(4), 2291–2314. Urbina, L., Corcuera, M. Á., Gabilondo, N., Eceiza, A., &Retegi, A. (2021). A review of bacterial cellulose: sustainable production from agricultural waste and applications in various fields. Cellulose, 28(13), 8229–8253. Vishnu Priya, N., Vinitha, U. G., &Meenakshi Sundaram, M. (2021). Preparation of chitosan-based antimicrobial active food packaging film incorporated with Plectranthus amboinicus essential oil. Biocatalysis and Agricultural Biotechnology, 34, 102021. Wang, X., Yan, X., Xu, Y., Liu, J., &Chen, D. (2022). Changes in the quality and microbial compositions of ground beef packaged on food absorbent pads incorporated with levulinic acid and sodium dodecyl sulfate. International Journal of Food Microbiology, 376, 109771. Wen, P., Zhu, D.-H., Wu, H., Zong, M.-H., Jing, Y.-R., &Han, S.-Y. (2016). Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control, 59, 366–376. Werner, B. G., Koontz, J. L., &Goddard, J. M. (2017). Hurdles to commercial translation of next generation active food packaging technologies. Current Opinion in Food Science, 16, 40–48. J., Chang, C.-K., Ko, W.-C., Hou, C.-Y., &Hsieh, C.-W. (2020). Use of the plasma-treated and chitosan/gallic acid-coated polyethylene film for the preservation of tilapia (Orechromis niloticus) fillets. Food Chemistry, 329, 126989. Wu, C.-N., Fuh, S.-C., Lin, S.-P., Lin, Y.-Y., Chen, H.-Y., Liu, J.-M., &Cheng, K.-C. (2018). TEMPO-Oxidized Bacterial Cellulose Pellicle with Silver Nanoparticles for Wound Dressing. Biomacromolecules, 19(2), 544–554. Wüstenberg, T. (2014). Cellulose and cellulose derivatives in the food industry: fundamentals and applications. John Wiley & Sons. Yadav, S., Mehrotra, G. K., &Dutta, P. K. (2021). Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chemistry, 334, 127605. Yamada, Y., Yukphan, P., Vu, H. T. L., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., &Nakagawa, Y. (2012). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology, 58(5), 397–404. Yamanaka, S., &Sugiyama, J. (2000). Structural modification of bacterial cellulose. Cellulose, 7, 213–225. Yang, X., Lan, W., Lu, M., Wang, Z., &Xie, J. (2022). Characterization of different phenolic acids grafted chitosan and their application for Japanese sea bass (Lateolabrax japonicus) fillets preservation. LWT, 170, 114072. Yano, S., Maeda, H., Nakajima, M., Hagiwara, T., &Sawaguchi, T. (2008). Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose, 15(1), 111–120. Yassoralipour, A., Bakar, J., Rahman, R. A., &Bakar, F. A. (2012). Biogenic amines formation in barramundi (Lates calcarifer) fillets at 8 C kept in modified atmosphere packaging with varied CO2 concentration. LWT-Food Science and Technology, 48(1), 142–146. Yuan, N., Xu, L., Zhang, L., Ye, H., Zhao, J., Liu, Z., &Rong, J. (2016). Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. Materials Science and Engineering: C, 67, 221–230. Zaborowska, M., Bodin, A., Bäckdahl, H., Popp, J., Goldstein, A., &Gatenholm, P. (2010). Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomaterialia, 6(7), 2540–2547. Zhang, W., Gao, P., Jiang, Q., &Xia, W. (2023). Green fabrication of lignin nanoparticles/chitosan films for refrigerated fish preservation application. Food Hydrocolloids, 139, 108548. Zhijiang, C., &Guang, Y. (2011). Bacterial cellulose/collagen composite: Characterization and first evaluation of cytocompatibility. Journal of Applied Polymer Science, 120(5), 2938–2944. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90540 | - |
dc.description.abstract | 活性包裝材料係指透過與食品的相互作用來延長食品的儲藏期限,以減少、延緩甚至達到抑制腐敗及病原微生物的生長。本研究旨在開發具多孔狀細菌性纖維 (bacterial cellulose, BC) 與幾丁聚醣 (chitosan) 製成之活性包材,除了評估其材料特性外,亦評估其作為活性包材用於金目鱸魚片保存之應用。結果顯示以原位修飾法透過1%的乳化劑、0.2%的三仙膠、chitosan 與培養基形成泡沫狀培養基,後加入 Komagataeibacter xylinus 以生產具有微孔結構 BC,於材料特性分析上,利用掃描電子顯微鏡和傅立葉轉換紅外光譜確認了 BC 之奈米纖維與 chitosan 之間的鍵結形成,而 X 光繞射分析顯示 chitosan 的添加影響了其結晶度,從73%下降至69%,於溶脹試驗中可發現多孔狀 BC 組別具有高達2,300%之溶脹度,表示其具有高吸收液體之能力。抗菌性實驗結果顯示添加 chitosan 之 BC 組別可顯著降低 Staphylococcus aureus 和 Escherichia coli 約2個對數之菌落形成單位,綜合以上結果可知多孔狀 BC/ chitosan 確實具備高吸收性與抗菌性,有助於發展成為抗菌性活性包材,目前仍持續進行金目鱸魚片保存試驗,以評估其實際應用性。 | zh_TW |
