Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90515Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 王泰典 | zh_TW |
| dc.contributor.advisor | Tai-Tien Wang | en |
| dc.contributor.author | 林俊廷 | zh_TW |
| dc.contributor.author | Jun-Ting Lin | en |
| dc.date.accessioned | 2023-10-03T16:26:18Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | 1. Bornitz, G. (1931). Uber die Ausbreitung der von Grozklolbenmaschinen erzeugten Bodenschwingungen in die Tiefeю Springer-Verlag.
2. Eissa, E. A., & Kazi, A. (1988). Relation between static and dynamic Young's moduli of rocks. International Journal of Rock Mechanics and Mining & Geomechanics Abstracts, 25(6). 3. Gu, X., Liang, X., Shan, Y., Huang, X., & Tessari, A. (2020). Discrete element modeling of shear wave propagation using bender elements in confined granular materials of different grain sizes. Computers and Geotechnics, 125, 103672. 4. Lu, J. F., Shi, M. Q., & Feng, Q. S. (2020). Scattering of elastic waves by a circular hole in the unsaturated soil. Soil Dynamics and Earthquake Engineering, 137, 106295. 5. Masserey, B., & Fromme, P. (2017). Analysis of high frequency guided wave scattering at a fastener hole with a view to fatigue crack detection. Ultrasonics, 76, 78-86. 6. Ni, S. H., Kuo, H. H., Ju, S. H., & Guo, J. L. (2017). In-Situ measurement of the vibration decay characteristics of alluvial soil deposits. Journal of GeoEngineering, 12(3), 109-118. 7. Ocak, I., & Bilgin, N. (2010). Comparative studies on the performance of a roadheader, impact hammer and drilling and blasting method in the excavation of metro station tunnels in Istanbul. Tunnelling and Underground Space Technology, 25(2), 181-187. 8. Wang, S. F., Sun, L. C., Yu, T. A. N. G., Yue, J. I. N. G., LI, X. B., & Yao, J. R. (2022). Field application of non-blasting mechanized mining using high-frequency impact hammer in deep hard rock mine. Transactions of Nonferrous Metals Society of China, 32(9), 3051-3064. 9. Zhang, X., Zhang, Q., Liu, Q., & Xiao, R. (2022). A Numerical Study of Wave Propagation and Cracking Processes in Rock-Like Material under Seismic Loading Based on the Bonded-Particle Model Approach. Engineering. 10. Zhang, Z. X. (2016). Rock fracture and blasting: theory and applications. Butterworth-Heinemann. 11. 王泰典. (2020). 翡翠原水管工程隧道開挖可行工法評估暨技術諮詢.國立臺灣大學.台北 12. 陳正勳.(2011).岩石隧道受震行為及襯砌破壞機制之研究.國立臺灣大學,台北. 13. 黃冠霖. (2022).岩石挖掘數值模擬與室內實驗評估.國立臺灣大學,台北 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90515 | - |
| dc.description.abstract | 岩石隧道工程常見的工法為新奧工法以及TBM工法,相較於適於長隧道、地質變異小的TBM工法,新奧工法因開挖、支撐作業彈性大,而有較大的適用性。新奧工法主要以鑽炸或是機械進行岩盤開挖,前者開炸效率較高,但開炸擾動較大,且伴隨振動與噪音,使用上會有所限制;後者遂成為應用新奧工法在環境限制條件下的最後選項。然而對於節理稀疏、靭度較高岩盤,岩石破碎難度大,現地常利用鑽堡在開挖面鑽孔,再利用液壓錘反覆衝擊岩盤表面,增加開挖效率。儘管實務上常見預鑽孔提高反覆衝擊開挖岩盤的作業方式,然而鑽孔的效益為何? 是否存在對反覆衝擊開挖岩盤的碎岩機制有何差異? 目前相關研究付之闕如,以致鑽孔與反覆衝擊錘擊位置的配合,儘能憑藉作業人員經驗及運氣。
本研究應用離散元素法建立一套數值模式,探討鑽孔存在與否情況下,反覆衝擊生成應力波在岩盤中的傳遞差異。數值模型透過應力波振幅隨傳遞距離增加而衰減驗證其正確性,並試圖透過物理模型試驗結果比較其應用性後,繼而應用於探討反覆衝擊下鑽孔對岩盤損傷的影響。 研究結果顯示,根據數值模擬結果能與應力波相關理論進行驗證,得以確定數值模擬符合理論。當應力波傳遞過孔洞時對周遭的速度振幅會有影響,在不同孔洞大小及位置還有擊打時所產生的波長都會對此造成有不同結果。擊打時孔洞周遭會有破壞的產生也能利用波傳特行進行解釋,得以確認鑽孔可對開挖效率提升。 | zh_TW |
| dc.description.abstract | The common construction methods for rock tunnel engineering are the New Austrian Tunnelling Method (NATM) and Tunnel Boring Machine (TBM) method. Compared to the TBM method, which is suitable for long tunnels with less geological variability, the NATM offers greater flexibility in excavation and support operations, making it more versatile. The NATM primarily involves rock excavation using drilling and blasting or mechanical methods. The former has higher excavation efficiency but causes greater disturbance, vibration, and noise, limiting its usage. Therefore, the latter becomes the final option when applying the NATM under environmental restrictions. However, for rock formations with sparse joints and higher strength, rock fragmentation becomes more challenging. In such cases, boreholes are drilled on the excavation face, and hydraulic hammers are used to repeatedly impact the rock surface, thereby increasing excavation efficiency. Although pre-drilling is commonly employed to improve the effectiveness of repeated impact excavation, the benefits of drilling are often unclear. Furthermore, the existence of differences in rock fragmentation mechanisms during repeated impact excavation remains largely unexplored. As a result, the coordination between borehole placement and the impact locations of the hammer mainly relies on the experience and luck of the operators.
This study applies the Discrete Element Method (DEM) to establish a numerical model to investigate the differences in the propagation of stress waves in rock formations under repeated impacts, considering the presence or absence of boreholes. The numerical model verifies its accuracy by examining the attenuation of stress wave amplitudes with increasing propagation distance. Furthermore, the applicability of the model is evaluated by comparing it with physical model test results. Subsequently, the model is employed to examine the influence of boreholes on rock damage under repeated impacts. The research findings indicate that the numerical simulation results are consistent with the theoretical principles of stress wave propagation, confirming the validity of the numerical model. When stress waves pass through boreholes, they affect the velocity amplitudes in the surrounding area. The size and location of the boreholes, as well as the wavelength generated during impacts, produce different outcomes. The presence of boreholes can enhance excavation efficiency, as the damage around the boreholes during impacts can be explained by the propagation characteristics of waves. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:26:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:26:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與流程 2 1.3 研究架構與主要內容 3 第二章 文獻回顧 4 2.1 岩石開挖理論與常見工法 4 2.1.1鑽炸開挖工法 4 2.1.2破碎機開挖工法 8 2.1.3全斷面隧道鑽掘機或隧道掘削機開挖 9 2.2 岩石開挖工法效率比較 11 2.3 破碎機工法的效率提升 12 2.4 應力波傳播行為 15 2.5 數值模擬應用案例 19 第三章 研究方法 25 3.1 數值模式建立 25 3.1.1 反覆荷載測試 25 3.1.2 波傳特性與監測 29 3.1.3 基本數值模式 33 3.2 數值模式驗證 35 3.2.1 應力波傳衰減理論驗證 36 3.3 物理模型結果驗證 39 3.4 鑽孔影響應力波傳遞數值模型設計 46 3.4.1 PFC中鑽孔模擬方式影響探討 46 3.4.2 鑽孔模擬流程 49 3.4.3 數值模型物理性質 50 3.4.4 波長設計 54 3.4.5 孔洞大小 56 3.4.6 波長對孔洞影響 57 3.4.7 孔洞位置影響 57 3.4.8 擊打造成孔洞附近破壞 59 第四章 結果與討論 60 4.1 孔洞大小影響 60 4.2 波長對於孔洞影響 69 4.3 孔洞位置影響應力波傳遞方向 74 4.3.1波長60 mm 74 4.3.2波長120 mm 80 4.4 擊打破壞過程 85 第五章 結論與建議 91 5.1 鑽孔影響模擬結論 91 5.2 研究後續建議 92 參考文獻 93 附錄一 問題與答覆 95 附錄二 應變計試驗結果 98 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 應力波傳 | zh_TW |
| dc.subject | 機械開挖工法 | zh_TW |
| dc.subject | 岩石開挖 | zh_TW |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | Mechanical excavation method | en |
| dc.subject | Rock excavation | en |
| dc.subject | Numerical simulation | en |
| dc.subject | Stress wave propagation | en |
| dc.title | 反覆衝擊載重下鑽孔對岩石損傷影響 | zh_TW |
| dc.title | Drilled-hole effects on rock damage under repeated impact loading | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李宏輝;陳韋志;簡志峻;許珮筠 | zh_TW |
| dc.contributor.oralexamcommittee | Hung-Hui Li;Wei-Chih Chen;Chih-Chun Chien;Pei-Yun Shu | en |
| dc.subject.keyword | 機械開挖工法,岩石開挖,應力波傳,數值模擬, | zh_TW |
| dc.subject.keyword | Mechanical excavation method,Rock excavation,Stress wave propagation,Numerical simulation, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202302643 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2024-12-10 | - |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf | 12.88 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