dc.description.abstract | Active packaging refers to materials that interact with food to extend the shelf life to reduce, delay, or inhibit the growth of spoilage and pathogenic microorganisms. This study aims to develop active packaging materials using porous bacterial cellulose (BC) and chitosan. The material properties and their application as active packaging for preserving Lates calcarifer fillets were evaluated. The results showed that a foaming medium was formed by in-situ modification using 1% cremodan, 0.2% xanthan, chitosan, and the culture medium, followed by the addition of Komagataeibacter xylinus to produce BC with a porous structure. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of bonds between the nanofibers of BC and chitosan, and X-ray diffraction analysis showed that the addition of chitosan affected its crystallinity, reducing it from 73% to 69%. In the swelling ratio test, the porous BC exhibited a high swelling capacity up to 2,300%, indicating its high liquid absorption ability. The antibacterial experiment showed that the foaming BC (FBC) with chitosan added significantly reduced Staphylococcus aureus and Escherichia coli by approximately 2 logCFU/mL. Based on the above results, it can be concluded that FBC/chitosan possesses high absorbency and antibacterial properties, making it suitable for the development of antibacterial active packaging. The preservation tests on fish fillets are still ongoing to evaluate its applicability. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:32:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:32:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 I
謝誌 II 摘要 III Abstract IV 目錄 V 圖目錄 VIII 表目錄 IX List of Figures X List of Tables XI 壹、 前言 1 貳、 文獻回顧 2 2.1 食品安全衛生安全 2 2.1.1 腸炎弧菌 4 2.1.2 金黃色葡萄球菌 4 2.1.3 大腸桿菌 5 2.1.4 腐敗希瓦氏菌 5 2.2 食品包裝材料 6 2.2.1 智能包裝材料 7 2.2.2 活性包裝材料 8 2.2.3 食品包材之應用 10 2.2.3.1 延長水果和蔬菜的保質期 10 2.2.3.2 延長魚類和肉類的保質期 10 2.3 細菌性纖維素 11 2.3.1 細菌性纖維素生產機制 13 2.3.2 細菌纖維素修飾方法 14 2.3.3 木質醋酸菌 18 2.3.4 細菌纖維素應用 19 2.4 幾丁聚醣 21 2.4.1 幾丁聚醣特性 21 2.4.2 幾丁聚醣應用 23 2.4.3 幾丁聚醣抗菌性 25 2.5 相關法規 26 參、 研究目的與架構 29 3.1 研究目的 29 3.2 研究架構 29 肆、 材料與方法 31 4.1 實驗材料 31 4.1.1 實驗菌株及細胞 31 4.1.2 實驗原料 31 4.1.3 實驗藥品 31 4.2 儀器設備 33 4.3 實驗方法 34 4.3.1 菌種保存 34 4.3.2 一般細菌纖維素製作 34 4.3.3 泡沫細菌纖維素 (Foaming bacterial cellulose, FBC) 製作 34 4.4 最適化生產幾丁聚醣-泡沫細菌纖維素 36 4.4.1 不同氮源濃度條件下對泡沫細菌纖維素產量的影響 36 4.4.2 不同碳源濃度條件下對泡沫細菌纖維素產量的影響 36 4.4.3 不同幾丁聚醣濃度條件下對泡沫細菌纖維素產量的影響 36 4.5 掃描式電子顯微鏡 (scanning electron microscope, SEM) 36 4.6 傅立葉轉換紅外線光譜 (fourier transform infrared spectroscopy, FTIR) 37 4.7 X射線繞射分析儀 (X-ray Diffraction, XRD) 37 4.8 熱重分析儀測定 (Thermogravimetric Analyzer, TGA) 37 4.9 溶脹能力測試 (Swelling ratio) 38 4.10 機械性質測定 (Mechanical properties) 38 4.11 抗菌試驗 39 4.12 細胞毒性分析 39 4.13 金目鱸魚儲藏性實驗 39 4.14 統計分析 42 伍、 結果與討論 43 5.1 最適化生產幾丁聚醣-泡沫細菌纖維素 43 5.1.1 不同氮源濃度條件下對泡沫細菌纖維素產量的影響 43 5.1.2 不同碳源濃度條件下對泡沫細菌纖維素產量的影響 44 5.1.3 不同幾丁聚醣濃度條件下對泡沫細菌纖維素產量的影響 46 5.2 掃描式電子顯微鏡分析 47 5.3 傅立葉轉換紅外線光譜分析 49 5.4 X 射線繞射分析 51 5.5 熱重分析 53 5.6 機械性質分析 55 5.7 吸水率與溶脹能力測試 57 5.8 細胞毒性分析 60 5.9 抑菌效果分析 62 5.10 金目鱸魚儲藏性實驗 63 5.10.1 包裝金目鱸魚片微生物分析 63 5.10.2 總揮發性鹽基態氮(TVBN) 64 5.10.3 硫代巴比妥酸反應物質(TBARS) 65 陸、 結論與未來展望 67 柒、 參考文獻 68 捌、附錄 85 | - |
dc.language.iso | zh_TW | - |
dc.title | 以幾丁聚醣修飾之泡沫培養基生產多孔性細菌纖維素作為活性包材之應用 | zh_TW |
dc.title | In situ modification of bacterial cellulose utilizing foaming medium with chitosan and its application in food packaging | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 林欣平 | zh_TW |
dc.contributor.coadvisor | Shin-Ping Lin | en |
dc.contributor.oralexamcommittee | 謝寶全;陳錦樹;陳俊太 | zh_TW |
dc.contributor.oralexamcommittee | Pao-chuan Hsieh;Chin-Shun Chen;Jiun-Tai Chen | en |
dc.subject.keyword | 泡沫細菌性纖維素,幾丁聚醣,活性包裝,抗菌性,吸水墊料, | zh_TW |
dc.subject.keyword | foaming bacterial cellulose,chitosan,absorbent pads,antimicrobial,active food packaging, | en |
dc.relation.page | 115 | - |
dc.identifier.doi | 10.6342/NTU202303053 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 食品科技研究所 | - |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 3.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。